Applied Mathematics & Information Sciences

Author Country (or Countries)



To cover a set of targets with known locations within an area with limited or prohibited ground access using a wireless sensor network, one approach is to deploy the sensors remotely, from an aircraft. In this approach, the lack of precise sensor placement is compensated by redundant de-ployment of sensor nodes. This redundancy can also be used for extending the lifetime of the network, if a proper scheduling mechanism is available for scheduling the active and sleep times of sensor nodes in such a way that each node is in active mode only if it is required to. In this paper, we propose an efficient scheduling method based on learning automata and we called it LAML, in which each node is equipped with a learning automaton, which helps the node to select its proper state (active or sleep), at any given time. To study the performance of the proposed method, computer simulations are conducted. Results of these simulations show that the proposed scheduling method can better prolong the lifetime of the network in comparison to similar existing method.