2020

Treatment of Operator Algebras through Cohomology Theory

Alaa Hassan Noreldeen
Department of Mathematics. Faculty of Science, Aswan University, Egypt, ala2222000@yahoo.com

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl

Recommended Citation

Available at: https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/1

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, dr_ahmad@aaru.edu.jo.
Treatment of Operator Algebras through Cohomology Theory

Alaa Hassan Noreldeen

Department of Mathematics. Faculty of Science, Aswan University, Egypt.

Published online: 1 Jan. 2020.

Abstract: In this paper, we study invariant properties of the dihedral cohomology of operator algebras. We focus on the Banach algebras with an involution as an example of operator algebra. It is shown that, important observations can be obtained from our results on discussing the relations between the dihedral and cyclic cohomology of operator algebras.

Keywords: Banach algebra, Cyclic cohomology, C*- algebras, dihedral cohomology.

1 Introduction

(Co)Homology theory is a main tool in algebraic topology. It’s plays an important role in topology, algebra and many branches of mathematics. The (co)homology theory are related with many subjects as discrete algebra (pure algebra), and indiscrete algebra (operator algebra). There are many styles of homology and cohomology groups as: Hochschild, cyclic, reflexive, dihedral, symmetry, bisymmetry and Weil (octahedral), following [9] and [8]. Recently the entire relative cyclic cohomology of Banach algebra have been planned in [2].

Our central interest in dihedral (co)homology group, which can be obtained, by acting on the simplicial complex by the dihedral group of order 2(n + 1) (see [9]). The dihedral homologies of polynomial algebra and Banach algebra have been studied in ([4],[5]). The nontrivial dihedral cohomology groups of Banach algebra have been designed by tell in [2].

Finally, we remember some cohomology groups, simplicial, cyclic and reflexive that related to dihedral cohomology of algebra. Using the actuality that the cyclic cohomology group is a subgroup of dihedral cohomology group. We get the long exact sequences of Connes-Tsygan for cyclic cohomology of the Banach algebra with unity [7],[9] as two exact sequences. We obtained the long exact sequences of Connes-Tsygan of the dihedral cohomology with Helemckii conditions. At last, we compute the dihedral cohomology of C*-algebras.

2 Simplicial Complexes in the Category of Banach Spaces

By the Banach complex we mean the family $X = \{X_n\}_{n \in \mathbb{Z}}$ of the Banach spaces X_n and the continuous operators; $d = \{d_n\}$, $d_n: X_n \to X_{n-1}$, called differentials and satisfying the relations $d_n \circ d_{n+1} = 0$. Consider Banach complexes $X = \{X_n\}$ for which $X_n = 0$ for $n < 0$ or $X_n = 0$ for $n > 0$. A Banach complex X will be admissible if there is a family continuous operators $s = \{s_n\}$, $s_n: X_{n-1} \to X_n$, and satisfy the relations $d_n \circ s_{n+1} = d_{n+1} = d_n$.

From works in [1] and [4], the spaces $Z_n(X) = \ker \{d_n: X_n \to X_{n-1}\}$ are called spaces of n-dimensional cycles. The spaces $B_n(X) = \text{Im} \{d_{n+1}: X_{n+1} \to X_n\}$ are called spaces of n-dimensional boundaries. It is clear that $B_n(X) \subset Z_n(X)$.

The quotient spaces $H_n(X) = Z_n(X)/B_n(X)$ is the n-dimensional homology of X. The family $H^*(X) = \{H_n(X)\}$ is the homology of a Banach complex X. If X is an admissible Banach complex, then the map $d_{n+1} \circ s_n: Z_n(X) \to B_n(X)$ will be the inverse of the embedding $\text{in}: B_n(X) \to Z_n(X)$. Therefore, the homology $H^*(X)$ in this case will consist of Banach spaces $H_n(X)$.

Short exact sequences

$$0 \to B_n(X) \xrightarrow{i} Z_n(X) \xrightarrow{p_n} H_n(X) \to 0$$

(1) split,

i.e. there exist continuous operators $q_n: H_n(X) \to Z_n(X)$, for which the relations

$p_n \circ q_n = \text{Id}: H_n(X) \to H_n(X), \quad \text{Id} - q_n \circ p_n = d_{n+1} \circ s_n: Z_n(X) \to B_n(X)$

For the Banach complex X, the notation \overline{X} is the dual complex, $\overline{X} = \{\overline{X}_n\}$ for which \overline{X}_n is a Banach space conjugate to X_n. The differentials $d_n: X_n \to X_{n-1}$ induce the differentials $\overline{d}_n: \overline{X}_{n+1} \to \overline{X}_n$. Clear, that if X was an admissible Banach complex, then \overline{X} would also be an
admissible Banach complex. The homology of the dual complex X is the cohomology of X and given by:

$$H^*(X) = \{H^n(X)\}, \quad H^n(X) = \text{Hom}_m(X, Y)$$

(2)

By mapping a Banach complexes $f: X \to Y$ of dimension m we mean the family $f = \{f_n\}$ of continuous operators $f_n: X_n \to Y_{n+m}$. Such mappings form a linear space denoted by $\text{Hom}_m(X, Y)$. We define the linear operators $d: \text{Hom}_m(X, Y) \to \text{Hom}_{m-1}(X, Y)$, called the differentials, getting

$$d(f) = d_{n+m} \circ f_n + (-1)^m f_{n-1} \circ d_n: X_n \to Y_{n+m-1}$$

Such that $d \circ d = 0$, and thus the family $\text{Hom}(X, Y) = \{\text{Hom}_m(X, Y)\}$ forms a complex of the category of linear spaces.

The chain map of Banach complexes is called the map $f: X \to Y$ of dimension zero, satisfying the relation $d(f) = 0$, or same thing, $d_n \circ f_n = f_{n-1} \circ d_n$. The chain map of Banach complexes $f: X \to Y$ induces a map homology

$$H_*(f) = \{H_n(f): H_n(Y) \to H_n(X)\}, \quad H_n(f): H_n(Y) \to H_n(X)$$

And the cohomology

$$H^*(f) = \{H^m(f): H^m(Y) \to H^m(X)\}$$

(3)

Two chain mappings $f, g: X \to Y$ Banach complexes are called homotopic ($f \equiv g$) if there is a mapping $h: X \to Y$ of dimension 1 such that $d(h) = g - f$, or some thing $d_n + h_n - d_n = g_n - f_n$. The mapping h is called the homotopy between the mappings $f \circ g$ and the homotopy ratio is an equivalence relation.

Banach complexes X and Y are said to be homotopy equivalent ($X \equiv Y$) if there exist chain mappings $f: X \to Y$, $g: Y \to X$ such that $g \circ f = 1d_X$, $f \circ g = 1d_Y$. If the Banach complex is homotopy equivalent, then it is called contractible.

It is easy to see that if $f \equiv g: X \to Y$, to $\overline{f} \equiv \overline{g}: \overline{X} \to \overline{Y}$ and if $X \equiv Y$, then $\overline{X} \equiv \overline{Y}$. In addition, homotopic mappings induce the same homomorphisms of homology and cohomology, while homotopy equivalent Banach complexes have isomorphic homology and cohomology.

2.1 Proposition

Consider the admissible Banach complex X, then its homology $H_*(X)$, regarded as the Banach complex with zero differential, will be homotopy equivalent to $X: H_*(X) \equiv X$

Indeed, we consider the map $Id - s \circ d: X \to Z (X)$. We denote its composition with the projection $p: Z (X) \to H_*(X)$, $\eta: X \to H_*(X)$. Reviewed above, the map $q: H_*(X) \to Z (X)$ gives a map $\xi: H_*(X) \to X$. It is easy to see that $\eta \circ \xi = Id: H_*(X) \to H_*(X)$. We show that the maps $s_n: X_n \to X_{n+1}$ give the required homotopy between the mappings Id and $\eta \circ \xi$ we have $Id - \xi_n \circ \eta_n = 0$

$$Id - s_n \circ p_n (Id - s_{n-1} \circ d_{n}) = d_{n+1} \circ s_n + s_n \circ d_n.$$ From this proposal we obtain the fact;

2.2 Corollary [3]

For an admissible Banach complex X, the isomorphism $H^*(X) \cong H^*_\bullet(X)$. Indeed, the homotopy equivalence $X \cong H_\bullet(X)$ implies the homotopy equivalence $X \cong H^*_\bullet(X)$, and therefore we have the indicated isomorphism.

Let X be a Banach complex. We define a Banach complex $S\mathcal{X}$ called superstructure over X, setting $(S\mathcal{X})_{n+1} = X_n$. We denote the elements in $S\mathcal{X}$ by $[x]$, where $x \in X$. If $x \in X$ has dimension n, then $[x]$ has dimension $n + 1$. We define the differential on $S\mathcal{X}$ by the formula $[x] = -[d(x)]$.

It is clear that if X is an admissible Banach complex, then the superstructure $S\mathcal{X}$ is an admissible Banach complex, the homology of the superstructure is isomorphic to the superstructure over homology, i.e. $H_\bullet(S\mathcal{X}) = SH_\bullet(H)$. Similarly, for a Banach complex X, we can define a structure $S^{-1}X$, setting $(S^{-1}X)_{n-1} = X_n$. Items in the denart when it will not cause confusion, we will denote $[x]$, where $x \in X$. If $x \in X$ has dimension n, then $[x]$ will have dimension $n + 1$. The differential on $S\mathcal{X}$ define by $d([x]) = -[d(x)]$.

The tensor product of the Banach complexes X^\ast and X^\ast is called the Banach the complex $X = X^\ast \otimes X^\ast$ for which

\[(X^\ast \otimes X^\ast)_n = \sum_{p+q=n} X_p \otimes X_q, \]

the differential is defined as;

\[d_n(x_p \otimes x_q) = d_p(x_p) \otimes x_q + (-1)^p x_p \otimes d_q(x_q), \]

\[p+q = n \]

For the maps $f: X^\ast \to Y^\ast$, $f: X^\ast \to Y^\ast$ of dimension m and m^\ast, respectively, we define the map $f = f^\ast \otimes f^\ast: X^\ast \otimes X^\ast \to Y^\ast \otimes Y^\ast$ of dimension $m = m^\ast + m^\ast$, putting on generators $x_p \otimes x_q \in X_p \otimes X_q$;

\[(f^\ast \otimes f^\ast)(x_p \otimes x_q) = (-1)^m p f_p(x_p) \otimes f_q(x_q) \]

The formula for the differential in the tensor product of Banach complexes can be rewritten as;

\[d = d^\ast \otimes 1 + 1 \otimes d^\ast. \]

2.3 Corollary

The tensor product of an admissible Banach complexes is an admissible Banach complex.

Indeed, let (X^\ast, d^\ast, s_\ast), (X^\ast, d^\ast, s^\ast) be admissible Banach complexes. We define $s: X^\ast \otimes X^\ast \to X^\ast \otimes X^\ast$ by setting

\[s_t^\ast = s^\ast + 1 \otimes s^\ast - (d^\ast \otimes s^\ast + s^\ast \otimes d^\ast) \otimes s^\ast \]

Direct calculations show that the required relation $d \circ s \circ d = d$. If the maps $f: X^\ast \to Y^\ast$, $f^\ast: X^\ast \to Y^\ast$ are respectively homotopic to the maps $g: X^\ast \to Y^\ast$, $g^\ast: X^\ast \to Y^\ast$ then $f^\ast \otimes f^\ast: X^\ast \otimes X^\ast \to Y^\ast \otimes Y^\ast$ will be homotopic to the mapping $g^\ast \otimes g^\ast: X^\ast \otimes X^\ast \to Y^\ast \otimes Y^\ast$. Required homotopy $h: X^\ast \otimes X^\ast \to Y^\ast \otimes Y^\ast$ is defined as $h = h^\ast \otimes g^\ast + f^\ast \otimes h^\ast$, where h^\ast, h^\ast corresponding homotopies between f, g^\ast and f, f^\ast. From this it follows that homotopically equivalent chain complexes $X^\ast \equiv Y^\ast$, $X^\ast \equiv Y^\ast$ give homotopically equivalent tensor products $X^\ast \otimes X^\ast \equiv Y^\ast \otimes Y^\ast$.

© 2020 NSP
Natural Sciences Publishing Cor.

https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/1
From Proposition 1 we get the following fact.

2.4 Corollary

For admissible Banach complexes X, Y, we have an isomorphism $H_r(X \otimes Y) = H_r(X) \otimes H_r(Y)$

3 (Co) Homology of Banach Algebras

In this section we review a few definitions and actualities required in continuation. Let X be an involutive Banach algebra with unity and $C^n(X)$ $(n \geq 0)$ is the Banach space of $(n+1)$-linear maps on X which are called cochains. From ([1], [3]) and [9] we generate the following assertions. Consider the complex $C(X) = (C^n(X), b^n)$ such that:

$0 \rightarrow C^0(X) \rightarrow C^1(X) \rightarrow \cdots \rightarrow C^n(X) \rightarrow C^{n+1}(X) \rightarrow \cdots$, (4)

where an operator b^n is defined by the form,

$$b^n f(x_0, \ldots, x_n) = \sum_{i=0}^{n+1} (-1)^i f(x_0, \ldots, x_i x_{i+1}, \ldots, x_n) + (-1)^n f(x_0 x_1, \ldots, x_{n-1}).$$

With the condition $b^{n+1} b^n = 0 (\text{ker } b^n \supseteq \text{Im } b^{n+1})$. The group $H^n(X) = K e r b^n / I m b^{n+1}$ is called the simplicial cohomology of algebra X.

Note that $(\text{ker } b^n)$ is always closed but $(\text{Im } b^{n+1})$ is not closed. Let the action of the operators $t_n, r_n : C^n(X) \rightarrow C^n(X)$ on $C(X)$, since:

$$t_n f(x_0, \ldots, x_{n-1}, x_n) = (-1)^n f(x_0, x_0, \ldots, x_{n-1}), \quad (5)$$

$$r_n f(x_0, \ldots, x_{n-1}, x_n) = \epsilon (-1)^{\frac{n}{2}} f(x_0 x_1, \ldots, x_n), \quad (6)$$

Where x_0 is the image of $x_n, t_n r_n = r_n t_n, r_n = r_n^{n+1}, \epsilon = \pm 1$.

Note that, the operators t_n, r_n generate $D_{2(n+1)}$, which is the dihedral group and if we dropped the family of generators r_n, the operators t_n generates the cyclic group Z_n of order $n+1$.

The cochains that satisfy the relation (5) are called cyclic and the cochains that satisfy the relation (6) are called reflexive, if they satisfy them together, they called dihedral cochains. The cyclic, reflexive and dihedral cochains by the operator b^n are denoted by $CC^n(A)$, $CR^n(A)$ and $CD^n(A)$, respectively [7, 6] and the subcomplexes are:

$$CC(X) : 0 \rightarrow CC^0(X) \xrightarrow{b^0} CC^1(X) \rightarrow \cdots \rightarrow CC^n(X) \rightarrow \cdots, \quad CR(X) : 0 \rightarrow CR^0(X) \xrightarrow{s^0} CR^1(X) \rightarrow \cdots \rightarrow CR^n(X) \rightarrow \cdots,$$

$$CD(X) : 0 \rightarrow CD^0(X) \xrightarrow{d^0} CD^1(X) \rightarrow \cdots \rightarrow CD^n(X) \rightarrow \cdots$$

where

$$CC^n(X) = \{ f \in C^n(X); f = (-1)^n t_n f \}, \quad CR^n(X) = \{ f \in C^n(X); f = \alpha (-1)^{\frac{n}{2}} r_n f \}, \quad CD^n(X) = \{ f \in C^n(X); f = (-1)^n t_n f \},$$

$$f = \epsilon (-1)^{\frac{n}{2}} r_n f, \quad \epsilon = \pm 1.$$

Let $CC^n(X)$, $CR^n(X)$ and $CD^n(X)$ be the cyclic, reflexive and dihedral complexes and the cyclic, reflexive and dihedral cohomology groups are denoted by $H^n_C(X)$, $H^n_R(X)$ and $H^n_D(X)$, respectively. The following assertion gives the relation between the cyclic and dihedral cohomologies of Banach algebra.

3.1 Theorem

The isomorphism, $H^n_C(X) \cong \text{H} \oplus \text{HD}^n(X)$ is hold.

4 Connes-Tsygan Exact Sequence

For the dihedral cohomology of involutive Banach algebra, we get the exact Helmskii sequence:

$$0 \rightarrow CC(X) \xrightarrow{I} CR(X) \xrightarrow{\partial} CD(X) \rightarrow 0 \rightarrow \text{H}$$

to get the Connes-Tsygan long exact sequence. To show that, consider Helmskii sequence:

$$0 \rightarrow CC(X) \xrightarrow{I} CR(X) \xrightarrow{\partial N} CD(X) \rightarrow \text{H}$$

Where $CC(X), CR(X)$ is defined above and $\text{H} = (C^n(X), b^n)$, $b^n f(x_0, x_1, \ldots, x_{n-1}) = b^n f(x_0, x_1, \ldots, x_{n-1}) + (-1)^n f(x_0 x_1, \ldots, x_{n-1})$.

$N = 1 - t_n , \quad M = 1 + t_n + t^2_n + \cdots + t^n_n$, and I is obvious inclusion.

4.1 Lemma

The sequence

$$0 \rightarrow CC(X) \xrightarrow{I} CR(X) \xrightarrow{\partial N} CD(X) \rightarrow \text{H}$$

is exact.

Proof.

We shall only show that the sequence (8) is exact on $C(X)$, that is $K e r M \supseteq I m N$. Since

$$MN = M(1-t_n) = (1 + t_n + t^2_n + \cdots + t^n_n)(1-t_n) = 0.$$

It remains to show that if $x \in K e r M$ then there exist $y \in C(X)$, such that $M y = x$. Suppose $y_n = (1 + t_n + t^2_n + \cdots + t^n_n)x$, then $y_n - t_n y_n = (1 - t^n_n)x$. Let $y = y_1 + y_2 + \cdots + y_n$, then $y + t_n y = (n + 1)x = (1-t_n)y$.

Hence,

$$y = \frac{1}{n+1} \{ n + (n - 1)t_n + \cdots + t^n_n \} \in C(X).$$

So $K e r M \supseteq I m N$. The lemma is proved.

4.2 Proposition

The sequence (8) instigates the accompanying commutative diagram:
By sequence (10); consider the short exact sequence:

\[0 \to \mathfrak{CD}(X) \xrightarrow{f} \mathfrak{CR}(X) \xrightarrow{g} \mathfrak{Sr}(X) \to 0 \]

(9)

3) \(\text{Ext}^n_{\mathfrak{C}}(\mathfrak{C}, \mathfrak{X}) = 0, n \geq 0, \varepsilon = \pm \), \(\mathfrak{X} \) is a dual of \(\mathfrak{C} \) (\(\mathfrak{X} \) is X-bimodule \(\mathfrak{C} \) is a complex number set).

4.5 Theorem

The exact sequence of Connes–Tsygan of the dihedral cohomology exist if:

1) For all unital C*-algebra with right or left bounded approximate unit.

2) If \(X = X^2, \mathfrak{X} \) is a flat or right \(X \)-module and \(\mathfrak{C} \) is a flat left \(X \)-module, since \(\mathfrak{C} \) is the set of complex number.

Consider the exact sequence of Connes–Tsygan and the relation that relates the dihedral and cyclic cohomologies of operator algebras. Then we get the commutative diagram:

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

4.6 Theorem

Consider the Hilbert space \(\mathfrak{h} \) and the set of all bounded operators algebra \(\mathfrak{X} = L(H) \) on \(\mathfrak{h} \). Then we get

\[\varepsilon \mathfrak{HD}^n(\mathfrak{X}) = 0. \text{ } \varepsilon = \pm 1, \text{ } n > 0. \]

Proof:

Consider the C*-algebra \(\mathfrak{X} \) and it has no bounded traces. Then \(\mathfrak{H}^0(\mathfrak{X}) = \mathfrak{H}^n(\mathfrak{X}) = 0 \). As following [9];

\[\mathfrak{H}^n(\mathfrak{X}) = 0, \forall n \geq 0. \]

Let these facts in (11) we have:

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[\text{ Proof: } \]

Consider the C*-algebra \(\mathfrak{X} \) and it has no bounded traces. Then \(\mathfrak{H}^0(\mathfrak{X}) = \mathfrak{H}^n(\mathfrak{X}) = 0 \). As Following [9];

\[\mathfrak{H}^n(\mathfrak{X}) = 0, \forall n \geq 0. \]

Let these facts in (11) we have:

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

then \(\varepsilon \mathfrak{HD}^n(\mathfrak{X}) = 0. \text{ } \varepsilon = \pm 1, \text{ } n > 0. \)

A sequence (11) is the dihedral cohomology of Connes–Tsygan long exact sequence.

4.7 Theorem

Let \(X \) is arbitrary biflat algebra (nuclear C*-algebra). Then

1. \(\varepsilon \mathfrak{HD}^n(\mathfrak{X}) = 0. \text{ } \varepsilon = \pm 1, \text{ } n > 0, n \text{ is odd.} \)
\[e^H \mathcal{D}^n(X) = 0, \quad e^X^{tr}, \quad e = \pm 1, \quad n > 0, \quad n \text{ is even}, \]

since \(X^{tr} \) is the continuous trace set on \(X \) and \(e^X^{tr} = eX^{tr} \).

4.8 Theorem

If the C*-algebra \(X \) is stable, then

\[e^H \mathcal{D}^n(X) = 0, \quad e = \pm 1, \quad n \geq 0. \]

References

