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Abstract  
The main objective of this research work is to develop the performance of education in higher schools e-

learning systems. This is accomplished with the aide of data mining (DM) techniques. The proposed model 

is applied on different students. Data is collected using online school tests, reports and quizzes. This paper 

applies SVM with accuracy 89%, Decision tree with accuracy 89%, M5-Rules with RMS error equal to 

1.4621 and Linear Regression with RMS error equal to 2.0017, 3.0089 and 3.6057. Once getting both first 

and second grades, the presented results show a high predictive accuracy. Not only past student's 

evaluations affected in their academic achievement, but also other factors like father's and mother's jobs and 

absences. Briefly, student performance can be improved depending on predictive results and enhancing 

school systems. 
 

  Keywords: Data Mining, Educational Systems, Classification, Regression, Decision Trees. 
 

 

I. Introduction 
 

Students have to learn in anywhere by any way. 

Electronic learning (E-Learning) is the 

employment of computers and web to help both 

learners and educators to learn anytime and 

anywhere without restrictions. E-learning has 

created new markets for education. It is far from 

the traditional trend of education which depends 

on the tremendous revolution of information 

technology. The use of Internet, computers and 

networks for learning purposes is called E-

learning (1). Usual E-learning systems offer 

knowledge and evaluation for learners but our 

proposed system aims to ensure that students 

received educational content correctly by monitoring 

his handling of the course content and communicate 

directly with him to direct it to the correct way. On 

the other hand, as a result of the evolution of 

information systems, attention towards Data Mining 

is constantly increasing (2). Making decisions and 

achieving goals need to real information. So the 

student's information 

 

 

must be very close to reality. Examples are  

grades, social and demographic data. Because of 

the limited human ability to predict, an 

alternative tool to analyze a big data to make a 

decision is needed. Student learning is the best 

area for applying data mining applications 

because of the available data like databases, 

pages on web and all web process (19-52). There 

are many questions concerning the field of E-

Learning that can be answered with techniques 

using Data Mining algorithms: Which type of 

students who have a credit hours system? Who 

need to study the course again? How to increase 

the number of our students? How to handle 

system's errors? How to prevent student 

converting to another       E-Learning system? 

What are the methods of predicting student 

performance? How to improve the student's 

performance and achievements? The main points 

of this paper are to predict and enhance the 

student's performance as well as improve his 

achievement (3). 
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II. MATERIALS AND METHODS 

It is known that the secondary education consists 

of three years. Students study many educational 

materials like Sciences, Historical, Geometric 

and Mathematics. The method of evaluation of 

tests varies, but a 20-point grading is often used, 

Starting from o and ending with 20. Students are 

evaluated on three levels:  the first evaluating 

(G1N), the second evaluating (G2N) and the last 

evaluation (G3N) as shown in table 1. In order to 

keep pace with the development of information 

technology in learning we developed website to 

make e learning system instead of sheets system. 

The traditional systems have many 

disadvantages such as lack of data and lack of 

credibility. The database was built from three 

dimensions data registration on our website 

questionnaires and results are tested for each 

year. We designed our site to get special data 

divided into four sections grades, related feature, 

social and demographic which affect student 

performance (4). During the preprocessing step 

some variables had to be ignored due to the lack 

of discriminative value. 

III. DATA MINING MODELS 

There are many analytics tools (Classification 

and Regression Tree) used for extracting the 

most useful variables from the dataset. The 

output of each tool is the difference between 

them (classification is a discrete and regression 

is a continuous). The classification shows the 

result as percentage while in regression as Root 

Mean Squared (5). Classifications to be good 

should present a low Correct Classifications, 

while regression should present a low global 

error. All of these results come from using the 

equations: 

𝛷(𝑖) = {
1       ,       𝑖𝑓 𝑦𝑖 = �̂�𝑖

0        ,      𝑒𝑙𝑠𝑒          
                 (1) 

 

PCC = ∑
𝛷(𝑖)

𝑁
× 100(%)𝑁

𝑖=1                    (2) 
 

 

RMSE = √∑ (𝑦𝑖 + �̂�𝑖)2 / 𝑁  𝑁
𝑖=1             (3) 

The dataset records is tested and applied on 

various classification algorithms using WEKA 

an Open source tool such as: 

- Linear Regression (finding the best-fitting 

straight line through the point). 

- SVM Support Vector Machines. 

- C4.5. 

-  M5-Rules Algorithm. 

3.1 C4.5 

The most important feature in Decision tree 

(DT) is the use of a tree structure as simple 

representation for a set of rules that diG1 Suish 

values hierarchically (6). It is a useful tool for the 

classification (7). DT Algorithm is to discover the 

behavior of each attribute (8). Tree classification 

algorithm is used to make the prediction and 

understood the critical distribution of the data is 

easily (9).  

3.1.1 Confusion Matrix 

A confusion matrix (an error matrix) is a 

specific table layout that allows visualization of 

the performance of an algorithm, typically a 

supervised learning one (in unsupervised 

learning it is usually called a matching matrix) 
(10). This matrix used in the field of machine 

learning and specifically the problem of 

statistical classification. In the table layout rows 

and columns have a role, each row represents the 

instances in an actual class and each column of 

the matrix represents the instances in a predicted 

class (11). 

(Fig. 1) shows the prediction outcome using a 

confusion matrix. The main objective from 

confusion matrix is to describe classification 

model performance which applied to set of 

known data.    

Sensitivity 

Sens. = 
𝑇𝑃

𝑃
 = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           (4) 

Specificity 

Spec. =
TN

N
 = 

TN

TN+FP
                                            (5) 

Precision 

Prec. = 
TP

TP+FP
                                                    (6) 

Accuracy (ACC) 

ACC =
TP+TN

P+N
 = 

TP+TN

TP+TN+FP+FN
                           (7) 

3.1.2 Pruning 

One of the most important techniques in 

machine learning is a pruning which used to 

remove a section of the tree to reduce the size of 

decision trees. A tree with a lot of branching is a 

big problem so we need to reach to the optimal 
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size by removing the nodes that do not provide 

important information (12). 

3.2 Linear Regression 

Regression used as statistical analysis tools  )13(. 

To explain the link between a dependent and 

independent variables we have to use regression 

analysis, taking into consideration that variable 

based on a sample from a given community )14(. 

Regression model can be written as. 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ . 𝛽𝑛𝑥𝑛 + 𝜀𝑖       (8) 

Where, 

- β0 :  Intercept. 

- βk : Coefficient. 

- K : Independent variable. 

- εi : Error term. 

3.3.SMO 

SMO solves the SVM QP problem by dividing 

it into QP sub-problems then the smallest one, 

including two Lagrange multipliers (15). 

As shown in the figure 2 in the linear case, the 

margin is defined by the distance of the hyper 

plane to the nearest of the positive and negative 

examples. The output of a linear SVM written 

as: 

U =�⃗⃗� . 𝑥  – b                                                                (9) 

Where,   

- w : The normal vector. 

-  x : The input vector. 
 

The separating hyper plane is the plane u = 0. 

The nearest points lie on the planes u = ± 1. The 

margin M is thus 

M = 
1

|| 𝑤 ||2
                                                       (10) 

3.4. M5-Rules Algorithm  

M5 algorithm is one of the common methods for 

generating rules from the trees. The M5 builds 

regression trees whose leaves are consist of 

multivariate linear models, and the nodes of the 

tree are chosen over the attribute that maximizes 

the expected error reduction as a function of the 

standard deviation of output parameter (16). The 

association rule and the classification rule are the 

only two rule algorithm type(17). The important 

of using Rule algorithms in data mining 

application : It offer simple and clear results, 

active in  undirected data mining, deal with huge 

amount of data, using a simple  computation. 

Create M5 tree in three steps: generates a 

regression tree using the training data, and 

calculates a linear model for each node of the 

tree generated, tries to simplify the regression 

tree deleting the nodes of the linear models 

whose attributes do not increase the error and 

reduces the size of the tree without reducing the 

accuracy. 

IV. SIMULATION RESULTS 

Classification has been performed using C4.ss 

(Sequential Minimal Optimization), Linear 

Regression and M5-Rules Algorithm m on 

mathematical dataset in weka tool. 

4.1.Results for Classification using J48 

J48 is applied on the data set and the confusion 

matrix is generated for class gender having two 

possible values i.e. PASS or FAIL. 

Confusion Matrix 

𝛼        𝛽 

102    28 |   𝛼 = Fail 

15    250 |   𝛽   = Pass 

For above confusion matrix, TP for class 𝛼 = 

’Fail’ is 102 while FP is 28 whereas, for class 𝛽 

= Pass, TP is 250 and FP is 15 i.e. diagonal 

elements of matrix 102 + 250 = 352 (the correct 

instances) and other elements 15 + 28 = 43 (the 

incorrect instance). 

4.2.Results for Classification using SVM 

SVM is applied on the data set and the 

confusion matrix is generated for class gender 

having two possible values i.e. PASS or FAIL. 

Confusion Matrix  

   𝛼       𝛽    

 106   24 |   𝛼 = Fail 

  19   246 |   𝛽 = Pass 

For above confusion matrix, TP for class 𝛼 = 

’Fail’ is 106 while FP is 24 whereas, for class 𝛽 

= Pass, TP is 246 and FP is 19 i.e. diagonal 

elements of matrix 106 + 246 = 352 (the correct 

instances) and other elements 24 + 19 = 33 (the 

incorrect instances). 

Table 2 shows the results of J48 and SVM, we 

notice that both have the same high accuracy 

which equal to 0.981. 

4.3.Results for Classification using Linear 

Regression 

To apply linear Regression, preprocessing must 

apply to some variables (convert nominal 

variables to numerical variables) (18). Linear 
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Regression will be applied to the available 

dataset on three ways: 

1. All variables in dataset (G3N is the output). 

2. All variables in dataset except G3N, G2N 

(G1N is the output). 

3. All variables in dataset except G3N (G2N is 

the output). 

Regression Results: 

1. Linear Regression Model  

G3N = 

-.53 school + .2568 * age -.4192 * Fjob + 

.5391 * Fjob -.2845 * activities + .3167 * 

romantic + .4022 * famrel + .1355 * Walc 

+.0474 * absences + .1687 * G1N + 0.9718 * 

G2N + .7893 

2. Linear Regression Model 

G1N = 

.8726 * sex + .2222 * F edu + .5466 * M job + 

.8306 * Mjob – 1.2776 * Mjobth + 1.8858 * M 

job + 1.0861 * Fjob + .9411 * Fjob + .6673 * 

study time – 1.2542 * failures + 2.0633 * school 

sup + 0.9542 * famsup + 1.2838 * higher + 

.2502 * free time - .4451 * 57out - .216 * health 

+ 6.1228 

3. Linear Regression Model 

G2N = 

.8958 * sex -.2264 * age + .687 * famsize + 

.3074 * Medu +.9718 * Mjob - 1.5888 * Mjob + 

2.2183 * Mjob + 1.4052 * Fjob -.9341 * 

guardian -.4422 * travel time + .5564 * study 

time - 1.4591 * failures + 1.4613 * school sup 

+.8055 * famsup +.6754 * internet +.7634 * 

romantic -.4796 * goout -.2518 * health + 

13.2063 

Table 3 shows Correlation coefficient (CC), 

Mean absolute error (MAE), Root mean squared 

error (RMS, Relative absolute error (RA), Root 

relative squared error (RRS) and Total Number 

of Instances (TNI). We notice that RMS has a 

low values (2.0017 for G3N, 3.0089 for G1N 

and 3.6057 for G2N). 

4. Results for Classification using M5 Rules 

Rule: 1 

IF 

 G2N > 10.5 

THEN 

 

 

 

G3N =  

0.0439 * age + 0.201 * Mjob - .1484 * travel 

time - .0236 * activities + .022 * romantic 

+.0256 * famrel -.1054 * Walc  

+.003 * absences +.0124 * G1N + 1.041 * G2N 

- 1.0993 

[203/15.592%]                                                   [1] 
 

Rule: 2                                                               

[2] IF 

 absences > 1 

 G2N > 7.5 

THEN 

G3N =  

-.038 * age - .2381 * famsize + .046 * Pstatus - 

.0259 * Medu - .1884 * Fedu - .0369 * Mjob + 

.039 * Mjob - .0618 * Fjob + .0326 * reason + 

.0461 * schoolsup + .0745 * romantic + 

.0912 * famrel + .0314 * Walc + .0074 * 

absences + .199 * G1N + .8447 * G2N + .389 

[97/20.84%] 

 

Rule: 3 

IF 

 absences <= 1 

 G2N > 6.5 

THEN 

G3N =  

-1.4169 * age - 1.3755 * reason - .3079 * 

activities + .0343 * absences + 1.1151 *    G2N 

+ 20.2863 [38/87.272%] 

 

Rule: 4 

IF 

 absences > 1 

THEN 

G3N =  

.3999 * age -.2253 * Medu + .6979 * Mjob - 

.2776 * failures + 0.0455 * absences +.7721 * 

G2N - 5.2655 [34/21.977%] 

 

Rule: 5 

G3N =  

 + 0 [23] 

 

It is noticed that RMS has a low values (1.4621). 
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Figure1 

 Confusion matrix 

 
Figure 2.  

A linear SVM (Support Vector Machine) 

 

Table 1 

 The preprocessed student related variables 
Data type :Attribute 

Gender of student :  G1 S 

 age of student : G1 N 

School of student: G1 S 

student’s address : G1 S 

parent: G1 S 

Education of mother : G1 N 

job of mother : G1 S  

Education of father : G1 N 

job of father: G1 S 

Guardian : G1 S 

Size of family : G1 N 

Relationships family : G1 N 

Reason to attend this school : G1 S 

Travel time : G1 N 

Studying time for week: G1 N  

Past failures No : G1 N 

Other educational support : G1 S 

Family support : G1 S 

Activities : G1 S 

Extra classes : G1 S 

Internet available: G1 S 

Nursery: G1 S 

Looking forward to joining higher education : G1 S 

In relationship : G1 S 

Free time: G1 N 

Going out after school : G1 N 

Alcohol: G1 N 

Health: G1 N 

Absences : G1 N 

G1N : G1 S  ( C4.s ) 

G1N : G1 N (M5Rules and  Linear Regression) 

G2N : G1 S  ( C4.s ) 

G2N : G1 N (M5Rules and  Linear Regression) 

G3N : G1 S  ( C4.s ) 

G3N : G1 N (M5Rules and  Linear Regression) 

Table 2 

 J48 and SVM results 

 
Table 3 

 Linear Regression results (Cross-validation) 

 
Table 4 

 M5Rules (Cross-validation) 

 
CONCLUSION 

It has been presented some ways to predict 

grades of students in Mathematics course for 

secondary schools based on previous student 

grades in first or/and second year and other 

attributes. The presented model has been tested 

by using four data mining methods (SVM, 

Decision tree M5-Rules and Linear Regression). 

Simulation results have proven that a high 

predictive accuracy can be achieved when 

applying Decision tree and SVM Techniques. 

While low Root mean squared error is obtained 

when applying M5-Rules and Linear Regression 

Techniques. 
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