Future Engineering Journal

Volume 3 | Issue 1

Article 3

November 2021

Estimating the weights of latticed power transmission towers using Genetic programming

Ahmed M. Ebid Dr. Future University in Egypt, ahmed.abdelkhaleq@fue.edu.eg

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/fej

Part of the Architecture Commons, Chemical Engineering Commons, Civil and Environmental Engineering Commons, Computer Engineering Commons, Electrical and Computer Engineering Commons, Mechanical Engineering Commons, and the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation

Ebid, Ahmed M. Dr. (2021) "Estimating the weights of latticed power transmission towers using Genetic programming," *Future Engineering Journal*: Vol. 3: Iss. 1, Article 3. Available at: https://digitalcommons.aaru.edu.jo/fej/vol3/iss1/3

This Original Article/Research is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Future Engineering Journal by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, u.murad@aaru.edu.jo.

FUTURE ENGINEERING JOURNAL 3 (2022) 2314-7237

Future Engineering Journal

Journal homepage: http://digitalcommons.aaru.edu.jo/fej/

Estimating the weights of latticed power transmission towers using Genetic programming

Ahmed M. Ebid

Faculty of Engineering and Technology, Future University In Egypt, 90th streel, New Cairo, 11835, Egypt.

ARTICLEINFO

Article history: Received March 2022 Received in revised form May 2022 Accepted June 2022

Keywords: Transmission tower GP Cost optimization

ABSTRACT

The recent booming in the power network industry inspired a lot of researchers to develop models to estimate the optimum cost of transmission towers. Unlike previous researches which depended on design the tower from scratch, this research depends on collecting actual database from several projects around the globe and applying the well-known Genetic Programming (GP) technique to develop a model to predict the tower weight. The accuracy of the developed formula was about 84%. The developed model could be used in early tender stage or to check design economy

© 2019 Faculty of Eng. & Tech., Future University in Egypt. Hosting by Association of Arab Universities, Arab Journals Platform. All rights reserved. Peer review under responsibility of Faculty of Eng. & Tech., Future University in Egypt.

1. Introduction

Electrical power networks depend on transmission towers to support the power conductors. These towers cost about (one third to one half) of the transmission line cost (F.Kiessling et al, 2003). Accordingly, many studied were carried out to optimize the cost of transmission towers. Both of (Shea et al, 2006) and (Huiyong et al, 2011) used topology optimization technique to minimize the towers weights. (Couceiro et al, 2016) presented a study to optimize the design of transmission towers using Simulated Annealing technique. (Huiyong et al, 2009), (Abdullah et al, 2012), (Sanah et al, 2016), (Premalatha et al, 2017) and (Bharat et al, 2018) developed different genetic algorithm (GA) models to optimize the design of the transmission towers. On the other hand, (Li et al, 2015), (Siamak et al, 2012) and (Nagavinothini et al, 2015) implemented three different Artificial Intelligent (AI) which are Ant Colony Optimization (ACO), Firefly Algorithm (FFO) and Particle Swarm Optimization (PSO) to optimum design of transmission towers in order.

GA are AI optimizing technique that mimicking the evolution procedure of living creatures. It starts with generating a random set of solutions, and then the fitness of each solution is evaluated, the most fitting solutions are selected, and the rest are deleted. Those selected solutions are used to produce the next generation of solutions and the cycle continues until the desire accuracy achieved. This technique was used in as base to develop more AI techniques such as Genetic Programming GP and Evolutionary polynomial Regression EPR. GP is a technique uses GA to optimize the fitness of mathematical formula to certain dataset. The output of this technique is a closed form equation which could be utilized manually (Ebid, 2020). This technique successfully was used in optimizing the design of steel girders (Ebid, 2021) and (El-Aghoury, 2022).

Despite of the large number of previous researchers concerned in estimating the optimum weight of power transmission towers, but all of them depended on design the towers from the scratch. The novelty of this research is that it is based on actual database collected from several power transmission lines projects around the globe. This makes it more practical and closer to industry.

* Corresponding author. Tel.: +2-010-019-546-73.

E-mail address: ahmed.abdelkhaleq@fue.edu.eg

Peer review under responsibility of Faculty of Engineering and Technology, Future University in Egypt.

^{© 2019} Faculty of Engineering and Technology, Future University in Egypt. Hosting by Association of Arab Universities, Arab Journals Platform. All rights reserved. https://digitalcommons.aaru.edu.jo/fej/

Future Engineering Journal 3 (2022) 2314-7237

2. COLLECTED DATA

164 records were collected from eight projects in Egypt, Yemen, Ethiopia, Libya, Saudi Arabia and Iraq. Each record contains the line voltage (V in KV), number of conductors including earth wires (N), tower deviation angle (A in degrees), extension height below basic tower (Ext in m) and tower weight (W in tons) as illustrated in Fig 1. The collected database was divided into training dataset (124 records) and validation dataset (40 records). Table 1, 2 summarizes their statistical characteristics and the Pearson correlation matrix. Finally, Fig 2 shows the histograms for both inputs and outputs. The collected dataset is attached in the appendix.

Table 1- Statistical analysis of collected database

	V (KV)	Ν	Ao	Ext (m)	W (ton)
Min.	66.0	8.0	0.0	0.0	3.3
Max.	500.0	26.0	90.0	35.0	163.8
Avg.	383.8	18.5	40.2	7.2	49.6
SD	168.7	7.0	34.0	6.0	35.8
VAR	0.44	0.38	0.84	0.83	0.72

Table 2- Pearson correlation matrix

	V	Ν	А	Ext	W
v	1.00				
Ν	0.03	1.00			
А	0.05	-0.01	1.00		
Ext	0.20	0.14	-0.01	1.00	
W	0.57	0.44	0.56	0.38	1.00
••	0.57	0.44	0.50	0.50	1.00

Fig. 1- Illustration of the geometrical inputs (A & Ext)

3. ESTIMATING THE TOWER WEIGHT USING (GP) TECHNIQUE

A four levels of complexity GP model was developed using population size of 100,000 gens, surviving ratio of 25% and 100 generations. Eq. (1) shows the developed formulas for (W). The achieved fitness was measured in terms of Sum of Squared Error (SSE), (Error %) and (R2) as (10976, 16.5% and 0.947) respectively. Fig. 3 illustrates its fitness.

Fig. 2- Distribution histograms for inputs (in blue) and outputs (in green)

3

4. DISCUSSION AND CONCLUSIONS

This study presented a (GP) model to estimate power transmission tower weight (W) using its angle of deviation (A), number of supported conductors (N), tower extension (Ext) and power line voltage (V). From the developed formula, the following points could be concluded:

- Tower weight (W) increases with increasing (A), (N), (Ext) and (V) which is reasonable
- The prediction accuracy of the developed formula is $\pm 16.5\%$
- As a regression technique, the generated equation is valid for the considered range of variables values, beyond that; the accuracy must be verified.
- The developed formula indicated that within the considered range of parameters, the minimum tower weight is 4.0±16.5% which is 3.34 ton.
- As indicated from Eq. 1, (V) & (N) have stronger impact on (W) than (A) & (Ext).
- Based on the achieved accuracy, the developed formula could be used for preliminary estimations in tender stage and to check the economy of the tower design.

	KV	Ν	Α	Ext	W	KV	Ν	Α	Ext	W
_	K volt	Cond.	degree	m	ton	K volt	Cond.	degree	m	ton
	500	25	0	0	38.060	500	13	30	3	46.197
	500	25	0	3	39.060	500	13	30	6	49.103
	500	25	0	6	42.570	500	13	30	9	56.239
	500	25	0	9	44.040	500	13	30	12	59.586
	500	25	0	12	48.520	500	13	30	15	64.703
	500	25	0	15	51.420	500	13	60	0	55.137
	500	25	10	0	45.750	500	13	60	3	57.059
	500	25	30	0	52.330	500	13	60	6	63.455
	500	25	30	3	54.790	500	13	60	9	65.549
	500	25	30	6	61.660	500	13	60	12	69.217
	500	25	30	9	63.830	500	13	60	15	76.007
	500	25	30	12	67.290	500	13	90	0	75.583
	500	25	30	15	75.160	500	13	90	3	78.464
	500	25	60	0	68.780	500	13	90	6	85.647
	500	25	60	3	71.990	500	13	90	12	93.719
	500	25	60	6	80.950	500	26	0	0	37.199
	500	25	60	9	83.780	500	26	0	3	38.775
	500	25	60	12	88.290	500	26	0	6	42.287
	500	25	60	15	98.560	500	26	0	9	44.132
	500	25	90	0	111.160	500	26	0	12	46.213
	500	25	90	3	116.360	500	26	0	15	49.922
	500	25	90	6	130.830	500	26	0	18	52.273
	500	25	90	9	135.400	500	26	0	21	55.295
_	500	25	90	12	142.700	500	26	10	0	45.452

Appendix A. The collected dataset

KV	Ν	Α	Ext	W	KV	Ν	Α	Ext	W
K volt	Cond.	degree	m	ton	K volt	Cond.	degree	m	ton
500	25	90	15	159.290	500	26	10	3	47.275
500	8	0	0	15.900	500	26	10	6	49.838
500	8	0	3	16.900	500	26	10	9	55.096
500	8	0	6	18.400	500	26	10	12	57.533
500	8	0	9	20.500	500	26	10	15	60.034
500	8	0	12	21.600	500	26	30	0	51.837
500	8	0	15	23.100	500	26	30	3	54.293
500	8	10	0	23.300	500	26	30	6	56.934
500	8	30	0	25.200	500	26	30	9	61.947
500	8	30	3	26.300	500	26	30	12	65.373
500	8	30	6	28.600	500	26	30	15	69.126
500	8	30	9	32.500	500	26	60	0	67.642
500	8	30	12	33.500	500	26	60	3	70.368
500	8	30	15	35.900	500	26	60	6	74.631
500	8	60	0	33.500	500	26	60	9	83.021
500	8	60	3	35.700	500	26	60	12	86.933
500	8	60	6	38.300	500	26	60	15	97.512
500	8	60	9	42.500	500	26	60	25	119.897
500	8	60	12	44.700	500	26	60	35	145.980
500	8	60	15	47.400	500	26	90	0	119.520
500	8	90	0	43.100	500	26	90	5	120.228
500	0	90	5	40.200	500	20	90	0	132.102
500	0	90	0	46.400	500	20	90	12	143.001
500	8	90	12	55,600	500	20	90	12	157.734
500	8	90	12	57 700	500	20	90	19	163 774
500	13	90	0	3 250	220	13	90	0	10.620
66	13	0	5	4 000	220	13	0	4	12 100
66	13	0	10	4.000	220	13	Ő	8	13 700
66	13	0	15	6.100	220	13	0	13	15,950
66	13	10	0	4.420	220	13	10	0	10.770
66	13	30	Õ	4.650	220	13	30	0	12.280
66	13	30	5	6.110	220	13	30	4	14.550
66	13	60	0	6.680	220	13	30	8	17.120
66	13	60	5	9.100	220	13	60	0	16.190
66	13	90	0	8.100	220	13	60	4	19.300
66	13	90	5	10.700	220	13	60	8	23.210
66	26	0	0	11.450	220	13	90	0	24.860
66	26	0	5	13.450	220	13	90	4	28.990
66	26	0	10	15.600	220	13	90	8	33.820
66	26	0	15	18.100	220	19	0	0	14.046
66	26	30	0	15.200	220	19	0	3	15.263
66	26	30	5	18.700	220	19	0	6	16.839
66	26	30	10	21.500	220	19	0	9	17.735
66	26	60	0	19.000	220	19	0	12	20.115
66	26	60	5	22.300	220	19	0	15	21.153
66	26	60	10	26.000	220	19	30	0	19.380
66	26	90	0	25.600	220	19	30	3	21.470
500	26 12	90	5	30.000	220	19	30 20	6	25.559
500	15	0	0	29.031	220	19	30	9 15	25.16/
500	13	0	5 6	21.140	220	19	50	15	30.010
500	13	0	0	34.322 36.370	220	19	00	15	40.079
500	13	0	9 12	40 562	220	19	90	3	47.042 51 553
500	13	0	15	42 729	220	19	90	6	54 006
500	13	10	0	40.744	220	19	90	9	59.638
500	13	30	0	42.793	220	19	90	12	61.970
		20	0		220	19	90	15	68 790

Future Engineering Journal 3 (2022) 2314-7237

REFERENCES

F. Kiessling, P. Nefzger, J.E Nolasco,	U. Kaintzyk, (2003), "C	Overhead Power Lines	Planning, Design,	Construction", ISI	BN 3-540-00297-9 S	pringer-Verlag
Berlin Heidelberg New York						

Shea, K. and Smith, I.F.C., (2006), "Improving Full-Scale Transmission Tower Design through Topology and Shape Optimization", J of Structural Engineering, Vol 132, No 5, 2006, pp 781-790.

Huiyong Guo and Zhengliang Li, (2011), "Structural topology optimization of high-voltage transmission tower with discrete variables", Struct Multidisc Optim (2011) 43:851–861, Springer, DOI 10.1007/s00158-010-0561-3

Couceiro, J. París, S. Martínez, I. Colominas, F. Navarrina, M. Casteleiro, (2016), "Structural optimization of lattice steel transmission towers", Engineering Structures 117 (2016) 274–286, doi:10.1016/j.engstruct.2016.03.005

Huiyong Guo and Zhengliang Li, (2009), "Adaptive Genetic Algorithm and Its Application to the Structural Optimization of Steel Tower", 2009 Fifth International Conference on Natural Computation, IEEE, DOI 10.1109/ICNC.2009.241

Abdullah Fakhir MOHAMMED, Mustafa OZAKÇA, Nildem TAYSI (2012), "Optimal design of Transmission Towers using Genetic Algorithm". SDU International Technologic Science Vol. 4

Sanah Rose Sony, Airin M. G. (2016), "Optimization of Transmission Tower using Genetic Algorithm", International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

J. Premalatha, R. Shanthi Vengadeshwari and Veerendra A, (2017), "Optimization Of Transmission Tower Using Genetic Algorithm", International Journal of Civil Engineering and Technology (IJCIET), Volume 8, Issue 9, September 2017, pp. 654–662

Bharat Koner, Priya Surpur, M. T. Venuraju, (2018), "Design Optimization of Free Standing Communication Tower Using Genetic Algorithm", International Research Journal of Engineering and Technology (IRJET), Volume 05 Issue 06

Li Shi-feng, Zhang Zhuo-qun, Li Hong-nan and Ren zongdong (2015), "Optimal Design of Truss Structures based on the New Improved Ant Colony Optimization Algorithm". 5th International Conference on Civil Engineering and Transportation (ICCET 2015)

Siamak Talatahari, Amir Hossein Gandomi and Gun Jin Yun, (2012),"Optimum design of tower structures using Firefly Algorithm", Struct. Design Tall Spec. Build. (2012), Wiley, DOI: 10.1002/tal.1043

R. Nagavinothini and C.Subramanian (2015), "Weight Optimization of double circuit steel transmission line tower using PSO algorithm", International Journal of Science, Engineering and Technology Research (IJSETR) Volume 4, Issue 2, February 2015

Ahmed Ebid, (2020), "35 Years of (AI) in Geotechnical Engineering: State of the Art", Geotech Geol Eng, doi.org/10.1007/s10706-020-01536-7

- Ahmed Ebid, (2021), "Optimum Cross Section and Longitudinal Profile for Unstiffened Fully Composite Steel Beams", FUTURE ENGINEERING JOURNAL 2 (2021) 2314-7237
- Mohamed A. El-Aghoury, Ahmed M. Ebid and Kennedy C. Onyelowe, (2022), "Optimum Design of Fully Composite, Unstiffened, Built-Up, Hybrid Steel Girder Using GRG, NLR, and ANN Techniques", Journal of Engineering, volume 2022, Article ID 7439828, 25 pages, https://doi.org/10.1155/2022/7439828