•  
  •  
 

Applied Mathematics & Information Sciences

Author Country (or Countries)

India

Abstract

Plant diseases are a huge danger to food security, yet owing to the lack of infrastructure in several regions of the world, timely detection is challenging. Smartphone-assisted detection of disease is now achievable thanks to a combination of rising global smartphone usage & recent advancements in machine vision facilitated by depth learning. They trained a depth convolutional neural network to detect 16 crops & 25 diseases utilizing a public dataset for 64,412 pictures of damaged & normal leaf tissue taken under controlled settings (absence thereof). On the held-out testing set, the training set achieved an accuracy of 99.35 percent, showing the practicality of this strategy. The method of training deep learning techniques increasingly vast & available to the public specific sequence points to a clear route to widespread global smartphone assisted plant disease detection.

Digital Object Identifier (DOI)

http://dx.doi.org/10.18576/amis/160202

Share

COinS