Applied Mathematics & Information Sciences
Abstract
In this paper, we study the semilinear equation with a time fractional structural damping Dβ0|tu(t,x)−2∆Dα0|tu(t,x)+∆2u(t,x) = |u(t,x)|p t > 0, x ∈ Ω, where p > 1, 1 < α < 1 < β < 2 and Dα is the Caputo fractional derivative. We obtain the blow- up result under some positive data 2 0|t when 1 < p < 1+ 2α . Whereas, if p 1+ 2α and ∥u0∥L2qc (Ω), qc = N(p−1)/4 is sufficiently small, we prove the existence of global solution.
Digital Object Identifier (DOI)
http://dx.doi.org/10.18576/amis/150209
Recommended Citation
Bouguetof, Khaoula
(2021)
"The Critical Exponent to Cauchy Problem for a Time Fractional Semi-Linear Equation with a Structural Damping,"
Applied Mathematics & Information Sciences: Vol. 15:
Iss.
2, Article 9.
DOI: http://dx.doi.org/10.18576/amis/150209
Available at:
https://digitalcommons.aaru.edu.jo/amis/vol15/iss2/9