Applied Mathematics & Information Sciences
Abstract
In this paper, we study the blow up criterion of the smooth solutions to the three-dimensional incompressible nematic liquid crystal flows in terms of $\lambda _{2}^{+}$ in the multiplier space $\dot{X}_{1}$ and $\nabla d$ in $BMO$. It is shown that the solution $(u,d)$ can be extended beyond $t=T$ if T λ + ( · , t ) 2 2 2 X ̇ 1 + ∥ ∇ d ( · , t ) ∥ B M O d t < ∞ . 0 ln(e+∥∇u(·,t)∥X ̇1) ln(e+∥∇d(·,t)∥BMO)
Digital Object Identifier (DOI)
http://dx.doi.org/10.18576/amis/170401
Recommended Citation
Ben Omrane, Ines
(2023)
"On the blow up criterion for the 3D nematic liquid crystal flows involving the second eigenvalue of the deformation tensor,"
Applied Mathematics & Information Sciences: Vol. 17:
Iss.
4, Article 1.
DOI: http://dx.doi.org/10.18576/amis/170401
Available at:
https://digitalcommons.aaru.edu.jo/amis/vol17/iss4/1