Applied Mathematics & Information Sciences
Abstract
The digamma function is defined for $x>0$ as a locally summable function on the real line by $$\psi(x)=-\gamma+\int_0^{\infty}\frac{e^{-t}-e^{-xt}}{1-e^{-t}}\,dt\,.$$ In this paper we use the neutrix calculus to extend the definition for digamma function for the negative integers. Also we consider the derivatives of the digamma function for negative integers.
Suggested Reviewers
N/A
Recommended Citation
Jolevska-Tuneska, Biljana and Jolevski, Ilija
(2013)
"Some results on the digamma function,"
Applied Mathematics & Information Sciences: Vol. 07:
Iss.
1, Article 20.
Available at:
https://digitalcommons.aaru.edu.jo/amis/vol07/iss1/20