•  
  •  
 

Applied Mathematics & Information Sciences

Author Country (or Countries)

Saudi Arabia

Abstract

In this paper, we study the blow up criterion of the smooth solutions to the three-dimensional incompressible nematic liquid crystal flows in terms of $\lambda _{2}^{+}$ in the multiplier space $\dot{X}_{1}$ and $\nabla d$ in $BMO$. It is shown that the solution $(u,d)$ can be extended beyond $t=T$ if 􏰖 T  􏰇􏰇 λ + ( · , t ) 􏰇􏰇 2 2   2 X ̇ 1 + ∥ ∇ d ( · , t ) ∥ B M O  d t < ∞ . 0 ln(e+∥∇u(·,t)∥X ̇1) ln(e+∥∇d(·,t)∥BMO)

Digital Object Identifier (DOI)

http://dx.doi.org/10.18576/amis/170401

Share

COinS