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Abstract: The commuting graph of a ring R, denoted by Γ (R), is a graph whose vertices are all non-central elements of R and two

distinct vertices u and v are adjacent if and only if uv = vu. In this paper let R be the commutative ring with 1R 6= 0R. In this paper we

investigate, some basic properties of Γ (M(m1 ⊕m2,R)) we find the g(Γ ((M(m1 ⊕m2,R))) = 3 and we show that Γ ((M(m1 ⊕m2,R))
is not Eulerian, and Γ ((M(m1 ⊕m2,R)) is not planar.

Keywords: Commuting graph, direct sum matrices, planar graph

1 Introduction.

We assume that R be a commutative ring with unity
1R 6= 0R.
The distance between two vertices in a graph G, say m1

and m2, is the length of the shortest path between m1 and
m2 in the graph if such a path exists and ∞ if there is no
path. The distance between any two vertices is denoted by
d(m1,m2). For any graph G, the degree of a vertex m,
denoted by deg(m), is the number of edges incident with
the vertex m, with loops counted twice if exist. The
diameter of a graph Γ is the maximum distance between
any two vertices in the graph, which is denoted by
diam(Γ ) = max{d(m1,m2) : m1,m2 ∈ Γ }, the length of a
shortest cycle in G is called the girth of G, it is denoted
by g(G), if the graph has no cycle then girth equal to ∞.
We denote the set of all n × n matrices over R by
Mn×n(R) = M(n,R). Moreover, for any two matrices
X ∈ M(m × n,R) and Y ∈ M(r × s,R), we define

X ⊕Y =

(

X 0
0 Y

)

∈ M((m + r)× (n+ s),R). We denote

the set of all direct sum X ⊕Y where X ∈ M(n1,R) and
Y ∈ M(n2,R) by M(n1 ⊕ n2,R).
For a ring R, we denote the center of R by Z(R) and
Z(R) = {u ∈ R : uv = vu, ∀v ∈ R}. If u is an element of
R, then CR(u) denotes the centraliser of u in R and
CR(u) = {v ∈ R : uv = vu}.

The commuting graphs of groups have been studied

deeply, we give some examples in [1,2,3,4,5], and
examples of rings in [6,7,8,9].

2 Girth for Γ (M(m1⊕m2,R)).

Let R be a commutative ring with unity 1R 6= 0R. In this
section we determine the girth of Γ (M(m1 ⊕m2,R)).
Lemma 1. Suppose that |R| ≥ 3. Then
g(Γ (M(m1 ⊕m2,R))) = 3.

Proof.Let a ∈ R\ {0,1}. We have the cycle
(

1 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

)

⊕

(

0 0 · · · 0
...

... · · · 0
0 0 · · · 0
0 0 · · · 0

)

-

(

a 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

)

⊕

(

0 0 · · · 0
...

... · · · 0
0 0 · · · 0
0 0 · · · 0

)

-

(

0 0 · · · 0
0 a · · · 0
... 0

... 0
0 0 · · · 0

)

⊕

(

0 0 · · · 0
...

... · · · 0
0 0 · · · 0
0 0 · · · 0

)

-

(

1 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

)

⊕

(

0 0 · · · 0
...

... · · · 0
0 0 · · · 0
0 0 · · · 0

)

; a 6= 0. Hence

g(Γ (M(m1 ⊕m2,R))) = 3.

3 When is Γ (M(m1⊕m2,R)) Eulerian ?

In this section we determine when Γ (M(m1 ⊕m2,R)) is
Eulerian.
Definition 1. A graph Γ is called Eulerian if there exists
a closed trail containing every edge of Γ .

The following well known result characterizes when a
graph Γ is Eulerian in [10].
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Proposition 1. A connected finite graph Γ is Eulerian if
and only if the degree of each vertex of Γ is even.

Now, we will show that Γ (M(m1 ⊕ m2,R)) is not
Eulerian.
Lemma 2. Let R be a finite ring such that |R| is odd.
Then for any X ∈ Γ (M(m1 ⊕m2,R)), deg(X) is an odd,
so Γ (M(m1 ⊕m2,R)) can not be Eulerian graph.

Proof.Let X = X1 ⊕ Y1 ∈ Γ (M(m1 ⊕ m2,R)), then
deg(X) = |CR(X)|- |Z(M(m1 ⊕m2,R))|− 1, |CR(X)| and
|Z(M(m1 ⊕ m2,R))| divide |R| which is odd and hence
|CR(X)| and |Z(M(m1 ⊕ m2,R))| are odd. So,
deg(X) =odd-odd-1=odd.

Lemma 3. Let R be a finite ring such that |R| is even.
Then Γ (M(m1 ⊕m2,R)) cannot be Eulerian graph.

Proof.Let X = X1 ⊕ Y1 ∈ Γ (M(m1 ⊕ m2,R)), then
deg(X) = |CR(X)|−|Z(M(m1 ⊕ m2,R))| − 1. Let

X1 =





1 0 · · · 0
0 0 · · · 0
... 0

... 0
0 0 · · · 0



, Y1 =





1 0 · · · 0
0 0 · · · 0
... 0 · · · 0
0 0 · · · 0



. Then

CR(X) = {





a 0 · · · 0
0 ∗ · · · ∗
...

... · · ·
...

0 ∗ · · · ∗



⊕





b 0 · · · 0
0 ∗ · · · ∗
...

... · · · ∗
0 ∗ · · · ∗



,

Z(M(m1,R))⊕





b 0 · · · 0
0 ∗ · · · ∗
...

... · · · ∗
0 ∗ · · · ∗



,





a 0 · · · 0
0 ∗ · · · ∗
...

... · · ·
...

0 ∗ · · · ∗



⊕Z(M(m2,R))}

where a, b ∈ R and







∗ · · · ∗
... · · ·

...
∗ · · · ∗






∈ M(mi − 1,R) where

i = 1, 2. So CR(X) = |R|(m1−1)(m1−1)+(m2−1)(m2−1)+2+

|R|(m2−1)(m2−1)+2 + |R|(m1−1)(m1−1)+2 which is an even.
Then deg(X) = even− even− 1= odd.

Combining the results of Lemma 2 and Lemma 3 we get
the following theorem.

Theorem 1. Let R be a finite ring. Then the
commuting graph Γ (M(m1 ⊕m2,R)) is not Eulerian.

4 When is Γ (M(m1 ⊕m2,R)) Planar ?

Definition 2. A graph Γ is called planar if it can be drawn
in a plane with crossing of the edges are only at the
vertices of the graph.

We use the following results to show that
Γ (M(2⊕2,R) is not Planar, when |R| ≥ 4. The following
two lemmas were proved in [11] and [2] respectively.
Lemma 4. Let G be a simple connected planar graph.
Then G has at least one vertex of degree less than 6.
Lemma 5. Let R be an integral domain with order greater
than or equal 4. Then the graph Γ (M(2 ⊕ 2,R)) is a

disconnected graph.
Now, we will investigate when Γ (M(2 ⊕ 2,R)) is

planar where |R| ≥ 4. Consider the following lemma.
Lemma 6. For any matrix
X ∈ M(2⊕ 2,R) \Z(M(2⊕ 2,R)), the degree of X is the
graph Γ (M(2⊕ 2,R)) is greater than or equal to 6.

Proof.Let

X =

(

a1 b1

c1 d1

)

⊕ Z1 ∈ M(2 ⊕ 2,R) \ Z(M(2 ⊕ 2,R)).

Suppose

Y =

(

u1 u2

u3 u4

)

⊕ Z2 ∈ M(2 ⊕ 2,R) \ Z(M(2 ⊕ 2,R) is a

matrix that commutes with X . We have several cases to
consider.

–Case 1: Suppose b1 is a unit. Then

XY =

(

a1u1 + b1u3 a1u2 + b1u4

c1u1 + d1u3 c1u2 + d1u4

)

⊕ Z1Z2=
(

a1u1 + c1u2 b1u1 + d1u2

a1u3 + c1u4 b1u3 + d1u4

)

⊕ Z2Z1 = YX . So,

b1u3 = c1u2, u3 = b1
−1c1u2,

u4 = u1 + b1
−1(d1 − a1)u2. So, X is adjacent to every

matrix of the form
(

u1 u2

b1
−1c1u2 u1 + b1

−1(d1 − a1)u2

)

⊕ Z. So,

deg(X)≥ |R|2 −|R|− 1 ≥ 6.
–Case 2: Suppose c1 is a unit. Then

XY =

(

a1u1 + bu3 a1u2 + b1u4

c1u1 + du3 c1u2 + d1u4

)

⊕ Z1Z2=
(

a1u1 + c1u2 b1u1 + d1u2

a1u3 + c1u4 b1u3 + d1u4

)

⊕ Z2Z1 = YX . So,

b1u3 = c1u2, u2 = c1
−1b1u3,

u4 = u1 + c1
−1(d1 − a1)u3. So, X is adjacent to every

matrix of the form

(

u1 c−1bu3

u3 u1 + c−1(d − a)u3

)

⊕ Z.

Then deg(X)≥ |R|2 −|R|− 1 ≥ 6.
–Case 3: Suppose that neither c1 nor b1 is a unit. Then

–Subcase 3.1: If b1 = c1 = 0, then

X =

(

a1 0
0 d1

)

⊕Z1. Consider Y =

(

u1 0
0 u4

)

⊕Z2,

then XY =

(

a1u1 0
0 d1u4

)

⊕ Z1Z2=
(

a1u1 0
0 d1u4

)

⊕Z2Z1 = YX . Thus X is adjacent to

every matrix of the form

(

u1 0
0 u4

)

⊕ Z. Hence

deg(X)≥ |R|2 −|R|− 1 ≥ 6.

–Subcase 3.2: If the matrix X has the form
(

a1 0
c1 d1

)

⊕ Z1, c1 6= 0, a1 6= d1. Suppose that

Y =

(

u1 u2

u3 u4

)

⊕ Z2 ∈ CM(2⊕2,R)(X). Then

c© 2021 NSP

Natural Sciences Publishing Cor.

2

Information Sciences Letters, Vol. 10 [2021], Iss. 1, Art. 1

https://digitalcommons.aaru.edu.jo/isl/vol10/iss1/1



Inf. Sci. Lett. 10, No. 1, 1-4 (2021) / www.naturalspublishing.com/Journals.asp 3

XY =

(

a1u1 a1u2

c1u1 + du3 c1u2 + du4

)

⊕ Z1Z2 =
(

a1u1 + cu2 d1u2

a1u3 + cu4 d1u4

)

⊕Z2Z1 = Y X . So, c1u2 = 0,

(a1 − d1)u2 = 0 and c1(u1 − u4) = (a1 − d1)u3.

If (a1 − d1) is a unit, then we can take
u3 = (a1 − d1)

−1c1(u1 − u4) and u2 = 0. So, X is
adjacent to every matrix of the form
(

u1 0

(a1 − d1)
−1c1(u1 − u4) u4

)

⊕ Z. Hence

deg(X)≥ |R|2 −|R|− 1 ≥ 6.
If (a1 − d1) is a zero divisor, then there exists
nonzero element, say (a1 − d1)

∗, with
(a1 − d1)(a1 − d1)

∗ = 0. Also c1 is a zero divisor,
so there exists nonzero element say c1

∗ with
c1c1

∗ = 0. One can easily check that X is adjacent
to every matrix of the form
(

u4 + k jc1
∗ 0

n j(a1 − d1)
∗ u4

)

⊕ Z where k j, n j ∈ {0,1}.

Hence deg(X)≥ 2.2.|R|− |R|− 1 ≥ 6.

–Subcase 3.3: If the matrix X has the form

X =

(

a1 b1

0 d1

)

⊕ Z1, b1 6= 0, then one can check

that X is adjacent to every matrix of the form
(

u1 u2

0 u4

)

⊕ Z, for all u1, u2 ∈ R. Hence

deg(X)≥ |R|2 −|R|− 1 ≥ 6.

–Subcase 3.4: If the matrix X has the form
(

a1 b1

0 d1

)

⊕ Z1, b1 6= 0, a1 6= d1. Suppose that

Y =

(

u1 u2

u3 u4

)

⊕ Z2 ∈ CM(2⊕2R)(X). Then

XY =

(

a1u1 + b1u3 a1u2 + b1u4

d1u3 d1u4

)

⊕

Z1Z2 =

(

a1u1 b1u1 + d1u2

a1u3 b1u3 + d1u4

)

⊕ Z2Z1 = YX . So,

b1u3 = 0, (d1 − a1)u2 = b1(u4 − u1).
If (d1 − a1) is a unit, then we can take
u2 = (d1 −a1)

−1b1(u4 −u1) and u3 = m jb
∗. So, X

is adjacent to every matrix of the form
(

u1 (d1 − a1)
−1b1(u4 − u1)

0 u4

)

⊕ Z. Then

deg(X)≥ |R|2 −|R|− 1 ≥ 6.
If (d1 − a1) is a zero divisor, then there exists
nonzero element, say (d1 − a1)

∗, with
(d1 − a1)(d1 − a1)

∗ = 0. Also b1 is a zero divisor,
so there exists nonzero element say b∗ with
b1b∗ = 0. One can easily check that X is adjacent
to every matrix of the form
(

u1 n j(d1 − a1)
∗

0 u1 + k jb
∗

)

⊕ Z, k j, n j ∈ {0,1}. Then

deg(X)≥ 2.2.|R|− |R|− 1 ≥ 6.

–Subcase 3.5: If the matrix X has the form
(

a1 b1

c1 d1

)

⊕ Z1 where b1, c1 6= 0, b1, c1 are zero

divisors. If Y ∈ CM(2⊕2,R)(X), then

XY =

(

a1u1 + b1u3 b1u4 + a1u2

a1u3 + c1u1 c1u2 + a1u4

)

⊕

Z1Z2 =

(

a1u1 + c1u2 a1u2 + b1u1

a1u3 + c1u4 a1u4 + b1u3

)

⊕ Z2Z1

= Y X . Since b1 and c1 are zero divisors there
exists b∗, c∗ 6= 0 with b1b∗ = 0 and c1c∗ = 0. So,
the matrix X is adjacent to all matrices of the form
(

u1 m jc
∗

n jb
∗ u1

)

⊕Z where m j, n j ∈ {0,1}, u1 ∈ R.

Thus deg(X)≥ 2.2.|R|− |R|− 1 ≥ 6.

–Subcase 3.6: If the matrix X has the form
(

a1 b1

c1 d1

)

⊕ Z1 where b1, c1 are nonzero zero

divisors. Since b1 and c1 are nonzero zero divisors
then there exists b∗, c∗ 6= 0 such that b1b∗ = 0,
c1c∗ = 0. So, the matrix X is adjacent to every

matrix of the form

(

a1 + c2 b1

c1 d1 + c2

)

⊕Z where

c2 ∈ R. Also X is adjacent to every matrix of the

form

(

b∗a+ c2 0
b∗c1 b∗d+ c2

)

.

If b∗c1 6= 0, then deg(X)≥ (|R|− 1)+ |R| ≥ 6.
If b∗c1 = 0, then X is adjacent to all matrices of

the form

(

a+ c2 b

c1 d + c2

)

and all matrices of the

form

(

m jb
∗+ c3 0
0 l jb

∗+ c3

)

where c2, c3 ∈ R.

So, deg(X)≥ (|R|− 1)+ (2.2.|R|− |R|)≥ 6.

Now, we give the final result that shows that
Γ (M(2⊕ 2,R)) is not Planar, when |R| ≥ 4.
Theorem 2. Suppose that R is a finite ring with |R| ≥ 4.
Then Γ (M(2⊕ 2,R)) is not Planar.

Proof.Using the previous lemma, every vertex of Γ (M(2⊕
2,R)) has degree greater than 6. Hence by lemma 4, is not
Planar.

Theorem 3. Suppose that R is a finite ring. Then
Γ (M(m1 ⊕m2,R)) is not Planar.

Proof.Let X be any matrix
X ∈ M(m1 ⊕ m2,R) \ Z(M(m1 ⊕ m2,R)). Then
X = A1 ⊕ B1 ∈ M(m1 ⊕ m2,R) \ Z(M(m1 ⊕ m2,R)) is
adjacent to every matrix of the form
{A1 + c1 ⊕ B1 + c2,Z(M(m1,R)) ⊕ B1 + c2,

A1 + c1 ⊕ Z(M(m2,R))} where c1, c2 ∈ R. So,
deg(X) ≥ 3|R|2 − |R|2 − 1 ≥ 6. Hence by lemma 4,
Γ (M(m1 ⊕m2,R)) is not Planar.
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5 Perspective.

In this article, We give, some basic properties of
Γ (M(m1 ⊕ m2,R)) we find the
g(Γ ((M(m1 ⊕ m2,R))) = 3, Γ ((M(m1 ⊕ m2,R)) is not
Eulerian, and Γ ((M(m1 ⊕m2,R)) is not planar.

One can ask the following questions:

–(1) When the complement of commuting graph
Γ (M(m1 ⊕m2,R)) is Planar graph?

–(2) When the complement of commuting graph
Γ (M(m1 ⊕m2,R)) is Eulerian graph ?
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