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Abstract: The present study addresses an efficient exponentially fitted method to obtain the solution of singularly perturbed two point
boundary value problems(BVPs) on uniform mesh. A fitting factor is introduced in a Taylor series based derived scheme using the theory
of singular perturbations. Thomas algorithm is used to solve the resulting tri-diagonal system of equations. Stability and convergence
of the method are investigated. The applicability of the method is shown with numerical experiments performed on the three model
test example problems. The computational results are compared with the results obtained by other methods. The study showed that the
present method approximates the exact/approximate solution very well.
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1 Introduction

A differential equation becomes singularly perturbed
when the highest derivative in the equation is multiplied
by a small positive parameter ε (0 < ε << 1) and such
singularly perturbed equations with initial and/or
boundary conditions is termed as singular perturbation
problems. The small parameter ε is called the singular
perturbation parameter. The capriciousness of such
problems can easily be detected in the various fields of
applied sciences. They often arise in electrical networks,
quantum mechanics, fluid dynamics, chemical reactions,
elasticity, aerodynamics, plasma dynamics, magneto
hydrodynamics, etc. [1,2,3,4,5,6]. Some examples are
boundary layer problems, Wentzel, Kramers and Brillouin
(WKB) problems, the modelling of steady and unsteady
viscous flow problems with large Reynolds numbers [7,
8], convective heat transport problems with large Peclet
numbers and the magneto-hydrodynamics duct problems
at high Hartman numbers [9], etc. The solution of such
problems exhibits sharp boundary and/or interior layers
when ε is very small. The solution varies most rapidly in
some parts and slowly in other parts of the domain. Thus,
the treatment of singularly perturbed problems (SPPs)
poses severe difficulties that have to be addressed to
ensure accurate numerical solutions. There are a variety
of asymptotic and numerical methods for the solution of

the singular perturbation problems. For a good discussion,
we may refer to the momographs: Bellman [10], Doolan
et al. [11,12,13], Verhulst [14], Kevorkian and Cole [15],
Nayfeh [16], O’Malley [17], Bender and Orszag [18],
Farrell et al. [19], Miller et al. [20], Kevorkian and Cole
[21], Protter and Weinberger [22], Roos et al. [8],
Shishkin et al. [23], and, the survey papers by Kadalbajoo
et al. [24,25,26,27].

Recently, Reddy and Reddy [28] have presented a
numerical integration method which finds the
approximate solution of a general singularly perturbed
BVP with left, right and interior layers. The authors in
[29,30] have suggested exponentially fitted finite
difference schemes on a uniform mesh for solving model
equation of the form (1). Reddy and Mohapatra [31] have
presented an efficient numerical method with
exponentially fitted factor to obtain the solution of
singularly perturbed two point BVPs where the boundary
layer is present at one end point (either left or right). Gbsl
Soujanya et al. [32] have developed a non-symmetric
finite difference method with exponential fitting factor to
solve SPPs exhibiting layer behaviour using Numerov’s
method. The articles [3,33,34,35,36,37] propose
different numerical approaches which combine fitted
mesh methods and fitted operator methods for solving
SPPs.
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The present study aims to present a simple, but
computationally efficient fitted finite difference scheme
for the solution of a class of singularly perturbed
two-point BVPs which exhibits boundary layer at left or
right end point of the interval considered. The
computational results show the capability of the present
method in producing accurate results with minimal
computational effort when perturbation parameter ε → 0.

The paper is arranged as follows: Section 2 addresses
the statement of the continuous problem with the
properties of the solution. Sections 3 and 4 present the
description of the proposed method when the boundary
layer is present at left and right end points of the
underlying interval respectively. Stability and
convergence of the method are analysed in Section 5. In
Section 6, the efficiency and applicability of the proposed
method are illustrated with some numerical experiments.
Conclusion is presented in Section 7 followed by the
references.

2 Statement of the Problem :

We consider the following class/form of Singularly
Perturbed BVP:

Lτ u(t)≡ εu′′(t) + f (t)u′(t)+g(t)u(t) = r(t); (1)

subject to the boundary conditions:

u(0) = η and u(1) = γ (2)

on I = [0, 1], where ε (0 < ε << 1) is a perturbation
parameter and η , γ are known finite constants. We
assume that the functions f (t), g(t), r(t) are sufficiently
smooth and bounded functions on I, g(t)≤ 0 on the entire
interval I, f ∗ is postive constant andg∗ is negative
constant such that

| f (t)| ≤ f ∗, g(t)≤ g∗ < 0, t ∈ I.

If it is assumed that f (t) ≥ W ∗ > 0 on the entire interval
[0,1], where W ∗ > 0 refers to a positive constant, the
equation (1) along with (2) possesses a unique solution
with the boundary layer in the neighbourhood of t = 0,
i.e. at left end point of the interval for small values of ε ,
while the position of the boundary layer is in the
neighbourhood of t = 1 if f (t) ≤ W ∗ < 0 on the entire
interval [0,1], where W ∗ > 0 denotes a negative constant.
The operator Lτ = ε d2

dt2 + f (t) d
dt +g(t) in (1) satisfies the

following minimum principle [17].
Lemma 2.1. Suppose ω (t) represents a smooth function
satisfying the conditions ω (0) ≥ 0, ω (1) ≥ 0. Then,
Lτ ω (t)≤ 0, ∀t ∈ (0,1) implies ω (t)≥ 0, ∀t ∈ [0,1].
proof : Let m ∈ [0,1] be such that ω (m) < 0 and
ω (m) = min

t∈[0,1]
ω (t) . Since m /∈ {0,1} , therefore,

ω ′ (m) = 0 and ω ′′ (m)≥ 0. Hence, we obtain

Lτ ω (m) = εω ′′ (m)+ f (m)ω ′ (m)+g(m)ω (m)> 0,

which contradicts our assumption. Hence, ω (m) ≥ 0 and
so ω (t)≥ 0∀t ∈ [0,1].
Lemma 2.2. Let u(t) be the solution of the problem (1)
and (2). Then, we have

∥u∥ ≤ a−1
2 ∥r∥+max(|η0|, |γ|).

where ∥·∥ is the L∞ norm given by ∥u∥ = max
0≤t≤1

|u(t)|.

proof : Let ω± (t) be two barrier functions defined by

ω± (t) = a−1
2 ∥r∥+max(|η0|, |γ|)±u(t)

Then, this implies

ω± (0) = a−1
2 ∥r∥+max(|η0|, |γ|)±u(0)

= a−1
2 ∥r∥+max(|η0|, |γ|)±η0 since,u(0) = η(0) = η0

≥ 0

ω± (1) = a−1
2 ∥r∥+max(|η0|, |γ|)±u(1)

= a−1
2 ∥r∥+max(|η0|, |γ|)± γ since,u(1) = γ

≥ 0

⇒ Lτ ω± (t) = ε
(
ω± (t)

)′′
+ f (t)

(
ω± (t)

)′
+g(t)ω± (t)

= g(t)
[
a−1

2 ∥r∥+max(|η0|, |γ|)
]
±Lτ u(t)

= g(t)
[
a−1

2 ∥r∥+max(|η0|, |γ|)
]
± r(x) using(1)

As g(t)≤−a2 < 0 implies g(t)a−1
2 ≤−1 and since ∥r∥ ≥

r(t), we have

⇒ Lτ ω± (t)≤ (−∥r∥± r(t))+g(t)max(|η0|, |γ|)≤ 0, ∀t ∈ [0,1].

Thus, using the minimum principle, ω± (t) ≥ 0 ,
∀t ∈ [0,1]. Now, for computing the error that has occurred
in our numerical approximations, the derivative of the
solution u(t) should possess a boundedness which
remains valid for all t ∈ (0, 1].

Using Lemma 2.1, the required estimate is obtained.

3 Description of the method for left-End
Boundary Layer Problems:

In this section, we will describe the proposed method for
the solution of the problem (1) with (2) having boundary
layer at left end point of the interval considered.

The solution of (1) with (2) is of the following form
(cf. [17], pp.22-26):

u(t) = u0(t)+
f (0)
f (t)

(η −u0(0))e
−

t∫
0

(
f (t)
ε − g(t)

f (t)

)
dt
+o(ε)

(3)
where u0(t) denotes the solution of the following problem:

f (t)u′0(t)+g(t)u0(t) = r(t); u0(1) = γ (4)
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Under the consideration of Taylor’s series expansions for
f (t) and g(t) about the point ′t = 0′ upto their first terms
only, the equation (3) becomes:

u(t) = u0(t)+(η −u0(0))e−
(

f (0)
ε − g(0)

f (0)

)
t
+o(ε) (5)

Furthermore, considering equation (5) at the point t = tl =
lh, l = 0,1,2, ...,N and taking the limit as h→ 0, we obtain

lim
h→0

u(lh) = u0(0)+(η −u0(0))e
−
(

f 2(0)−εg(0)
f (0)

)
lρ
+o(ε)

(6)
where ρ = h/ε.
Now, applying Taylor’s series expansion procedure, we
have:

u(tl+1) = ul+1 = ul +hu′l + h2

2! u′′l + h3

3! u′′′l + h4

4! u(4)l +
h5

5! u(5)l + h6

6! u(6)l + h7

7! u(7)l + h8

8! u(8)l +O(h9)
(7)

u(tl−1) = ul−1 = ul −hu′l + h2

2! u′′l − h3

3! u′′′l + h4

4! u(4)l −
h5

5! u(5)l + h6

6! u(6)l − h7

7! u(7)l + h8

8! u(8)l −O(h9)
(8)

From finite differences, we get

ul−1 −2ul +ul+1 =
2h2

2! u′′l +
2h4

4! u(4)l + 2h6

6! u(6)l +
2h8

8! u(8)l +O(h10)
(9)

and

u′′l−1 −2u′′l +u′′l+1 =
2h2

2! u(4)l + 2h4

4! u(6)l + 2h6

6! u(8)l +
2h8

8! u(10)
l +O(h12)

Substituting h4

12 u(6)l from the above equation in (9), we get

ul−1 −2ul +ul+1 = h2u′′l + h2

30 (u
′′

l−1 −2u′′l +u′′l+1−
h2u(4)l − h6

360 u(8)l

)
+ h4

12 u(4)l + 2h8

8! u(8)l +O(h10)

ul−1−2ul +ul+1 =
h2

30
(
u′′l−1 +28u′′l +u′′l+1

)
+R (10)

where R = h4

20 u(4)l − 13h6

302400 u(8)l +O(h10).
Now, using equation (1) we get

εu′′l+1 =− fl+1u′l+1 −gl+1ul+1 + rl+1 (11)

εu′′l =− flu′l −glul + rl (12)

εu′′l−1 =− fl−1u′l−1 −gl−1ul−1 + rl−1 (13)

We know that three point approximations for first order
derivative are as follows:

u′l =
ul+1 −ul−1

2h
(14)

u′l+1 =
3ul+1 −4ul +ul−1

2h
(15)

u′l−1 =
−ul+1 +4ul −3ul−1

2h
(16)

Substituting (14), (15) and (16) in (11), (12) and (13)
respectively, and simplifying the equation (10), we get

ε
(

ul−1−2ul+ul+1
h2

)
+

fl−1
60h (−3ul−1 +4ul −ul+1)+

28 fl
60h (ul+1−ul−1)+

fl+1
60h (ul−1 −4ul +3ul+1)+

gl−1
30 ul−1+

28gl
30 ul +

gl+1
30 ul+1 =

1
30 (rl−1 +28rl + rl+1)

(17)
Now introducing the fitting factor σ (ρ) in the above
scheme (17), we have

σ (ρ)ε
(

ul−1−2ul+ul+1
h2

)
+

fl−1
60h (−3ul−1 +4ul −ul+1)+

28 fl
60h (ul+1 −ul−1)+

fl+1
60h (ul−1 −4ul +3ul+1)+

gl−1
30 ul−1 +

28gl
30 ul +

gl+1
30 ul+1 =

1
30 (rl−1 +28rl + rl+1)

(18)
The fitting factor σ (ρ) is to be determined so as to make
the solution of difference scheme (18) converges
uniformly to the solution of (1) - (2).
Clearly under the limit when h → 0, the scheme (18)
becomes

σ (ρ)ε
(

ul−1−2ul+ul+1
h

)
+ f (0)

60 (−3ul−1 +4ul −ul+1)+
28 f (0)

60 (ul+1 −ul−1)+
f (0)
60 (ul−1 −4ul +3ul+1) = 0

(19)
Let F = f 2(0)−εg(0)

g(0) .

By using (6), we get

lim
h→0

(u(lh−h)−2u(lh)+u(lh+h)) = (η −u0(0))∗
e−Flρ (eFρ + e−Fρ −2

)
lim
h→0

(−3u(lh−h)+4u(lh)−u(lh+h)) = (η −u0(0))∗
e−Flρ ∗

(
−3eFρ − e−Fρ +4

)
lim
h→0

(u(lh−h)−4u(lh)+3u(lh+h)) = (η −u0(0))∗
e−Flρ ∗

(
eFρ +3e−Fρ −4

)
lim
h→0

(u(lh+h)−u(lh−h)) = (η −u0(0))e−Flρ
(

e−Fρ − eFρ
)

Using the above equations in the equation (19) we get:

σ (ρ)
ρ

(
eFρ + e−Fρ −2

)
=− f (0)

60
(
−30eFρ +30e−Fρ)

(20)
Simplifying (20) we get,

σ (ρ) =
ρ f (0)

2
coth

((
f 2(0)− εg(0)

)
ρ

2 f (0)

)
(21)

Which is the required constant fitting factor σ (ρ) in this
left end boundary layer problem case.
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Finally, from the equation (18) with the value of σ (ρ)
given by equation (21), we obtain the following
three-term recurrence relationship:

Plul−1 −Qlul +Rlul+1 = Hl , (l = 1,2,3, ...,N −1) (22)

where

Pl =
σε
h2 − 3 fl−1

60h +
gl−1
30 − 28 fl

60h +
fl+1
60h

Ql =
2σε
h2 − 4 fl−1

60h − 28gl
30 +

4 fl+1
60h

Rl =
σε
h2 − fl−1

60h +
gl+1
30 + 28 fl

60h +
3 fl+1
60h

Hl =
1
30 (rl−1 +28rl + rl+1)

The equation (22) produces a system of (N −1) equations
with (N −1) unknowns u1 to uN−1. These (N −1)
equations together with the boundary conditions equation
(2) are sufficient to solve the obtained tri-diagonal system
with the help of an efficient solver called Thomas
Algorithm which is also known as ’Discrete Invariant
Imbedding algorithm’ [28,30,31].

Note that the method of LU decomposition (or
Gaussian elimination) which is equivalent to the “Thomas
algorithm” provides a numerically stable technique for
solving the system when the coefficient matrix of the
system is diagonally dominant or irreducibly diagonally
dominant and so non singular.

4 Description of the method for Right-End
Boundary Layer Problems:

In this section, we describe the proposed method for the
solution of the problem (1) with (2) having boundary
layer at right end point of the interval considered.

The solution of (1) with (2) is of the following form
(cf. [17], pp.22-26):

u(t) = u0(t)+
f (1)
f (t)

(γ −u0(1))e

1∫
t

(
f (t)
ε − g(t)

f (t)

)
dt
+o(ε)

(23)
where u0(t) represents the solution of the reduced
problem:

f (t)u′0(t)+g(t)u0(t) = r(t); u0(0) = η (24)

Expanding f (t) and g(t) in (23) with the help of the
Taylor’s series about the point ′t = 1′ and restricting to
their first terms, we obtain:

u(t) = u0(t)+(γ −u0(1))e
(

f (1)
ε − g(1)

f (1)

)
(1−t)

+o(ε) (25)

Moreover, considering equation (25) at the point t = tl =
lh, l = 0,1,2, ...,N and taking the limit as h → 0 we obtain

lim
h→0

u(lh) = u0(0)+(γ −u0(1))e

(
f 2(1)−εg(1)

f (1)

)
( 1

ε −lρ)
+o(ε)

(26)
where ρ = h/ε.
Let F̂ = f 2(1)−εg(1)

f (1) .

Using (26), we get

lim
h→0

(u(lh−h)−2u(lh)+u(lh+h)) = (γ −u0(1))∗

eF̂( 1
ε −lρ) ∗

(
eF̂ρ + e−F̂ρ −2

)
lim
h→0

(−3u(lh−h)+4u(lh)−u(lh+h)) = (γ −u0(1))∗

,eF̂( 1
ε −lρ) ∗

(
−3eF̂ρ − e−F̂ρ +4

)
lim
h→0

(u(lh−h)−4u(lh)+3u(lh+h)) = (γ −u0(0))∗

eF̂( 1
ε −lρ) ∗

(
eF̂ρ +3e−F̂ρ −4

)
lim
h→0

(u(lh+h)−u(lh−h))= (γ −u0(0))eF̂( 1
ε −lρ)

(
e−F̂ρ − eF̂ρ

)
Using the above equations in the equation (19), we get

σ (ρ)
ρ

(
eF̂ρ + e−F̂ρ −2

)
=− f (0)

60

(
−30eF̂ρ +30e−F̂ρ

)
(27)

Simplifying (27), we get

σ (ρ) =
ρ f (0)

2
coth

((
f 2(1)− εg(1)

)
ρ

2 f (1)

)
(28)

which is a required constant fitting factor σ (ρ) in this
right end boundary layer problem case.
Finally, from the equation (18) with the value of σ (ρ)
given by equation (28), we obtain the following
three-term recurrence relationship of the form:

Plul−1 −Qlul +Rlul+1 = Hl , (l = 1,2,3, ...,N −1) (29)

where

Pl =
σε
h2 − 3 fl−1

60h +
gl−1
30 − 28 fl

60h +
fl+1
60h

Ql =
2σε
h2 − 4 fl−1

60h − 28gl
30 +

4 fl+1
60h

Rl =
σε
h2 − fl−1

60h +
gl+1
30 + 28 fl

60h +
3 fl+1
60h

Hl =
1
30 (rl−1 +28rl + rl+1)

The equation (29) produces a system of (N −1) equations
with (N −1) unknowns u1 to uN−1. These (N −1)
equations together with the boundary conditions equation
(2) are sufficient to solve the obtained tri-diagonal system
with the help of an efficient solver called Thomas
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Algorithm which is also known as ’Discrete Invariant
Imbedding algorithm’ [28,30,31].

Remark: When f (0) = f (1) and g(0) = g(1), both the
fitting factors become equal and the constant fitting factor
is

σ (ρ) =
ρ f (0)

2
coth

((
f 2(0)− εg(0)

)
ρ

2 f (0)

)
(30)

5 Stability and Convergence Analysis:

In this section, we analyze stability and convergence of
our proposed scheme (22) with (2). Similarly, we can
analyze stability and convergence of our proposed scheme
(29) with (2).
Theorem 5.1 The matrix A is strictly diagonally
dominant if the condition h < 2εσ

f ∗K , where

K =
(

1− hg∗
15 f ∗

)
is satisfied.

proof : If h < 2εσ
f ∗K , where K =

(
1− hg∗

15 f ∗

)
then

|Pl |= 1− 3h fl−1

60εσ
+

h2gl−1

30εσ
− 28h fl

60εσ
+

h fl+1

60εσ

|Rl |= 1− h fl−1

60εσ
+

h2gl+1

30εσ
+

28h fl

60εσ
+

3h fl+1

60εσ
and

|Pl |+ |Rl |= 2− 4h fl−1
60εσ +

h2gl−1
30εσ +

h2gl+1
30εσ +

4h fl+1
60εσ

< Fi = 2− 4h fl−1
60εσ − 28h2gl

30εσ +
4h fl+1
60εσ ; l = 2,3, ...,N −1

Also, |R1| < Q1, |PN | < QN , which completes the proof.
Corollary 5.1 If the condition f = 0 holds, the matrix A
becomes positive definite with no restriction on the mesh
spacing h.
proof : Under the condition f = 0, the matrix A is strictly
diagonally dominant with no restriction on the mesh
spacing h. In addition, A is a symmetric matrix (as g(x) is
constant) and the diagonal entries are positive, so A is
positive definite.
Definition 5.1. (Consistency): Let

τl,π [w]≡ Lhw(tl)−Lw(tl), l = 1,2, ...,N,

where w represents a smooth function on I. Then, the
difference problem (22)-(2) bear consistency with the
differential problem (1)-(2) if∣∣τl,π [w]

∣∣→ 0 as h → 0,

where the quantities τl,π [w], for l = 1,2, ...,N, are local
truncation (or local discretization) errors.
Definition 5.2. The difference problem (22)-(2) has local
pth− order accuracy if, for sufficiently smooth data, a
positive constant C exists independent of h and ε such
that

max
1≤l≤N

∣∣τl,π [w]
∣∣≤Chp.

The consistency of the difference problem (22)-(2) with
(1)-(2) and its locally second-order accuracy is
demonstrated by the following lemma.
Lemma 3.1. If w ∈C4(I), then

τl,π [w] = h2
[

εσ
12

w4(vl)+
2 f (tl)

15
w3(θl)

]
,

where vland θl lie in the interval
(
tl−1, tl+1

)
.

proof : By definition

τl(h) = σε
{

wl+1−2wl+wl−1
h2 −w′′

l

}
+
{(

−3wl−1+4wl−wl+1
2h

)
−w′

l−1}
fl−1
30 + 28 fl

30

{(
wl+1−wl−1

2h

)
−w′

l

}
+

fl+1
30 {(

wl−1−4wl+3wl+1
2h

)
−w′

l+1

}
, l = 1,2, ...,N

(31)
Using Taylor’s theorem, it can be easily shown that(

−3wl−1+4wl−wl+1
2h

)
−w′

l−1 =
−h2

3 w(3) (θl) ,

θl ∈ (tl−1, tl+1) ,(
wl+1−wl−1

2h

)
−w′

l =
h2

6 w(3) (θl) ,

θl ∈ (tl−1, tl+1)(
wl−1−4wl+3wl+1

2h

)
−w′

l+1 =
−h2

3 w(3) (θl) ,

θl ∈ (tl−1, tl+1) .

(32)

Also, wl+1−2wl+wl−1
h2 −w′′

l = h2

12 w(4) (vl) ,

vl ∈ (tl−1, tl+1) .

(33)

Substituting (32) and (33) in (31), we obtain our desired
result.
Definition 5.3. (Stability): The linear difference operator
Lh is stable if, for sufficiently small h, a constant K exists
independent of satisfying the condition

|vl | ≤ κ
{

max(|v0| , |vN+1|)+ max
1≤l≤N

|Lhvl |
}
, l = 0,1, ...,N +1,

for any mesh function {vl}N+1
l=0 .

Now, we aim to prove that, for sufficiently small h, the
difference operator Lh given in (22), is stable.
Theorem 3.2. The difference operator Lh given in (22), is
stable if the functions f and g satisfy (22) and the
condition h < 2εσ

f ∗K is satisfied, where

K =
(

1− hg∗
15 f ∗

)
with κ = max{1, 1/g∗} .

proof : If |vl∗| = max
0≤l≤N+1

|vl | , 1 ≤ l∗ ≤ N, then, from

(21), we obtain

Ql∗vl∗ = Pl∗vl∗−1 +Rl∗vl∗+1 +hLhvl∗.
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Thus, Ql∗ |vl∗| ≤ (|Pl∗|+ |Rl∗|) |vl∗|+h max
1≤l≤N

|Lhvl | .

If h < 2εσ
f ∗K , whereK =

(
1− hg∗

15 f ∗

)
, then

Ql∗ = |Pl∗|+ |Rl∗|+
(

28gl∗
30

− (gl∗−1 +gl∗+1)

)
h2

εσ
,

and it implies that

h2

εσ

(
28gl∗

30 − (gl∗−1 +gl∗+1)
)
|vl∗| ≤ h max

1≤l≤N
|Lhvl | ,

or, |vl∗| ≤ εσ
h
(

28gl∗
30 −(gl∗−1+gl∗+1)

) max
1≤l≤N

|Lhvl | .

Thus, if max
0≤l≤N+1

|vl | occurs for 1 ≤ l ≤ N, then

max
0≤l≤N+1

|vl | ≤
εσ

h
(

28gl∗
30 − (gl∗−1 +gl∗+1)

) max
1≤l≤N

|Lhvl | ,

and clearly

max
0≤l≤N+1

|vl | ≤ κ
{

max(|v0| , |vN+1|)+ max
1≤l≤N

|Lhvl |
}

with κ = max{1, 1/g∗} .
(34)

If max
0≤l≤N+1

|vl | ≤ max{|v0| , |vN+1|} , (34) follows

instantly. An immediate consequence of stability is the
uniqueness (and existence since the problem is linear) of
the difference approximation {ul}N+1

l=0 (which was proved
earlier). If two solutions exist, their difference {vl}N+1

l=0
will satisfy

Lhvl = 0,1 ≤ l ≤ N,
v0 = vN+1 = 0.

As a result of stability, we get vl = 0,0 ≤ l ≤ N + 1.
Definition 5.4. (Convergence): Let the solution of the
boundary value problem (1)-(2) be represented by u and
{ul}N+1

l=0 denotes the difference approximation defined in
(22)-(2). The difference approximation is convergent to u
if

max
1≤l≤N

|ul −u(tl)| → 0 ash → 0.

The difference ul −u(tl) denotes the global truncation (or
discretization) error at the point tl , l = 1,2, ...,N.
Definition 5.5. The difference approximation denoted by
{ul}N+1

l=0 is a pth− order approximation to the solution u
of (1)-(2) if, for a sufficiently small h and ε, a constant C
exists independent of h, and ε such that

max
0≤l≤N+1

{|ul −u(tl)|} ≤Chp.

Theorem 5.3. Suppose u ∈C4 (I) and h < 2εσ
f ∗K , where K =(

1− hg∗
15 f ∗

)
. Then, the difference solution {ul}N+1

l=0 of (22)-
(2) converges to u, the solution of (1)-(2). Moreover,

max
0≤l≤N+1

{|ul −u(tl)|} ≤Ch.

It implies that the convergence order of difference scheme
(22) is O(h).
proof : Under the given assumptions, the difference
problem (22)-(2) bears consistency with the boundary
value problem (1)-(2) and the operator Lh is stable.

Since Lh [ul −u(tl)] = r (tl)−Lhu(tl) = Lu(tl)−

Lhu(tl) =−τl,π [u],

and u0 − u(t0) = uN+1 − u(tN+1) = 0, it follows from the
stability of Lh that

|ul −u(tl)| ≤
εσ

h
(

28g∗
30 − (gl∗+1 +gl∗−1)

) max
1≤l≤N

∣∣τl,π [u]
∣∣ .

The desired result follows from Lemma (5.1). This
theorem establishes that {ul}N+1

l=0 is a first-order
approximation to the solution u of (1).

6 Numerical Experiments :

The effectiveness of the present method has been
demonstrated by implementing it on the three test
problems. These problems have been chosen becouse of
their wide discussion in pieces of literature and the
availability of their approximate solutions for
comparison. The computational results have been
presented in Tables 1 to 6 and are compared with the
existing results. Comparisons of the solutions with some
existing results are presented in Tables 1,3 and 5 for the
considered example problems: 1 to 3. These comparisons
show that the capability of the proposed scheme in
achieving slightly improved results from the results of the
papers [29,30,31,32].
For different values of grid point N and perturbation
parameter ε , the maximum absolute errors (MAE) EN

ε are
defined by EN

ε = max
0≤l≤N

[|u(tl)−ul |] , where u(tl) and ul

denote the exact and approximate solution respectively.
The double mesh principle[8] is used to calculate the rate
of convergence defined as rN

ε = log2

(
EN

ε
/
E2N

ε

)
. The

addressed method is capable of achieving uniform results,
when perturbation parameter ε → 0 for any fixed value of
the mesh size h.

6.1 Numerical Example Problems with left-end
boundary layer:

The applicability of the proposed method for left-end
boundary layer problems is demonstrated
computationally by considering one linear and one
non-linear model test problems given below.
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Example 1 Consider the following variable coefficient
homogeneous singular perturbation problem from
Kevorkian and Cole[10]:

εu′′(t) +
(

1− t
2

)
u′(t) − 1

2
u(t) = 0; t ∈ [0,1]

with boundary conditions u(0) = 0 and u(1) = 1.
The uniformly valid approximation to the exact solution of
this example as given by Nayfeh [11] is

u(t) =
1

2− t
− 1

2
e−(t−t2/4)/ε

where the boundary layer is present at the left side of the
domain near t = 0.

Table 1 compares the results (Maximum absolute errors)
with the existing results [32] for example problem-1, for
various values of ε and grid point N. It is clear that the
presented scheme is able to produce slightly improved
results from the results in [32]. The computational
results(MAE) and rates of convergence presented in Table
2 for example problem-1 show that the present scheme is
capable of producing almost first order accurate
uniformly convergent solution.

Table 1: Comparison of computational results(MAE) with
existing results [ with fitting factor(w.f.f.) and without
fitting factor(w.o.f.f.)] for various values of ε and N for
example problem-1.

ε = 10−3 ε = 10−5

Soujanya[27] Our Results Soujanya[27] Our Results
N ↓ w.f.f. w.o.f.f. w.f.f. w.o.f.f w.f.f. w.o.f.f w.f.f. w.o.f.f
8 4.48e-02 1.05 3.71E-02 7.76E-01 4.48e-02 1.88 3.71E-02 0.99

16 2.44e-02 6.01e-01 2.10E-02 5.47E-01 2.44e-02 1.89 2.10E-02 0.98
32 1.28e-02 4.39e-01 1.12E-02 4.38E-01 1.28e-02 1.77 1.12E-02 0.95
64 6.62e-03 3.84e-01 5.79E-03 3.86E-01 6.62e-03 1.32 5.79E-03 0.85

128 3.77e-03 2.94e-01 2.95E-03 2.96E-01 3.36e-03 0.75 2.95E-03 0.65

Example 2 Consider the following non-linear singular
perturbation problem from Bender and Orszag [13,p.
463, Eq.(9.7.1)]:

εu′′(t)+u′(t)+ e(u(t)) = 0; t ∈ [0, 1]

with boundary conditions u(0) = 0 and u(1) = 0.
The linear problem concerned to this example is:

εu′′(t)+2u′(t)+
2

t +1
u(t)=

2
t +1

[
ln
(

2
t +1

)
−1
]

; t ∈ [0, 1]

The uniform valid approximation of Bender and Orszag
[13, P. 463, Eq. (9.7.6)] is

u(t) = ln
(

2
t +1

)
− ln(2)e−2t/ε ,

which possesses a boundary layer of thickness o(ε) near
t = 0 (cf. Bender and Orszag [3]).

Table 2: Computational results in terms of Maximum
absolute errors for different values of N and ε and the Rate
of Convergence rN

ε for example problem- 1.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

10−3 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.55E-03 9.83E-04
rN

ε 0.819657 0.910842 0.950282 0.970874 0.928494 0.658229
10−4 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−6 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−8 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−10 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−12 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−15 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−18 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−20 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−25 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220
10−30 3.71E-02 2.10E-02 1.12E-02 5.79E-03 2.95E-03 1.49E-03 7.39E-04
rN

ε 0.819657 0.910842 0.950282 0.971363 0.984924 1.013220

Table 3 compares the results (Maximum absolute
errors) with the existing results for example problem-2,
for various values of ε and grid point N. It is clear that the
presented scheme is able to produce slightly improved
results from the results in [30,31]. The computational
results(MAE) and rates of convergence presented in Table
4 for example problem-2 again show that the present
scheme is capable of producing almost first order accurate
uniformly convergent solution.

Table 3: Comparison of computational results(MAE) with
existing results for various values of ε and N for example
problem-2.

ε = 10−4 ε = 10−8

N ↓ Mohapatra Mohapatra Our Mohapatra Mohapatra Our
[26] [25] Results [26] [25] Results

16 1.962e-2 1.9628e-2 1.817E-02 1.962e-2 1.9623e-2 1.817E-02
32 1.031e-2 1.0315e-2 9.588E-03 1.031e-2 1.0311e-2 9.588E-03
64 5.284e-3 5.2847e-3 5.094E-03 5.284e-3 5.2842e-3 5.094E-03
128 2.675e-3 2.6759e-3 2.626E-03 2.675e-3 2.6755e-3 2.626E-03
256 1.344e-3 1.3444e-3 1.334E-03 1.344e-3 1.3440e-3 1.334E-03
512 6.754e-4 6.7549e-4 6.728E-04 6.754e-4 6.7547e-4 6.728E-04

6.2 Numerical Example Problems with
right-end boundary layer:

To demonstrate the applicability of proposed method
computationally for right-end boundary layer problem,
we have considered the following one linear model test
problems:

Example 3 Consider the following homogeneous linear
singular perturbation problem from Mohapatra et. al.
[24,25] and Soujanya et. al. [32]:

εu′′(t)−u′(t)− (1+ ε)u(t) = 0; t ∈ [0, 1]
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Table 4: Computational results in terms of Maximum
absolute errors for different values of N and ε and the Rate
of Convergence rN

ε for example problem- 2.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

10−3 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.34E-03 6.96E-04
rN

ε 0.839769 0.922257 0.912431 0.955383 0.976577 0.938852
10−4 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−6 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−8 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−10 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−12 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−15 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−18 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−20 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−25 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509
10−30 3.25E-02 1.82E-02 9.59E-03 5.09E-03 2.63E-03 1.33E-03 6.73E-04
rN

ε 0.839769 0.922257 0.912431 0.955932 0.977108 0.987509

with boundary conditions
u(0) = 1+ exp(−(1+ ε)/ε)andu(1) = 1+1/e.
The exact solution is given by:

u(t) = exp(−t)+ exp [(1+ ε)(t −1)/ε] ,

which has a boundary layer at the right side of the domain
near t = 1.

Table 5 compares the results (Maximum absolute
errors) with the existing results for example problem-3,
for various values of ε and grid point N. It is clear that the
presented scheme is able to produce slightly improved
results from the results in the article [29,30]. As like the
results for the left-end boundary layer problems-1 and 2,
the computational results(MAE) and rates of convergence
presented in Table 6 for this right-end boundary layer
problem-3 clearly show that the present scheme is capable
of producing almost first order accurate uniformly
convergent solution.

Table 5: Comparison of computational results(MAE) with
existing results for various values of ε and N for example
problem-3.

ε = 10−4 ε = 10−8

N ↓ Mohapatra Mohapatra Our Mohapatra Mohapatra Our
[24] [25] Results [24] [25] Results

16 1.1143e-2 1.1143e-2 1.102E-02 1.1141e-2 1.1141e-2 1.102E-02
32 5.6345e-3 5.6345e-2 5.614E-03 5.6343e-3 5.6343e-2 5.614E-03
64 2.8197e-3 2.8197e-3 2.815E-03 2.8192e-3 2.8192e-3 2.815E-03

128 1.3958e-3 1.3958e-3 1.394E-03 1.3955e-3 1.3955e-3 1.394E-03
256 6.8346e-4 6.8346e-4 6.738E-04 6.8342e-4 6.8342e-4 6.738E-04
512 3.2758e-4 3.2758e-4 3.326E-04 3.2754e-4 3.2754e-4 3.326E-04

7 Conclusion :
We have derived an exponentially fitted tridiagonal
scheme for solving singularly perturbed two-point

Table 6: Computational results in terms of Maximum
absolute errors for different values of N and ε and the Rate
of Convergence rN

ε for example problem- 3.

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

10−3 2.04E-02 1.07E-02 5.29E-03 2.49E-03 1.07E-03 3.78E-04 2.24E-04
rN

ε 0.933784 1.016544 1.088589 1.223553 1.493251 0.754745
10−4 2.07E-02 1.10E-02 5.61E-03 2.82E-03 1.39E-03 6.74E-04 3.33E-04
rN

ε 0.911596 0.973023 0.995894 1.048838 1.018532 1.012934
10−6 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−8 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−10 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−12 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−15 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−18 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−20 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−25 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136
10−30 2.08E-02 1.11E-02 5.65E-03 2.85E-03 1.43E-03 7.20E-04 3.56E-04
rN

ε 0.910455 0.967724 0.986783 0.994444 0.991155 1.017136

boundary value problems with boundary layer at one end
points(left or right). We have carried out stability and
convergence analysis for the proposed scheme and
performed the numerical experiments on two linear and
one nonlinear model example problems for different
values of N = 1/h and perturbation parameter ε which
show that the scheme is of almost first order accurate. The
computational results are presented in tables and
compared with the existing results. Comparisons show
that the proposed scheme is comparable with the schemes
presented in the articles [29,30,31,32]. Furthermore, one
can easily observe from the Tables 2,4 and 6 that the
presented fitted scheme is capable of producing first order
accurate uniformly convergent solution for any fixed
value of step size h = 1/N > ε, when perturbation
parameter ε → 0. The main feature of the proposed fitted
scheme is that it neither depends on the very fine mess
size [37] nor on deviating argument [28]. Finally, it is
concluded that the present method appears to be one of
the best alternatives for solving singularly perturbed
boundary value problems numerically with a small
amount of computational time.
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