Applied Mathematics & Information Sciences
Abstract
Symmetries on a group $G$ are the mappings $G\ni x\mapsto gx^{-1}g\in G$, where $g\in G$. A coloring $\chi:G\to\{1,\ldots,r\}$ of $G$ is symmetric if it is invariant under some symmetry. We count the number $S_r(\mathbb{Z}_p^n)$ of symmetric $r$-colorings of $\mathbb{Z}_p^n$, the direct product of $n$ copies of the cyclic group of prime order $p$. As a consequence we obtain that $S_r(\mathbb{Z}_p^n)=p^nr^{\frac{p^n+1}{2}}+S_r(\mathbb{Z}_p^{n-1})$.
Digital Object Identifier (DOI)
https://dx.doi.org/10.18576/amis/170607
Recommended Citation
Zelenyuk, Yuliya
(2023)
"Symmetric colorings of $\mathbb{Z}_p^n$,"
Applied Mathematics & Information Sciences: Vol. 17:
Iss.
6, Article 13.
DOI: https://dx.doi.org/10.18576/amis/170607
Available at:
https://digitalcommons.aaru.edu.jo/amis/vol17/iss6/13