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A B S T R A C T 

Expanding the usage of renewable energy in islanded microgrids leads to a reduction in its total inertia. Low 

inertia microgrids have difficulties in voltage and frequency control. That affected saving its stability and 

preventing a blackout. To improve low inertia islanded microgrids' dynamic response and save their 

stability, this paper presented relative rate observer self-tuning fuzzy PID (RROSTF-PID) based on virtual 

inertia control (VIC) for an islanded microgrid with a high renewable energy sources (RESs) contribution. 

RROSTF-PID based on VIC's success in showing remarkable improvement in the microgrid's dynamic 

response and enhancement of its stability. Moreover, it handles different contingency conditions 

successfully by giving the desired frequency support. Ant colony optimization (ACO) technique is used to 

find the optimal values of the RROSTF-PID based on VIC parameters. Furthermore, using 

MATLAB TM/Simulink, RROSTF-PID based on VIC response is compared to Optimal Fuzzy PID (OF-

PID) based VIC, Fuzzy PID (F-PID) based VIC, PID-based VIC, conventional VIC responses, and the 

microgrid without VIC response under different operation conditions. 

 

© 2019 Faculty of Eng. & Tech., Future University in Egypt. Hosting by Association of Arab 

Universities, Arab Journals Platform. All rights reserved. 

Peer review under responsibility of Faculty of Eng. & Tech., Future University in Egypt.     

 

1. Introduction 

Here introduces the paper, and put a nomenclature if necessary, in a box with the same font size as the rest of the paper. The paragraphs continue from here 

and are only separated by headings, subheadings, images and formulae. The section headings are arranged by numbers, bold and 9.5 pt. Here follow further 

instructions for authors. 

Nowadays, it is more interesting to use renewable energy sources (RESs). There is an expansion in using renewable energy sources. That expansion may be 

instead of a synchronous generator in a traditional power system. While the rotating mass in a synchronous generator supplies the inertia to the power system 

from its stored kinetic energy [1]. Renewable energy sources (RESs) have no present or low contribution to the system inertia due to their power electronics 

interfaces [2]. So, increasing the penetration of RESs in the power system can lead to a reduction in the total system inertia. The power system with law 

inertia might become an insecure system with a difficulty in saving the system voltage/frequency stability [3]. 

The islanded microgrids that depend on renewable energy sources (RESs) may have a problem with the dynamic stability. Increasing the contribution of the 

RESs makes achieving dynamic stability more difficult. Moreover, system voltage/frequency oscillation can occur because of the microgrid's low inertia 

[4]. If the voltage/frequency values are not within an acceptable range, the system may become unstable [5].       
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Dealing with difficulty in voltage and frequency control in the low inertia islanded microgrids, the concept of VIC is presented. The main idea of VIC is to 

emulate the response of the conventional generator that provides the system inertia. The VIC improves the stability of the system and allows more 

contributions from the RESs [1, 6]. 

The VIC is applied to power inverters and energy storage systems (ESS) to achieve the behavior of a synchronous generator (inertia and damping properties). 

That enhances the stability of the microgrid frequency [3-4]. Based on the rate of change of frequency (RoCoF), the VIC provides the microgrid with 

additional active power that improves the microgrid dynamic response [6]. 

Many researches on VIC aim to enhance the stability of the power system frequency. In [7] a derivative controller based on VIC is used for interconnected 

power systems with a high contribution of renewable sources of energy to improve the frequency stability. In [6] Proportional-integral (PI) -based VIC for 

an isolated microgrid with high RESs penetration to minimize the frequency deviations and enhance the stability. The concept of VIC is proposed via an 

extended virtual synchronous generator. That supports the frequency control and improves inertia response for a microgrid [8]. In [9], an inverter control 

strategy is introduced to emulate the behaviors of a synchronous generators to enhance the frequency stability for a smart grid. Moreover, a solar power 

system that is connected to the grid under variable temperature and irradiance has a novel adaptive VIC in [10].  In [11], hybrid AC/DC microgrid systems 

are supported by inertia from a virtual synchronous generator. In [12] virtual inertia control is introduced for DC microgrid integrating high proportions of 

renewable energy to regulate the DC bus voltage. A tidal turbine power plant improves frequency regulation by using a capacitive energy storage system to 

supply the system with virtual inertia in [13]. In [14] a superconducting magnetic energy storage (SMES)-based VIC system is used for maintaining good 

frequency stability for a microgrid with renewables. 

Another researches represent the virtual inertia control (VIC) by using self-adaptive controllers to adapt to different disturbance and contingency conditions, 

which enhance the system stability and improve the dynamic response. A self-adaptive inertia and damping combination control of a virtual synchronous 

generator is proposed in [15] for frequency stability improvement for a microgrid. In [4], a fuzzy logic control technique is used to determine the constant 

of the virtual inertia for the frequency stability enhancement of a microgrid with a high share of RESs. Furthermore, in [16], a robust FLC is proposed for 

superconducting magnetic energy storage (SMES) in power systems with low inertia. However, the frequency stability still needs improvements especially 

in the case of islanded microgrids with high penetration of RESs, in order to enhance the microgrid stability and prevent blackouts.  

Several control techniques based on VIC are presented in this paper.  

1-      Fuzzy PID (F-PID) controller (Fuzzy like PID controller). 

2-      Optimal Fuzzy PID (OF-PID) controller. 

3-      Relative rate observer (RRO) self-tuning fuzzy PID (RROSTF-PID). 

These control techniques change control parameters to achieve more improvement in the system dynamic response. Fuzzy logic can deal with the system 

with complex behavior and is used to change control parameters to achieve system frequency stability with high RESs penetration and adapt to different 

contingency conditions.  

The low inertia islanded microgrid response with these control techniques under various disturbances is studied using MATLABTM/Simulink software. 

The output result is compared with the response of the microgrid without VIC, the microgrid with conventional VIC (CVIC), and with VIC based on an 

optimal PID controller, with a microgrid considering domestic loads (residential and industrial), and the high contribution of wind and solar power plants. 

 

2. System Configuration 

2.1. Studied Islanded Microgrid Modeling 

As shown in Fig. 1, the studied islanded microgrid is a hybrid microgrid containing conventional and renewable energy sources to feed the industrial and 

residential loads (domestic loads). The studied islanded microgrid consists of a 20MW non-reheat thermal power plant (as a conventional energy source), a 

4MW solar power plant, and an 8MW wind power plant (as renewable energy sources), a 15MW domestic load, and an energy storage system of 5MW. 

The system base is 20MW [6]. 

The studied microgrid dynamic model is shown in Fig. 2, which includes the microgrid control area, a thermal power plant, solar and wind power plants, 

and domestic loads [6]. The thermal power plant model includes primary and secondary frequency controllers into consideration. The generator governor 

action is represented by primary frequency control [1]. The secondary frequency control is identified in the model by an integral controller. For non-reheat 

thermal power plants, the physical constraints are also represented by generation rate constraints (GRCs), which set the permissible output power of the 

unit. As well as the limitations of the turbine valve/gate (the maximum and minimum limit). The GRC is adjusted to be 20% p.u. MW/min and the valve 

gate limits are adjusted to be ±0.3 p.u.MW [6, 17]. Table 1 displays the dynamic parameter values of the studied islanded microgrid [6]. 

                                                               Table 1 - Values of the Microgrid Parameters. 

Parameter Value 

Ki (s) 0.05 

Tg (s) 0.1 

Tt (s) 0.4 

R (Hz/p.u.MW) 2.4 

D (p.u.MW/Hz) 0.015 

H (p.u.MW s) 0.083 

TVI (s) 10 
Twt (s) 1.5 

Tpv (s) 1.8 

KVI (s) 0.5 
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Fig. 1 - Simplified Studied Microgrid Model 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - The studied islanded microgrid dynamic model. 

2.2. Modeling of VIC for Studied Islanded Microgrids 

By increasing the contribution of RESs to the system, the system's overall inertia is decreased. which affects the dynamic response of the system. Thus, VIC 

focuses on the ability to emulate the inertia and damping properties of a conventional generator, increase system inertia, and allow for more contribution of 

RESs to the microgrid while maintaining frequency stability. 

As shown in Fig. 3, conventional VIC (CVIC) is based on a derivative controller, which is regarded as the basic controller idea that adds needed extra active 

power based on ROCOF determination, and a low pass filter is implemented to prevent the effect of frequency measurement noise and emulate the ESS 

dynamic response [3][6].  

This paper aims to investigate the use of VIC based on Fuzzy PID and RROSTF-PID controllers to enhance microgrid frequency stabilization under 

contingency conditions such as the sudden connecting or disconnecting of a large load in the presence of RESs high contributions. 
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Fig. 3 - The studied islanded microgrid dynamic model. 

 

3. Fuzzy Controller Based Virtual Inertia Control 

Fuzzy logic control (FLC) main idea was introduced in [18]. In [19], Mamdani uses FLC to design controllers for ill-modeled systems. After that, FLC 

shows high quality in many applications [20][21]. Fuzzy PID control is used to improve the power system dynamic stability [22]. LFC of multi-area systems 

by using Fuzzy PID control in [23]. 

Fig. 4 shows the main structure of FLC. Error (e) and rate of change of error (Δe) signals (input signals) are converted into linguistic values (fuzzification). 

Then, Fuzzy Inference makes a decision using fuzzy rules. Finally, the center of gravity method (equ.1) is used to convert the fuzzy output to crisp output 

values (defuzzification) [24, 25]. 

 

 

 

 

 

 

Fig. 4 - The main structure of FLC. 

 

𝑢 =
∑ 𝑢(𝑢𝑘)𝑢𝑘

𝑛

𝑘=1

∑ 𝑢(𝑢𝑘)
𝑛

𝑘=1

 (1) 

Where: 

u(uk): membership grad of the element uk. 

u: output of fuzzy control. 

n: the number of discrete values in the universe of discourse. 

Fuzzy controller output depends on the state of the system that is defined by FLC input signals (e and Δe signals) so that enhancement of the system's 

dynamic response [26]. The good performance of the Fuzzy controller helps to improve the system robustness.  

The fuzzy controller can act like a PD controller or a PI controller and give their response. The integration between fuzzy proportional-derivative (F-PD) 

and fuzzy proportion-integral (F-PI) gives a Fuzzy Proportional-integral-derivative (F-PID) controller that acts like a Proportional-integral-derivative (PID) 

controller [27]. Fig.5 shows the Fuzzy PID controller model structure. Δf is the input signal for our system. K1 and K2 are the input gains. K3 and K4 are 

the output gains. FLC has two input memberships that are the same as shown in Fig. 6 and Fig. 7 shows the FLC output membership. All memberships are 

triangular membership functions. Table 2 shows the FLC rule base and Table 3 shows the relationship between the conventional PID controller (the transfer 

function is shown in equ. 2) gain parameters and the FLC gains [26, 28, 29, 30].  

Gc (s) =  Kp +  
Ki

s
   +  Kd s (2) 

Kp: Proportional gain. 

ki: Integral gain. 

kd: Derivative gain.  

K1 is determined as in equ. 3: 
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𝐾1 =
𝐹𝑢𝑧𝑧𝑦 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟

max (error crisp value) 
 (3) 

The optimal gain parameters of the PID controller are determined by using ant colony optimization. After that, these gains are used to determine the FLC 

gains to act as the optimal PID controller. Table 4 shows PID and F-PID controller gain values. 

 
 

 

 

 

 

Fig. 5 - Fuzzy PID controller model. 

 

Fig. 6 - FLC input memberships. 

 

 

 

 

 

 

 

 

Fig. 7 - FLC output membership. 
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 Table 2 - FLC Rule Base. 

                    Δe  

       e 
Negative Zero Positive 

Negative Large_Negative Small_Negative Zero 

Zero Small_Negative Zero Small_Positive 

Positive Zero Small Positive Large_Positive 

 

Table 3 - PID controller gain parameters and FLC gains. 

PID Controller Gain Parameters FLC Gains 

Kp K1*K3+K2*K4 

Ki K1*K4 

Kd K2*K3 

 

Table 4 - PID and F-PID controller gains values. 

Parameter Value 

Kp 8.6957 

Ki 23.6232 

Kd 0.1957 

K1 4.045 

K2 0.0975 

K3 2.0066 

K4 5.8329 

 

 

4. Optimal Fuzzy Based Virtual Inertia Controller 

The change in the FLC gains values can change the controller response.  Many optimization techniques can be used to find the optimal values depending on 

random search methods. Particle swarm optimization (PSO) is used with a fuzzy PID controller in [22]. Ant Colony Optimization (ACO) is used in [23] to 

improve the quality of fuzzy PID controller and work with high performance in many researches [31, 32]. 

In this section, the optimal values of FLC gains are identified by ant colony optimization (ACO) to obtain the optimal fuzzy PID (OF-PID) controller. 

 
4.1. Ant colony optimization (ACO) 

Ant colony optimization (ACO) is a type of meta-heuristic optimization that can handle hard combinatorial optimization problems. It was introduced by 

Marco Dorigo in 1992[33]. ACO is used to optimize the PID controller parameters for LFC of two interconnected areas [34]. in [35] ACO technique is used 

to tune a PID controller for frequency regulation of a single area power system. Moreover, ACO is used to define the optimal parameters of PI controller to 

achieve high performance of Maximum Power Point Tracking of a variable-speed wind turbine [36]. In [33] ACO is used to obtain the optimal parameters 

of PID controller for single area LFC. 

 Ant colony optimization (ACO) was mainly inspired from the ant behavior during looking for food. The ants try to find good food with the shortest route 

from their colony. During its move, ants deposit pheromones (a chemical material) on the path to guide other ants [23, 37]. The pheromone's density is 

determined by the quality of the food and the length of the route (the solution). After each ant has created a solution, the pheromone values are updated. 

This pheromone evaporates over time. Moreover, its quantity grows as the number of ants that follow this path grows. The short route has a higher pheromone 

density and hence attracts more ants than the long route [38]. 

To identify the optimal solution, the artificial ants use a series of local motions from a starting location. Each ant in the colony tries to find a solution, and 

the best solution can be found through the colony's cooperation. The amount of pheromone is updated according to the ACO rules after each tour for the 

ants. Moreover, the ant dies after finding a solution. The best solution has the maximum quantity of pheromone at the end of each iteration. The ACO rules 

are used to determine the amount of pheromone deposited or dissipated [31, 39]. 
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Identifying the cost function is the main step to apply ACO, which can achieve the optimal values for the optimal fuzzy PID controller (K1, K2, K3, and 

K4). OF-PID controller aims to improve the system transient response and enhance its stability. The cost function in eq. 4 provides a time-domain 

performance specification:  

𝑓 =
1

(1 − 𝑒−𝛽)(𝑀𝑝 + 𝑒𝑠𝑠) + 𝑒−𝛽(𝑡𝑠 − 𝑡𝑟)
 

  

(4) 

Mp: desired maximum overshoot. 

ts: desired settling time. 

tr: desired rise time. 

ess: desired steady-state error. 

β: weighting factor. 

β is adjusted to a value higher than 0.7 to minimize overshoot and steady-state error or set to less than 0.7 to decrease the rise and settling times [33][40]. 

To obtain the optimal values, β is set to 0.7. 

The ACO algorithm is applied in this research to optimize the tuning of OF-PID parameters K1, K2, K3, and K4 by minimizing the required cost function. 

The range of these parameters is identified from the stability point of view, taking into consideration the parameter values in the F-PID controller: 

𝐾1𝑚𝑖𝑛 ≤ 𝐾1 ≤ 𝐾1𝑚𝑎𝑥  
𝐾2𝑚𝑖𝑛 ≤ 𝐾2 ≤ 𝐾2𝑚𝑎𝑥 

𝐾3𝑚𝑖𝑛 ≤ 𝐾3 ≤ 𝐾3𝑚𝑎𝑥 

𝐾4𝑚𝑖𝑛 ≤ 𝐾4 ≤ 𝐾4𝑚𝑎𝑥 

 

Fig. 8 shows the flowchart for this optimization procedure. The ending procedure of the algorithm is dependent on the maximum number of iterations. When 

it is reached, the algorithm will end. The optimal gain values for the OF-PID controller are shown in Table 5. ACO improves the quality of the fuzzy PID 

controller, which improves the studied islanded microgrid dynamic response with high penetration of RESs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 - Flowchart of Ant colony optimization based OF-PID controller. 
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Table 5 - optimal gains values for the OF-PID controller. 

Parameter Value 

K1 5.26 

K2 2.435 

K3 0.3007 

K4 18 

 

5. Virtual Inertia Control Based on Relative Rate Observer (RRO) Self-Tuning Fuzzy PID (RROSTF-PID) 

Relative Rate Observer Self-Tuning Fuzzy PID (RROSTF-PID) adds online tuning of integral and derivative coefficients for the optimal fuzzy PID 

controller. This advantage makes the controller more flexible and improves the system response. That tuning depended on the state of the system. This 

method adjusts the two coefficients depending on using a fuzzy inference mechanism in an online technique. System error (e) and the additional variable rv 

‘‘normalized acceleration’’ in [41] are the two inputs of the fuzzy inference mechanism that sets integral and derivative coefficients. "Relative rate" 

information about the system response (fastness-slowness) is given by the normalized acceleration rv(i), which is defined as [42, 43]: 

rv(k) =
𝑑𝑒 (i) − de (i − 1)

𝑑𝑒 (. )
=

𝑑𝑑𝑒 (i)

𝑑𝑒 (. )
 (5) 

Here, de (i): the incremental change in error and it is given by 

𝑑𝑒 (i) = 𝑒 (i) − e (i − 1) (6) 

and dde (k): the acceleration in error and it is given by        

𝑑𝑑𝑒 (i) = 𝑑𝑒 (i) − de (i − 1) (7) 

In [44], de (.) is chosen as follows: 

de (. ) = {
𝑑𝑒 (i),                𝑖𝑓 |𝑑𝑒 (i)| ≥ |de (i − 1)|

de (i − 1),   𝑖𝑓 |𝑑𝑒 (i)| < |de (i − 1)|
 (8) 

Fig. 9 shows the block diagram of the RROSTF-PID controller. ɣ is the output of the fuzzy parameter regulator. The scaling factors k2 and k4 are adjusted 

as follows: 

𝑘2 = 𝑘2𝑠. 𝑘𝑓𝑑 . 𝑘𝑓 . ɣ (9) 

𝑘4 =
𝑘4𝑠

𝑘𝑓 . ɣ
 (10) 

Fig. 10, shows input memberships, and the output membership is shown in Fig. 11. Table 6 shows the relative rate observer FLC rules, according to [42]. 

The optimal values of kf and kfd are 0.181 and 2.12 and were obtained here by using ACO. 

 

Table 6 – Relative Rate Observer FLC Rule Base. 

                rv   

         |e| 
Slow Moderate Fast 

Small Medium Medium Large 

Small_Medium Small_Medium Medium Large 

Medium Small Small_Medium Medium 

Large Small Small Small_Medium 
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Fig. 9 - the block diagram of the RROSTF-PID controller. 

 

 

Fig. 10 – RRO FLC input membership: (a) for “e” signal and (b) for “rv” signal. 

(a) 

(b) 
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Fig. 11 - RRO FLC output membership. 

6. Simulation Results and Analysis 

In this section, the performance of the proposed controllers is evaluated by using MATLAB/Simulink under various operating conditions for the studied 

island microgrid. Furthermore, the effect of a high contribution of RESs is taken into consideration with multiple disturbances and uncertainty conditions. 

a comparison between the performance of VIC based on RROSTF-PID, VIC based on OF-PID controller, VIC based on F-PID controller, VIC based on 

optimal PID controller, conventional VIC (CVIC) and the studied island microgrid without VIC is done by using four testing scenarios.  

   

6.1.  Various load disturbances 

Firstly, load disturbances are applied in scenarios 1 and 2 with a variable value of the studied island microgrid inertia (as uncertainty). 

Scenario Ⅰ: at t=50 sec, 0.1 pu step change in the residential load power has occurred. Moreover, a 0.2 pu step change in the industrial load power occurs at 

t=100 sec. These disturbances show the frequency variation of the studied island microgrid with full normal system inertia. 

As shown in Fig. 12, high fluctuation in the microgrid frequency in the absence of VIC reached ±0.76 Hz at t=100 sec (0.2 pu step change in the industrial 

load). The CVIC limits the frequency deviation to ±0.64 Hz at t=100 sec. The F-PID-based VIC acts like a PID-based VIC and improves the system stability 

but with a frequency deviation of ±0.22 Hz at t=100 sec. The frequency deviation was reduced significantly by using OF-PID-based VIC and RROSTF-

PID-based VIC. The OF-PID-based VIC enhances the microgrid frequency stability and reduces the frequency deviation to ±0.09 Hz at t=100 sec. The 

RROSTF-PID-based VIC shows the best performance and has significantly improved the frequency performance. Moreover, it limits the frequency deviation 

to ±0.04 Hz at t=100 sec. As shown in this scenario, using VIC enhances the microgrid stability and reduces the frequency deviation. Moreover, the flexibility 

of RROSTF-PID-based VIC due to the online tuning of K2 and K4 makes it perform better than the other controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 - Frequency response of the studied islanded microgrid: (a) for scenario Ⅰ, (b) Comparison between RROSTF-PID, OF-PID, F-PID and 

PID controller-based VIC in scenario Ⅰ. 
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Scenario Ⅱ: the normal microgrid's inertia is reduced by 40% (as uncertainties). Moreover, the studied islanded microgrid has the same load disturbances as 

Scenario Ⅰ.  

The reduction in the total microgrid inertia affects the stability of the microgrid. In this case, the microgrid is weak and can’t handle some disturbances. That 

can lead to a blackout. VIC is used to enhance the microgrid stability and prevent a blackout. 

Fig. 13, shows the impact of microgrid inertia reduction on the microgrid frequency performance. Without VIC, the microgrid can handle the disturbance 

at t=50 sec (0.1 pu step change in the residential load) with a frequency deviation reaching ±0.43 Hz, but at t=100 sec (0.2 pu step change in the industrial 

load), the microgrid loses its stability. While the other controllers based on VIC can save the microgrid stability with different frequency deviations. The 

frequency deviation reaches ±0.92 Hz at t=100 sec with CVIC and ±0.26 Hz at t=100 sec with PID-based VIC. 

The OF-PID-based VIC limits the frequency deviation to ±0.12 Hz at t=100 sec. Moreover, RROSTF-PID-based VIC gives the best performance with the 

lowest frequency deviation, which does not exceed ±0.06 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 - Frequency response of the studied islanded microgrid: (a) without VIC in scenario Ⅱ, (b) for scenario Ⅱ, (C) Comparison between 

RROSTF-PID, OF-PID, F-PID and PID controller-based VIC in scenario Ⅱ. 

 

6.2. Various Load disturbances and high Penetration of RESs 

Scenarios Ⅲ and Ⅳ show the effect of RESs high contribution to the studied island microgrid. Moreover, these scenarios show the performance of the 

different proposed controllers with the different load disturbances and the effect of the reduction of the microgrid's inertia (as uncertainties) due to the 

increase of RESs penetration. 

  Scenario Ⅲ: This scenario has different operating conditions as in Table 7. The RESs contribute with high wind power and low solar power. Moreover, 

this scenario has a high industrial load power step change and a low residential load power step change. Full normal system inertia is used. 

(a) 

(b) 

(c) 
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The microgrid stability is saved in all cases in this scenario by taking into consideration the high contribution of the RESs. Although there are high-frequency 

deviations in the microgrid without VIC and with CVIC. As shown in Fig. 14, The microgrid frequency deviations without VIC reach ±0.86 Hz at t=150 

sec (0.22 pu step change in industrial load) and reach ±0.73 Hz in the microgrid with CVIC. The microgrid frequency deviations are reduced to ±0.24 Hz at 

t=150 sec by using PID-based VIC. The frequency performance is improved by using F-PID- based VIC, which limits the frequency deviation to ±0.11 Hz. 

Moreover, the frequency deviations are minimized and do not exceed ±0.05 Hz when using RROSTF-PID-based VIC. RROSTF-PID-based VIC improves 

the microgrid stability and its response to different operating conditions. Moreover, it limits the frequency deviations to small values with large disturbances, 

as shown in this scenario. 

Table 7 - microgrid different operation conditions. 

Disturbance source Starting time, sec Stopping time, sec Size, pu 

solar power plant initial - 0.11 

wind farm 300 s - 0.25 

residential load initial 450 s 0.07 

industrial load 150 s - 0.22 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 - Frequency response of the studied islanded microgrid: (a) for scenario Ⅲ, (b) Comparison between RROSTF-PID, OF-PID, F-PID and 

PID controller-based VIC in scenario Ⅲ. 

Scenario Ⅳ: the same operating conditions as in Scenario Ⅲ but with an increase in the RESs penetration leading to a decrease of 40% of the microgrid's 

normal inertia (as uncertainties). 

A low inertia microgrid faces many difficulties to save its stability. It may save stability with small disturbances but may lose stability quickly with the 

change in the operating conditions. As in Fig. 15, the low inertia microgrid without VIC succeeds in saving the stability at t=0 sec (0.11 pu step change in 

solar power), but after that, the microgrid becomes unstable due to a 0.22 pu step change in the industrial load at t=150 sec. The CVIC enhances the microgrid 

stability but with a high frequency deviation that reaches ±1 Hz at t=150 sec.  PID-based VIC reduces the frequency deviation to ±0.28 Hz. The OF-PID-

based VIC limits the frequency deviation to ±0.14 Hz. RROSTF-PID-based VIC prevents a blackout, enhances the microgrid stability, and minimizes 

frequency deviation to ±0.07 Hz. That allows for more contributions from RESs. 
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Fig. 15 - Frequency response of the studied islanded microgrid: (a) without VIC in scenario Ⅳ, (b) for scenario Ⅳ, (C) Comparison between 

RROSTF-PID, OF-PID, F-PID and PID controller-based VIC in scenario Ⅳ. 
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7. Conclusions 

The RESs penetration is increased, and that decreases the system's total inertia. So, saving the stability of the system and improving the frequency 

performance has become more difficult. The VIC concept is used to handle this issue by simulating the inertia characteristics of traditional generators. VIC 

depends on calculating the ROCOF to support the system at the contingency conditions.   

In this research, RROSTF-PID-based VIC is used to improve the stability and the dynamic response of the studied islanded microgrid. Moreover, it has a 

low-frequency deviation and can deal with different operating conditions. That allows for an increase in the RESs penetration. Moreover, RROSTF-PID-

based VIC proves its efficiency when it is compared with OF-PID-based VIC, F-PID-based VIC, PID-based VIC, and CVIC. 
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