Applied Mathematics & Information Sciences
Abstract
In this paper, we prove the difference analogs of the comparison theorems for solutions of the Cauchy problem for a nonlinear ordinary differential equation (ODE). These theorems are used to analyse blow-up solution of finite-difference schemes (FDS) approximating the Neumann problem for a parabolic equation with a nonlinear source of power form. We also propose the method for obtaining the two-sided estimates of solution. This method is based on implicit and explicit FDS.
Digital Object Identifier (DOI)
http://dx.doi.org/10.18576/amis/100108
Recommended Citation
Matus, Piotr; Kozera, Ryszard; Paradzinska, Agnieszka; and Schadinskii, Denis
(2016)
"Discrete Analogs of the Comparison Theorem and Two-Sided Estimates of Solution of Parabolic Equations,"
Applied Mathematics & Information Sciences: Vol. 10:
Iss.
1, Article 8.
DOI: http://dx.doi.org/10.18576/amis/100108
Available at:
https://digitalcommons.aaru.edu.jo/amis/vol10/iss1/8