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A B S T R A C T 

A sort of parallel manipulator known as a pantograph robot mechanism was created primarily for industrial 

requests that required high precision and satisfied speed. While tracking a chosen trajectory profile requires 

a powerful controller. Because it has four active robot links and one robot passive link in place of just two 

links like the open chain does, it can carry more loads than the open chain robot mechanism while 

maintaining accuracy and stability. The calculated model for a closed chain pantograph robot mechanism 

presented in this paper takes into account the boundary conditions. For the purpose of simulating the 

dynamics of the pantograph robot mechanism, an entire MATLAB Simulink has been created. The related 

Simscape model had been created to verify the pantograph mathematical model that had been provided. 

Five alternative tracking controllers were also created and improved using the Flower Pollination (FP) 

algorithm. The PID controller, which is used in many engineering applications, is the first control. An 

enriched Fractional Order PID (FOPID) controller is the second control. The third control considers an 

improved Nonlinear conventional PID (NLPID) controller, and the parameters for this controller were 

likewise determined using (FP) optimization using the useful objective function. Model Reference Adaptive 

Control (MRAC) with PID Compensator is the fourth control. The Fuzzy PD+I Control is the last and final 

controller.  A comparison of the different control methods was completed. A rectangular trajectory was 

chosen as the end effector of the pantograph robot's position reference because it displays performance 

during sharp edges and provides a more accurate study. The proposed controllers were used for this task to 

analyze the performance. The outcomes demonstrate that the Fuzzy PD+I control outperforms the PID, 

FOPID, NLPID, and MRAC with PID Compensator controllers in terms of performance. In the case of the 

Fuzzy PD+I control, the angles end effector has a lower rise time, a satisfied settling time, and low overshoot 

with good precision. 

 

© 2019 Faculty of Eng. & Tech., Future University in Egypt. Hosting by Association of Arab 

Universities, Arab Journals Platform. All rights reserved. 

Peer review under responsibility of Faculty of Eng. & Tech., Future University in Egypt.     

1. Introduction 

Robots were categorized as mobiles and manipulators by Jorge Angeles in [1]. Robots that can move around include Big Dog, a four-legged walking 

robot, swimming fish robots, flying robots with wings, and more. The manipulators must be set up on stage and are made to access areas with a moving end 

effector, such as the arm or hand. 

A manipulator typically consists of three components: a base, a moving end effector, and some links that attach to and activate the end effector from the 

base. A base is anything that the manipulator is put on, whether it be a moving or stationary object. 
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A manipulator that may be mounted to a drone's bottom was created by Jonathan Hodgins [5]. For the drones, Moritz Arns created a dual-purpose 

landing gear [6]. The CANADARM was created to be transported into space and do work [7]. Additionally, the manipulators could be mounted on the fixed 

base. Industrial robots are positioned along the assembly line to work on the parts that are transported there [8]. 

The manipulators' structures can be broadly divided into serial and parallel manipulators. 

A serial robot has links that are successively connected from the base to the moving end effector. In detail, the open-chain structure had a first link that 

begins from a fixed base then connected to the remaining links, the last connection is usually where the end effector is mounted. In contradiction of the 

open-loop construction, a closed-loop mechanism uses numerous kinematic chains to connect the end effector to the fixed base. In the literature, closed-

loop structural mechanisms are also known as parallel mechanisms [9]. 

Serial structures have some drawbacks, including poor location precision and mechanical rigidity. A serial mechanism with many links has a low position 

accuracy because a little amount of inaccuracy at each joint is magnified and aggregated by its successive linkages. Furthermore, because each link must 

carry the mass of its future connections and actuators, the mechanical rigidity of the open-loop system is essentially weak [10]. 

Three revolute joints perpendicular to the plane are used to create a planar serial robot that can move horizontally, longitudinally, and rotate as well [9]. 

Because of their parallel structure arrangement, parallel manipulators have larger load-structure ratios than their serial counterparts and higher levels of 

rigidity, stiffness, motion accuracy, speed, and acceleration [11]. In addition, they have no cumulative joint/link error. 

 Parallel structure mechanisms have piqued the interest of both academics and industry in recent years due to their benefits over serial structure 

mechanisms. Although the drawbacks of parallel robots have reduced workspace and needful a more convoluted analysis of singularities than serial robots 

[12]. This type of closed-chain robot of various shapes and types has been developed in several ways and is widely used in a variety of fields, due to their 

performance characteristics, that’s including pick up and placement [13] [14], machinery manufacturing [15] [16] [17] [18], vehicle simulation devices [19], 

medical devices [20] [21] [22], laser cutting, space applications [23] [24], underground assembly robots, entertainment equipment, micro-instruments [25] 

[26], and sensor applications. This type of mechanism has aroused our interest due to its many different advantages, as we mentioned earlier. 

After lengthy research in this field, it was found that a number of important points were not completely covered, and other points where research and 

studies were rare. This statement is as follows: 

• High Load: 

The scarcity or almost non-existence of research that added the load factor to the model with its utmost importance, as the possibility of carrying this 

type of mechanism for loads is higher than the serial types with more accuracy. 

• Appling Singularity: 

At this point, a group of researchers came to discuss this point and mentioned the equations that they deduced without applying them to the Simulation 

model, but we applied them as simpler and easier way and at the same time fulfilled the required purpose in addition to applying them to the simulation 

model. 

• Precise Control: 

Very few researchers have applied types of control to the model, as they are limited to between PID and PD and the like. 

But in this study more than one more advanced type with the use of a high-efficiency Optimization Technique [27-28]  

• External Load Effect: 

The external load considers a disturbance to the pantograph which effects on the accuracy so, this study investigates the performance under different 

control techniques. 

in [29] the PID control was applied to the pantograph. The results discuss and display graphs for the five-bar planar manipulator performance are shown 

in figure 2. But the control was also applied to reach a certain point as (X , Y) coordinate, not on a path as is the case in the above-mentioned studies, in 

addition to the fact that no values were estimated for the errors to be able to know an accurate percentage of the errors. 

In research [30], the structure control design of a five-bar parallel mechanism is disentangled through the use of the Differential Evolution (DE) algorithm 

DE. Where the values of the PID controller parameters were clarified for both controllers. 

In research for the current year 2021 [31], the researcher also used the PID controller and explained by some numbers the percentage of error, but did 

not use another control to compare the results. It is assumed that the goal here is to show the best results. At first, a certain point was reached by a straight 

line from the starting point, and this was considered the first trajectory with an extreme error of 17.2%. Then this model was tested using the PID control 

also, on a circuit-shaped trajectory with a concentrated error of 11%.  

Another control strategy has been used in research [32], which is used Quantitative Feedback Theory (QFT Based Controller). It has been mentioned 

what has been achieved after applying this type of control. QFT-based controller design gave a rise time of 0.37 seconds. No overshooting was observed in 

the step responses of both the links. In [32] the frequency domain which is based also on a robust control strategy was implemented. Also, [33] used the 

Modified Robust Dynamic Control on a Diamond parallel robot (MRDC). It had studied three control methods (PD, Robust Dynamic Control. 

This paper develops a pantograph mechanism to be more accurate (considering singularity). Also, Use this developed mathematical model to design the 

control system. Moreover, design advanced control techniques to improve the accuracy and dynamic performance of the pantograph mechanism. A 

Comparative study between the proposed control technics (PID., FOPID., NLPID , MRAC with PID Compensator and, Fuzzy PD+I) were achieved.  An 

external planner load on the end-effector had applied to investigate and ensure the controllers' performance. 

This paper is structured as follows: 

Section 2 gives the mathematical model of the pantograph mechanism includes a description of the pantograph and all of its equations, the simulation 

of the model using MATLAB Simulink, and the verification using Simscabe. Section 3 presents the control techniques used and the optimization technique. 

Section 4, presents the results of all previous work with no external load, and with it. Section 5 illustrate the conclusions. 
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2. Mathematical Model of Pantograph 

The system consists of five revolute joints (figure 1), two of them are active, and five-light links. Links 1, 2, 3, and 4 are the driving links, link 0 is a 

passive link. Using the fitting rotation of the triggering links, the distinguishing point e of the system can track the wanted planar trajectory in the region of 

the working zone 

2.1 Direct Robot Kinematics 

The direct robot equations of variables x and y using the θ1 and θ4 are defined as follows [34-36]:  

xe=L
1

∗ cosine ( θ1) +L2 ∗ cosine ( θ2 )=L3 *cosine ( θ3) +L4

∗ cosine ( θ4 )+L5 

            (1) 

y
e
 =L

1
*sine ( θ1) +L2 *sine  θ2 = L3 ∗ sine θ3 +L4 ∗ sine  θ4  

(2) 

There are two methods, Trigonometry method or Newton-Raphson method can be used 

to find  θ3 and θ2 . In this work, the trigonometry. technique was utilized to follow: 

θ3=2* tan.-1 (
A±√A2+B2-C2

B-C
)              (3) 

Where, 

A = 2 L3 L4 sine θ4 - 2 L1 L3 cosine θ1                                                  (4) 

B = 2L3L5-2L1L3 cosine θ1 +2L4L3 cosine θ4                                      (5) 

C=L1
2-L2

2+L3
2+L4

2+L5
2- L1L4 sine θ1 ∗

 sine θ4 -2L1L5 cosine θ1 -2L4L5 cosine θ4 * cosine θ1                                          (6) 

And, 

θ2=. sine-1 (
L3 ∗ sine θ3 +L4 ∗ sine θ4 -L1 *sine θ1

L2

) (7) 

2.2 Inverse Robot Kinematics 

The following equations show the direct relationship between the coordinates of the end-effector and link robot lengths to the stimulating angles 

θ1 and θ4  [49]: 

θ1=2 tan-1 (
-E±√D2+E2-F2

-D-F
) (8) 

Where, 

                                             D=xe                                                                                                                                                                                                                    

E=y
e
  

F=
L1

2-L2
2+xe

2+y
e
 2

2L1

  

And 

θ4=2* tan-1 (
-H±√G2+H2-I2

-G-I
) (9) 

Where, 

G = xe- L5   

H=y
e
 

I=
L4

2+L5
2-L3

2-2xcL5+xe
2+y

e
 2

2L4

 

Fig.  1 - Forward Kinematics 
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The robot's link lengths are taken into account as a constant, making it easier to answer the aforementioned equations. Without knowing θ2 and θ
3
. 

it is possible to get θ1 and θ4 from equations (5) and (6) [36]. The location of the end-effector (x (e)) and its coordinates (y (e)) are the sole inputs required 

for regulating the five-link mechanism. 

2.3 Boundary Conditions of links 

     It is significant part that is the allowable boundary for a mechanism.  

The first boundary is that the links do’nt touch the singularity state throughout the path [50].  

For this to be attained Q5 must not be like to 180 degrees but rather greater.  

So, Q
5
 < 180 shown in figure 2. 

Q
5
=540 − (180 + θ1) − (180 − θ4+θ3) − (180+θ1 − θ2) − (θ4) 

            

(10) 

So the first boundary is:  

Q
5
=(θ2 − θ3) <180 (11)  

 

Second one: for the proposed mechanism not to reach the position presented in figure 3, θ2  must be greater than θ1 .  

Third one: θ4 must be greater than θ3. 

(θ2>θ1)  

(12) 

(θ4>θ3) (13) 

 

The three rules (7), (9), and (10), have been implemented by using an easy and simple 

method on the simulation program (MATLAB Simulink), which is the logic gate (AND), as will be 

explained in the next. 

2.4 Equation of motion: 

After defining the forward and inverse kinematics we have to find the position matrix of the center of mass of each link, shown in figure 4, then 

differentiate it with time to find the velocity for each link, which will be used later. 

The equation of motion will be found by using the Lagrangian formulation (equation 14).  

T = Torque = 
∂

∂t
  

∂L

∂θ̇i

 - 
∂L

∂θi

     [16] (14) 

Lagrangian (L) of the system is defined by the mechanism total kinetic energy minus the 

total system potential energy. 

𝐿 = 𝐾 − 𝑃                                                                                               (15) 

❖ First: determine the total kinetic energy (K) of the system: 

• Link 𝐿1 has a rotation motion only  

𝐾𝐿1
 =  1

2
 

𝑚𝐴 𝐿1
2 𝜃1̇

2

3
 =  𝑊1 𝜃1̇

2
                             (16) 

• Link 𝐿4 has a rotation motion only  

𝐾𝐿4
 =  1

2
 

𝑚𝐷 𝐿4
2 𝜃4̇

2

3
 =  𝑊2 𝜃4̇

2
                             (17) 

• Link 𝐿2 has a translation and rotation motion  

𝐾𝐿2
 =  1

2
 

𝑚𝐵 𝐿2
2 𝜃2̇

2

12
  +  1

2
 𝑚𝐵 ( 𝑉 

𝑁 𝐵)2 =  𝑊3 𝜃2̇

2
 +  𝑊4 𝜃1̇

2
 + 𝑊5 𝜃2̇

2
 + 𝑊6 𝑍5 𝜃1̇ 𝜃2̇                                                  (18) 

• Link 𝐿3 has a translation and rotation motion  

𝐾𝐿3
 =  1

2
 

𝑚𝐶 𝐿3
2 𝜃3̇

2

12
  + 1

2
 𝑚𝐶  ( 𝑉 

𝑁 𝐶)2 =  𝑊7 𝜃3̇

2
 +  𝑊8 𝜃4̇

2
 + 𝑊9 𝜃3̇

2
 + 𝑊10 𝑍6 𝜃3̇ 𝜃4̇                                                 (19) 

Fig.  2 - First Boundary Condition. 

Fig.  3 - Second and Third Boundary 

Conditions 

Fig.  4 - Dynamics of the Pantograph 
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Second: determine the total potential energy (P) of the system: 

The potential energy of a system depends on the  vertical coordinates of all its particles. Since the system here, all its parts 

are located at the same height, which means that there is no effect of potential energy, accordingly, it is equal to zero. 

❖ Finally: 

𝐿 =  𝜃1̇

2
 (𝑊1 + 𝑊4) + 𝜃4̇

2
 (𝑊2 +  𝑊8) + 𝜃1̇

2
 𝑍1

2 (𝑊3 + 𝑊5) +  𝜃4̇

2
 𝑍2

2 (𝑊3 + 𝑊5) + 𝜃1̇

2
 𝑍3

2 (𝑊7 + 𝑊9) +

𝜃4̇

2
 𝑍4

2 (𝑊7 + 𝑊9) + 2 𝑍1 𝑍2 𝜃1̇ 𝜃4
̇  (𝑊3+𝑊5) + 2 𝑍3 𝑍4 𝜃1̇ 𝜃4

̇  (𝑊7 + 𝑊9) + 𝑊6 𝑍1 𝑍5 𝜃1̇

2
+ 𝑊6 𝑍2 𝑍5 𝜃1̇ 𝜃4

̇  + (𝑊7 𝑊9 )𝜃4̇  +

 𝑊10 𝑍3 𝑍6 𝜃1̇ 𝜃4
̇  +  𝑊10 𝑍4 𝑍6  𝜃4

̇ 2
                                                                                                                                (20) 

By implementing Lagrange equation (17) outlets on the (L) was got, will reach the equation of motion, represented in torque for each motor, T1, 

and T2, where (A; B;C; D; E; F) are constants. 

T1=(A1θ̈1+B1θ̈4+C1θ̇1+D1θ̇4) − (E1θ̇1

2
+F1θ̇4

2
+G1θ1̇θ4̇)        (21) 

T2=(A2θ̈1+B2θ̈4+C2θ̇1+D2θ̇4) −  (E2θ̇1

2
+F2θ̇4

2
+G2θ1̇θ4̇) (22) 

Where, 

A1 =  2 (W1 + W4) +  2 (W3 + W5) Z1
2 +  2 W6  Z1 Z5 + 2 Z3

2 (W7 + W9)                                                                             (23) 

B1 =  2 Z 1 Z2 (W3 + W5) + (W6 + Z2 + Z5) +  2  Z3 Z4 ( W7 + W9) + (W10+ Z3 + Z6+ Z3 + Z6)                                       (24) 

C1 = 4 (W3 + W5) Z1
dZ1

dt
+ 2 W6 Z1  

dZ5

dt
+ 2 W6 Z5  

dZ1

dt
+ 4 ( W7 + W9 )Z3  

dZ3

dt
                                                                      (25) 

D1 = 2 (W3 + W5) Z1  
dZ2

dt
+ 2 ( W3 + W5 )Z2  

dZ1

dt
 + W6  Z2  

dZ5

dt
+ W6  Z5  

dZ2

dt
 + 2 ( W7 + W9 )Z3  

dZ4

dt
 + W10  Z6  

dZ3

dt
     (26) 

E1 = 2 (W3 + W5) Z1
dZ1

dθ 1
+ 2 ( W7 +  W9 )Z3  

dZ3

dθ1
  + W6  Z1  

dZ5

dθ1
+ W6 Z5  

dZ1

dθ1
                                                                     (27) 

F1 = 2 (W3 +  W5) Z2
dZ2

dθ1
+ 2 ( W7 + W9 )Z4  

dZ4

dθ1
  + W10  Z4  

dZ6

dθ1
+ W10 Z6  

dZ4

dθ1
                                                                   (28) 

G1 = 2 (W3 +  W5) Z1
dZ2

dθ1
+ 2 ( W3 + W5 )Z2  

dZ1

dθ1
  +  W6  Z2  

dZ5

dθ1
+ W6 Z5  

dZ2

dθ1
+ 2 (W7 + W9) Z3 

dZ4

dθ1
+ 2 (W7 + W9) Z4 

dZ3

dθ1
 +

W10 Z3 
dZ6

dθ1
 +W10 Z6 

dZ3

dθ1
                                                                                                                                                                            (29) 

A2 =  2 (W3  + W5) Z1 Z2  + W6 Z2Z5  +  2 (W7 + W9 )Z3Z4 + W10 Z3 Z6                                                                          (30) 

B2 =  2 (W2  + W8) +  2 (W3  + W5) Z2
2 +  2 ( W7 + W9) Z4

2 + (W10+ Z4 + Z6)                                                             (31) 

C2 = 2 (W3 + W5) Z1
dZ2

dt
+ 2 ( W3 + W5 )Z2  

dZ1

dt
  + W6 Z2  

dZ5

dt
+ W6  Z5  

dZ2

dt
 + 2 ( W7 + W9 )Z3  

dZ4

dt
 + 2 ( W7 + W9 )Z4  

dZ3

dt
+

W10  Z3  
dZ6

dt
 +  W10 Z10  

dZ3

dt
                                                                                                                                                                       (32) 

D2 = 4 (W3 + W5) Z2
dZ2

dt
+ 4 ( W7 + W9 )Z4  

dZ4

dt
  + 2W10 Z4  

dZ6

dt
+ 2 W10 Z6  

dZ4

dt
                                                           (33) 

E2 = 2 (W3 +  W5) Z1
dZ1

dθ4
+ W6 Z1

dZ5

dθ4
+ W6 Z5

dZ1

dθ4
+  2 (W7 + W9) Z3

dZ3

dθ4
                                                                       (34) 

F2 = 2 (W3 + W5) Z2
dZ2

dθ4
+  2 (W7 + W9) Z4

dZ4

dθ4
+ W10 Z4

dZ6

dθ4
+ W10 Z6

dZ4

dθ4
                                                                    (35) 
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G2 = 2 (W3 + W5) Z1
dZ2

dθ4
+ 2 (W3 +  W5) Z2

dZ1

dθ4
 + W6 Z2

dZ5

dθ4
+ W6 Z5

dZ5

dθ4
+ 2 (W7 + W9) Z3

dZ4

dθ4
 + W10 Z6

dZ3

dθ4
 +

2 (W7 + W9) Z4
dZ3

dθ4
 + W10 Z3  

dZ6

dθ4
                                                                                                                                                                           (36) 

Where, 

𝑊1 =  
1

6
 𝑚𝐴 𝐿1

2 𝑊2 =  
1

6
 𝑚𝐷 𝐿4

2 

𝑊3 =  
1

24
 𝑚𝐵 𝐿2

2 𝑊4 =  
1

2
 𝑚𝐵 𝐿1

2 

𝑊5 =  
1

8
 𝑚𝐵 𝐿2

2 𝑊6 =  
1

2
 𝑚𝐵 𝐿1 𝐿2 

𝑊7 =  
1

24
 𝑚𝐶  𝐿3

2 𝑊8 =  
1

2
 𝑚𝐶  𝐿4

2 

𝑊9 =  
1

8
 𝑚𝐶  𝐿3

2 𝑊10 =  
1

4
 𝑚𝐶  𝐿3 𝐿4 

Z1 =  
∂ θ2

∂ θ1

  =  
L1 ∗ sine(θ3 − θ1)

L2  ∗ sine(θ2 − θ3)
 Z2 =  

∂ θ2

∂ θ4

=  
L4  ∗ sine(θ4 − θ3)

L2  ∗ sine(θ2 − θ3)
 

Z3 =  
∂ θ3

∂ θ1

=  
L1 ∗ sine(θ2 − θ1)

L3  ∗ sine(θ2 − θ3)
 Z4 =  

∂ θ3

∂ θ4

=  
L4 ∗ sine(θ4 − θ2)

L3  ∗ sine(θ2 − θ3)
 

Z5 = cosine(θ1 −  θ2) Z6 = cosine(θ3 − θ4) 

3. Control Techniques: 

This section covers the theoretical analysis of five distinct control strategies utilized to boost the pantograph mechanism system's performance. The PID 

controller is the first technique, followed by FOPID control, NLPID control, and a new hybrid approach that combines model reference adaptive control 

with PID compensator as the second and fourth techniques (modified MRAC). Fuzzy PD+I control with optimization is the fifth strategy. 

To achieve the necessary position tracking, all proposed controllers are optimized utilizing flower pollination based on a specific multi objective function 

to adjust the controller settings in accordance with the error and the change of error. [37-55]  

3.1 PID Controller 

Due to its simplicity, dependability, and ease of parameter adjustment, the PID controller is used in many engineering domains. The PID controller's 

transfer function is U(s) = (Kp + Ki/s + Kd.s) E(s). Where Kp, Ki, and kd, respectively, stand for proportional, integral, and differential gains. Each 

component of a PID controller serves the following purposes: the proportional component lowers the system's error responses to disturbances; the integral 

component removes steady-state error (ess); and, finally, the derivative component dampens the dynamic response and increases system stability [56]. The 

Ziegler-Nichols rule [57] is a well-known technique in traditional PID control to determine the appropriate PID controller parameters. We initially determine 

the plant parameters for open-loop tuning by giving the open-loop system a step input. The step test result is then used to determine the plant parameters K, 

TD, and T1, as illustrated in Figure 5. When the loop is closed, Ziegler and Nichols advise utilizing the PID controller parameters listed in Table 1. According 

to the idea of lessening the integral of the absolute error following the application of a step change to the set point, these parameters are used. 

 

 

Fig.  5 - system parameters [58]. 

Table 1 – The open loop system Ziegler/Nichols features [58]. 
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Controller Item K T1 TD 

(P) 
𝑇1

𝐾 𝑇𝐷
 - - 

(PI) 
0.9 𝑇1

𝐾 𝑇𝐷
 3.3 TD - 

(PID) 
1.2 𝑇1

𝐾 𝑇𝐷
 2 TD 0.5 TD 

 

Sometimes the Ziegler-Nichols rule-based conventional PID controller's parameters aren't the greatest. In order to achieve better performance, it can be 

seen that applying optimization approaches as Flower Pollination Optimization, Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Particle 

Swarm Optimization (PSO) may result in better PID controller settings [58]. 

The table 2 below shows the PID parameters following optimization by the flower pollination algorithm. 

 

Table 2 - PID Parameters. 

PID 

Parameters 

Kp Ki Kd 

20 3 5 

3.2 An Optimized Fractional Order Proportional Integral Derivative controller (FOPID) 

Mathematics dealing with derivatives and integrals from fractional orders is known as fractional-order calculus. Fractional calculus was rediscovered by 

engineers and scientists two decades ago, and it is now being used in a growing variety of domains, particularly control theory. 

The development of efficient techniques for differentiating from and integrating non-integer order equations has led to the success of fractional-order 

controllers. Recent years have seen a lot of interest in fractional order proportional-integral-derivative (FOPID) controllers from both an academic and an 

industrial perspective. In fact, because they have five parameters to choose from, they actually offer more versatility in controller design than do ordinary 

PID controllers (in place of three). However, this also denotes that the tuning of the controller can be much more complex. 

The most public form of a fractional order PID controller is the (PIλ Dμ), containing an integrator of order λ  and a differentiator of order μ, where both 

(μ &  λ)  can be any real numbers.  

The transfer function of such a controller has the form equation Gc=(U(s))/(E(s)) = kp + kI  .1/sλ +kD . sμ,           (λ ,μ>0)                                           (37) 

  

Figure 6 shows a FOPID block diagram, where Gc(s) is the FOPID controller transfer function, U(s) is the controller output, E(s) is the system error, 

Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, 1/Sλ is the integrator term, Sµ is the differentiator term. 

From the FOPID transfer function in equation 9, can notice that: 

If (λ=1, and µ=1) a classical PID controller can be achieved, If (λ=1, and µ=0) a PI controller can be realized, If (λ=0, and µ=1) a PD controller can be 

recovered. 

 

Better control of dynamical systems, which are modelled by fractional-order mathematical equations, is one of the FOPID controller's key advantages. 

The FOPID controllers' reduced sensitivity to changes in a controlled system's characteristics is another benefit. This is because the two extra degrees of 

freedom allow a fractional-order control system's dynamical qualities to be adjusted more effectively. The FOPID parameters are optimized by the flower 

pollination algorithm, its values are shown in table 3 below. 

Table 3 - FOPID Parameters 

Fig.  6 - FOPID block diagram. 
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FOPID 

Parameters 

Kp Ki Kd 𝝀 𝝁 

35 3 15 1.5 0.8 

3.3 Non-Linear Proportional Integral Derivative controller (NLPID) 

 

Even though linear fixed parameter PID controllers are frequently suitable for controlling a simple physical process, the requirements for high-

performance control with a variety of operating point conditions or environmental parameters are frequently beyond the capabilities of simple PID controllers 

[59],[60]. The performance of linear PID controllers can be enhanced by using a variety of strategies that were developed to deal with unforeseen disruptions 

and complex systems, including PID self-tuning approaches, neural networks, fuzzy logic strategies, and other techniques [61],[62],[66],[67],[68],[69]. 

One of these approaches, called nonlinear PID (NLPID) control, is suggested as the most effective and appropriate for use in industrial 

applications. There are two main application classes that employ the NLPID control. The first category only applies to nonlinear systems where NLPID 

control takes care of the nonlinearity. NLPID control is employed in the second category, which deals with simple linear systems, to improve performance 

that is not possible with a linear PID control, such as reduced overshoot, decreased rise time for the step or rapid command input, obtained better following 

accuracy, and used to account for the nonlinearity and disturbances in the system [63]. 

For a quick dynamic reaction and to avoid shaky behavior, the NLPID controllers benefit from having a large initial gain. In order to enhance 

the performance of a traditional linear PID controller, a sector-bounded nonlinear gain is introduced to a linear fixed gain PID control architecture in this 

study. 

The proposed improved NLPID controller contains two portions. The first portion is a segment bounded nonlinear gain 𝐾𝑛(𝑒) while the second 

portion is a linear fixed-gain PID controller ( 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑). The nonlinear gain 𝐾𝑛(𝑒) is a segment-constrained function of the error e(t). The previous 

research has been considered the nonlinear gain 𝐾𝑛(𝑒) as a one scalar value. 

The new in this research, the one scalar value of 𝐾𝑛(𝑒)  will be switched with a row vector that can be expressed as 𝐾𝑛(𝑒) =

[𝐾𝑛1(𝑒)    𝐾𝑛2(𝑒)    𝐾3(𝑒)]  as displayed in Figure 7 which will cause humanizing the performance of the NLPID where the values of nonlinear gains will 

be attuned based on the error and the type of constant parameters ( 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑). 

 

 

Fig.  7 - The enhanced Nonlinear PID Controller structure. 

 

The proposed form of NLPID control can be described as follows. 

u(t)=Kp[Kn1(e). e(t)]+Ki ∫ [Kn2(e). e(t)] dt
t

0

+Kd [Kn3(e). 
de(t)

dt
] (38)   
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Where 𝐾𝑛1(𝑒), 𝐾𝑛2(𝑒) 𝑎𝑛𝑑 𝐾𝑛3(𝑒) are nonlinear gains. The nonlinear gains represent any general nonlinear function of the error which is 

bounded in the sector 0 < 𝐾𝑛(𝑒)< 𝐾𝑛(𝑒)max. 

There is a wide range of choices available for the nonlinear gain 𝐾𝑛(𝑒). One simple form of the nonlinear gain function can be described as. 

Kni(e) = ch(wie) = 
exp(wie) +exp(-wie)

2
 (39) 

Where 𝑖 = 1, 2, 3. 

e= {
e |e| ≤emax

emaxsgn(e) |e|>emax

} (40) 

  

The nonlinear gain 𝐾𝑛(𝑒) is lower constrained by 𝐾𝑛(𝑒)min = 1 when e = 0, and upper-constrained by 𝐾𝑛(𝑒)max = ch (𝑤𝑖  𝑒𝑚𝑎𝑥). Therefore, 

𝑒𝑚𝑎𝑥 stand for the range of deviation, and 𝑤𝑖 describes the rate of variation of 𝐾𝑛(𝑒).  

Selecting the correct parameters to be fitting for the controlled system is the crucial step in PID and NLPID controllers. 

There are other methods for determining the PID controller's parameters, such as test/ fault and the Ziegler/Nichols method, although the majority 

of these are unreliable. The PID and NLPID controllers' optimal settings will be obtained in this thesis using the flower pollination optimization technique. 

Values of NLPID controllers after optimization by flower pollination algorithm are publicized in table 4 below 

Table 4 - NLPID Parameters 

NLPID 

Parameters 

Kp Ki Kd W1 W2 W3 

80 3.5 1.3 0.19 3 1.14 

3.4 Model Reference Adaptive Control (MRAC)  

 

Model Reference Adaptive Control (MRAC), a high-ranking adaptive controller, describes the needed performance in languages of a reference model that 

delivers the desired response to a command signal. Figure 8 depicts the elements of a typical MRAC controller, which include a reference model, a control 

law, and an adaptive mechanism that changes the controller's factors based on the feedback error between the reference model and the actual plant. The 

main concept of an adaptive controller is to construct a reference model that requires the expected output of the controller, and then the adaptation law 

modifies the plant's unidentified parameters to achieve zero tracking error [64]. 

 

 
Fig.  8 - A Block diagram of a general MRAC controller [64]. 

There are two loops in the adaptive controller. A typical feedback controller and the process make up the inner loop. The outer loop modifies the 

controller's settings so that there is little discrepancy between the model output ym and process output y, or error, [65]. 

The original method for model-reference adaptive control was the MIT rule. The name comes from the fact that it was created at MIT's 

Instrumentation Laboratory, which is now known as the Draper Laboratory. To modify the settings in a way that minimizes the loss function [64],[66. 

    𝑗(𝜃) =
1

2
𝐸2                   

          

(41) 

To make j small, it is sensible to modification the parameters in the direction of the negative ramp of j, that is, 
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𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝑗

𝜕𝜃
= −𝛾𝐸

𝜕𝐸

𝜕𝜃
 (42) 

Where 𝛾 is the adaptation gain, E is the error between the output of the pantograph output and the model reference output (𝐸 = 𝑦 − 𝑦𝑚) and 𝜃 

is the controller parameter as shown in figure 9. 

 
Fig.  9 - A overall linear controller with two marks of freedom. 

A ∗  y(t) = B ∗ (u(t) + v(t)) (43) 

Where A & B: polynomials rely on the system, 𝑢(𝑡) is the output of the controller, 𝑦(𝑡) is the output of the plant and 𝑣(𝑡) is the plant disorder. 

The controller is defined in (44). 

𝑍. 𝑢(𝑡) = 𝑇. 𝑢𝑐(𝑡) − 𝑋. 𝑦(𝑡) (44) 

Where Z, T & X acts the controller parameters polynomials and 𝑢𝑐(𝑡) is the desired angular position. 

Substituting (44) into (43) will result in (45) 

𝑦(𝑡) =
𝐵𝑇

𝐴𝑍 + 𝐵𝑋
𝑢𝑐(𝑡) +

𝐵𝑍

𝐴𝑍 + 𝐵𝑋
 𝑣(𝑡) (45) 

 

Assume that the model reference is termed by the solo-input, solo-output (SISO) system. 

𝐴𝑚𝑦𝑚(𝑡) = 𝐵𝑚𝑢𝑐(𝑡)    ⟹    𝑦𝑚(𝑡) =
𝐵𝑚

𝐴𝑚

𝑢𝑐(𝑡) (46) 

Where 𝐴𝑚 , 𝐵𝑚 are the polynomials rely on the reference model, 𝑦𝑚(𝑡) is the output of model reference. 

Supposing,  ( 𝑣(𝑡) = 0) the subsequent situation must occur: 

𝑦(𝑡) = 𝑦𝑚(𝑡)    ⟹     
𝐵𝑇

𝐴𝑍 + 𝐵𝑋
=

𝐵𝑚

𝐴𝑚

 (47) 

Suppose that the transfer function of the reference model is 

𝑦𝑚

𝑢𝑐

=
𝑏𝑚

𝑎𝑚1𝑆2 + 𝑎𝑚2𝑆 + 𝑎𝑚3

 (48) 

where: 

𝑆 =  
𝑑

𝑑𝑡
 . 

 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑚3, 𝑏𝑚: the model reference transfer function constant.  

Suppose that the transfer function of the system is  

𝑦

𝑢
=

𝑏

𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3

 (49) 

where 𝑎1, 𝑎2, 𝑎3, 𝑏: system transfer function coefficient.  

From Equation (25) the Diophantine equation is as follows. 

𝐴𝑍 + 𝐵𝑋 = 𝐴0𝐴𝑚 (50) 

Where: 

A = 𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3,  𝐴𝑚 = 𝑎𝑚1𝑆2 + 𝑎𝑚2𝑆 + 𝑎𝑚3  

A0: Adjustment factor. 

deg ( 𝑋) = deg (𝐴) − 1 = 2 − 1 = 1  

where deg is the polynomial degree. 

𝑋 = 𝑥0 + 𝑥1𝑆 (51) 

deg(𝑍) = deg(𝑋)     ⟹       𝑍 = 𝑧0 + 𝑧1𝑆  

deg(𝐴0) = deg(𝐴) + deg(𝑅) − deg(𝐴𝑚) = 2 + 1 − 2 = 1  

A0 = S (52) 

system 
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Likewise,                                                                                        T = S (53) 

Substituting Equations (27, 28 and 29) into Equation (26) will result Equation (30). 

(𝑧0 + 𝑧1𝑆)𝑢 = 𝑆𝑢𝑐 − (𝑥1𝑆 + 𝑥0)𝑦 (54) 

𝑢 =
𝑆

𝑍(𝑆)
𝑢𝑐 −

𝑋(𝑆)

𝑍(𝑆)
𝑦 (55) 

From Equation (12) and assume 𝑣(𝑡) = 0 

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3) = 𝑏𝑢 (56) 

Substituting (32) into (31) will result in (33) 

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑦 = 𝑏 (
𝑇(𝑆)

𝑍(𝑆)
𝑢𝑐 −

𝑋(𝑆)

𝑍(𝑆)
𝑦) 

⟹ ((𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3) + 𝑏
𝑋(𝑆)

𝑍(𝑆)
) 𝑦 = 𝑏

𝑇(𝑆)

𝑍(𝑆)
𝑢𝑐 

(57) 

Rewritten (33) to become (34) 

𝑦 =
𝑏𝑇(𝑆)

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑆) + 𝑏𝑆(𝑆)
𝑢𝑐 (58) 

𝐸 = 𝑦 − 𝑦𝑚     

(59) 

Substituting Equations (58, 59) into Equation (57) will result in (60) 

𝐸 = (
𝑏𝑇(𝑆)

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑆) + 𝑏𝑋(𝑆)
−

𝑏𝑚

𝑎𝑚1𝑆2 + 𝑎𝑚2𝑆 + 𝑎𝑚3

) 𝑢𝑐 (60) 

 

𝜕𝐸

𝜕𝑇
=

𝑏

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑆) + 𝑏𝑋(𝑆)
𝑢𝑐 (61) 

 

𝜕𝐸

 𝜕𝑆
=

−𝑏2𝑇(𝑆)

((𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑆) + 𝑏𝑋(𝑆))
2 𝑢𝑐 (62) 

By using Fuzzy control equations  

𝜕𝑇

𝜕𝑡
= −𝛾𝐸

𝑏

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑆) + 𝑏𝑆(𝑆)
𝑢𝑐  

 

𝜕𝑇

𝑡
= −𝛾′𝐸

1

(𝑎1𝑆2 + 𝑎2𝑆 + 𝑎3)𝑍(𝑃) + 𝑏𝑋(𝑆)
𝑢𝑐 (63) 

 

Where 

𝛾′ = 𝑏𝛾 
(64) 

 

Similarly 

𝜕𝑋

𝜕𝑡
= −𝛾′𝐸

1

𝑎𝑚1𝑆2 + 𝑎𝑚2𝑆 + 𝑎𝑚3

𝑦 
(65) 

 

𝐵𝑚

𝐴𝑚

=
𝜔𝑛

2

𝑆2 + 2𝜉𝜔𝑛𝑆 + 𝜔𝑛
2
 (66) 

 

where: 

𝜉 (𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜) = 1. 

𝜔𝑛 (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 500 rad/sec.           (Designated by expert) 

Of considerations taken during the design has to be 𝜔𝑛 of a reference model is greater than 𝜔𝑛 of a system transfer function.  

3.5 MRAC with PID Compensator  

The disadvantages of MRAC may reason high overreaching and high settling time. This difficulty can be assuaged by embracing a PID 

compensator as presented in Figure 10. 
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Fig.  10 - Block illustration of MRAC with PID compensator. 

The input of the PID compensator is the error between reference speed and actual speed. In this instance, the controller action relies on both the 

MRAC and the PID compensator as publicized in equation (43). This technique considers a new technique in this thesis. 

𝑢 = 𝑢𝑀𝑅𝐴𝐶 + 𝑢𝑃𝐼𝐷 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 (67) 

There are numerous procedures to select the PID compensator parameters such as trial and error and the Ziegler-Nichols rule. In this paper, the 

parameters of the PID compensator are tuned to give us the best performance.  

The parameters of MRAC with PID compensator are shown in table 5 below. 

Table 5 - Parameters of MRAC with PID Compensator 

PID 

Parameters 

Kp Ki Kd 

1300 0.001 70 

3.6 Fuzzy Logic PD+I Controller 

The over-all construction of fuzzy logic control is denoted in Figure 11 and includes three main components [31]. 

 

Fig. 11 - Fuzzy logic control construction [57]. 

Structure of the Fuzzy PD + I controller as shown in figure 12. 
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Fig. 12 - Structure of Fuzzy PD+I controller. 

To condense, Table 6 shows for each of the four controller’s kinds the connections between the PID tuning parameters and fuzzy gain factors 

useable for fuzzy linear controllers performing similar a summation. 

Table 6 - Parameters of MRAC with PID Compensator 

 

3.6.1 Fuzzification   
 

This transforms the data input into appropriate language values. There are two inputs to the controller, as depicted in Figure 13: error (shown in figure 13 

a) and rate change of the error signals (shown in figure 13 b). The linguistic labels for the system under consideration are "Negative Big, Negative small, 

Zero, Positive small, Positive Big," and the universe of discourse for both e(t) and e(t) may be normalised from [-1,1]. The rules bases refer to these as "NB, 

NS, ZE, PS, PB." The outputs' linguistic designations are NB, NS, ZE, PS, and PB, and these labels are used in the rules bases as well [67]. The memberships 

of the output fuzzy logic control are publicized in Figure 14. 

 

 

 

Fig. 13 -  the input membership for fuzzy PD+I control. 
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Fig. 14 - The output membership for fuzzy PD+I control.  

3.6.2 Rule Base 
A judgement-creation logic simulates a human decision procedure. The rule base is simplified in Tables 7. The input e has 5 language labels and 

∆e has 5 linguistic labels. Then we have 5×5 = 25 rule base.  

Table 7 - The Rule base. 

 

3.6.3  Defuzzification 

Defuzzification's goal is to turn a fuzzy output into a crisp value that may be used as a non-fuzzy control action. There are numerous approaches 

to defuzzification. The center of gravity, as shown in equation (68) [69], has been used as the defuzzification strategy in this thesis. 

𝑢(𝑛𝑇) =
∑ 𝑢(𝑢𝑗)𝑢𝑗

𝑛
𝑗=1

∑ 𝑢(𝑢𝑗)𝑛
𝑗=1

 (68) 
 

Where u(uj) is the element's membership grade, u(nT) is the fuzzy control output, and n is the total number of discrete values in the discourse universe. The 

limitation on how much the PID controller settings can be altered is a downside of self-tuning fuzzy PID control. To ensure good performance for the 

Pantograph mechanism in this thesis, we shall use adaptive control. Table 8. lists below the parameters for the fuzzy PD + I controller. 

Table 8 - Fuzzy Parameters 

Fuzzy PD + I 

Parameters 

GE GCE GIE GU 

35 2 5 6 

 

4. Results and Discussion: 

This section displays a comparative study of the proposed control techniques executed on the pantograph mechanism. 

The required path for the end-effector is a rectangle which is shown in figure 15 the profile has four corners as follows: home position (-0.1 , 

0.373) , starter point (-0.05 , 0.36) , first corner (-0.05 , 0.35) , second corner (-0.14 , 0.35) , third corner (-0.14 , 0.25) , fourth corner (-0.05 , 0.25). The 

corresponding X & Y coordinates are shown in figure 16 which are added to the model by using Signal Builder (MATLAB Simulink).  
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Fig. 15 -Require Coordinates. 

 

Fig.  16 - Corresponding X & Y coordinates. 

4.1 Trajectory Planning with No Load  

In the beginning, a comparative study between PID, FOPID, and NLPID will be implemented. The best one of them will be used to compare it 

with MRAC with PID compensator and Fuzzy PD+I control. 

4.1.1 Comparative Study between PIDs Family  

Figure 17 shows the dynamic response of θ1 and θ4 for each control technique applied on the pantograph model. It can be noted that the FOPID 

has a bad response because it has a high steady-state error, it reaches to the desired point tardy. The PID controllers suffer from steady-state error. The 

NLPID has a faster response compared to the FP-based FOPID moreover, it has a little small overshoot and undershoot. 

 

 

Fig.  17 - The position response of θ1 and θ4 through the PIDs Family control techniques. 

Figure 19 demonstrates the corresponding velocity responses of θ1 and θ4 respectively for control techniques. It is noted that the velocity of the 

PID controller has a poor response, where the rise time is very large as presented in previous figure 18. The FOPID control makes the joints accelerate at a 
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suitable time at each change of references angle, also at backward to decays until zero rad/sec. So, the FOPID has no overshoot and undershoot as figure 

18. On another side, the NLPID control has a high velocity at each new point, but its decay rapidly comparing to the FOPID controller. So, it reaches to the 

reference angle before the FOPID controller 

 

 
Fig. 18 -The velocity of both modeling output, velocity of θ1 and θ4 respectively, both as rad/s. 

Figure 19 illustrates the corresponding output torque of PID’s Family controllers. It is clear that the FOPID generates a high torque compared to 

the PID and NLPID controllers, with high velocity displayed in figure 19, despite that the settling time is very large, as displayed in figure 19. Moreover, 

the NLPID achieves a medium torque between PID and FOPID. So, it has the best performance. The PID controller has a small torque peak. 

 

 

Fig. 19 - The controller output (torque N.m) is shown for the first and second controllers respectively. 
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Figure 20 displays the trajectory planning of controllers. It is clear that the FP-based NLPID controller is more close to the reference trajectory 

with little overshoot at point A of the corners, it has a high accuracy compared to the FP-based FOPID and PID controller. FOPID does not reach to the 

desired specific points A and B. Also, it can be noted that high deviation for all controllers through the transition from horizontal line to vertical line due to 

the sharp corner. 

 

Fig. 20 - the trajectory planning of PIDs family control technics. 

Figure 21 displays the trajectory planning errors of each control technique. The PID control takes a long time to absorb the error. The FOPID has a high 

decay for error with no undershoot and overshoot which caused an inaccuracy in the pantograph end-effector. The NLPID has the smallest time to absorb 

the error and it is reduced to zero error before any other control techniques so, it has the best performance. Also, the mean square error value of the proposed 

control techniques has been demonstrated in table 9 and 10. 

 

 
Fig.  21 -The entering error to the controller is shown for the first controller and the second one respectively. 

A B 
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Table 9 demonstrates the performance of the pantograph by using the PID controller, NLPID, and FOPID controller for the designed angle at 

each controller (𝜃1 & 𝜃4 ) compared to actual.  

Table 10 demonstrates the performance of the pantograph by using the PID controller, NLPID, and FOPID controller through the trajectory 

planning path of the end-effector, which is presented as four corners, analyzed on X-axis and Y-axis to display the extent of their conformity with the design 

to be implemented. 

Table 9: Average of root mean square error of actual angles (𝜽𝟏 & 𝜽𝟒) at each controller compared to the desire in Degree. 

 PID FOPID NLPID 

Theta 1 (𝜽𝟏) 3.8 0.96 0.90 

Theta 4 (𝜽𝟒) 3.50 0.872 0.673 

Table 10: Average of root mean square error of actual coordinates (X & Y) at each controller compared to the desire in cm 

 PID FOPID NLPID 

X coordinates 0.39 0.27 0.039 

Y coordinates 1.93 0.309 0.117 

It is worth noting here that there is a clear difference between the value of the errors in the angles (𝜃1 & 𝜃4 ) and the coordinates of the points of 

the end-effector, the reason for this is the location of the controllers on the joints (angles 𝜃1 & 𝜃4 ).  

After evaluating the results presented previously, it was found that the preference for the nonlinear (NLPID) controller. It has the least 

error and low overshoot, and it is the fastest among others to reach the design. 

So, the NLPID controller will be used to compare it with advanced intelligent control techniques. The first proposed controller is the 

MRAC with PID Compensator, the second controller presents an intelligent control, where it uses the Fuzzy PD+I logic control techniques. All 

tests performed before will be applied again to investigate the best controller and improve the dynamic performance and accuracy of the 

pantograph. Also, the parameters for the proposed controllers will be obtained based on flower pollination 

4.1.2  A Comparative Study between NLPID, Fuzzy PD+I, and MRAC with PID Compensator  

Figure 22 shows the dynamic response of θ1 and θ4 respectively for each improved control techniques to the pantograph model. It can be noted 

the NLPID is the latest to catch up with the designed angle compared to the Fuzzy PD+I and MRAC with PID compensator and has a little overshoot. The 

Fuzzy PD+I controllers have very little overshot without undershoot. While MRAC with PID compensator controller has no overshoot response compared 

to the NLPID, and Fuzzy PD+I controllers, it resumed to the desired angle rapidly before other techniques. Accordingly, the best performance is the MRAC 

with PID compensator. 

 

Fig.  22 - The position response of θ1 & θ4 through NLPID, Fuzzy PD+I, & MRAC techniques. 
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Figure 23 demonstrates the corresponding velocity responses of θ1 and θ4 respectively for control techniques. It is obvious that the MRAC has 

the highest velocity response compared to the others, this velocity is the reason for the performance speed occurs in the dynamic response shown before in 

figure 23. NLPID and Fuzzy PD+I have lower velocity, which makes them lag beside MRAC with PID compensator, as shown in figure 23. The MRAC 

with PID compensator Controller has a higher velocity which makes it has a faster dynamic response with no disturbance shown in figure 22.  

 

 

Fig.  23 - The position response of θ1 and θ4 through NLPID, Fuzzy PD+I, and MRAC, Control. 

Figure 24 illustrates the corresponding output torque of controllers. It is obvious that the NLPID controller has a small torque peak, which makes 

it slow.  The Fuzzy PD+I has medium torque in a small period, which makes it have a little overshoot. While MRAC generates a higher torque compared to 

the NLPID and Fuzzy PD+I controllers, which is the real reason for the high velocity at an appropriate time, thus the occurrence of a high-speed response 

without overshoot. 

 

 

Fig.  24 -The controller output (torque N.m) is shown for the first and second controller respectively for NLPID ,Fuzzy PD+I, and MRAC with 

PID Compensator. 
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Figure 25 displays the controllers' trajectory planning for the end-effector. It is clear thus the proposed controllers NLPID and Fuzzy PD+I have 

an overshoot for 𝜃1 and 𝜃4 , will give high vibration at corners of trajectory profile. Where the MRAC Compensator with PID controller has no disturbance, 

while NLPID is highest and Fuzzy PD+I is lower. So, the MRAC with PID compensator controller has higher accuracy compared to other controllers. 

 Also, it can be noted that high deviation for all controllers through the transition from horizontal lines to vertical lines due to the sharp corners, 

but in MRAC with PID compensator has no disturbance in sharp corners. 

 

Fig.  25 - The trajectory planning of NLPID, Fuzzy PD+I, and MRAC with PID compensator control technics. 

Figure 26 displays the trajectory planning errors of three control techniques. In the beginning, the simulation controller errors are equal. It noted 

the error of each control is high at every new operating point. The performance of each control depends on the minimum time to reach zero error with the 

lowest overshoot and undershoot. The NLPID has the highest overshoot and undershoot. Fuzzy PD+I has a lower time than NLPID, but it is having a little 

overshoot and undershoot. The (MRAC) with PID compensator has a lower time to dampen the error compared to the other controllers without overshoot 

or undershoot. Also, the mean square error value of the proposed control techniques has been demonstrated in tables 11 and 12 below. 

 

Fig.  26 - The entering error to the controller is shown for the first controller and the second one respectively. 

Table 11 demonstrates the performance of the pantograph by using the NLPID, Adaptive Control with PID Compensator, and Fuzzy PD+I control 

for the designed angle at each controller (𝜃1 & 𝜃4 ) compared to actual.  

Table 12 demonstrates the performance of the pantograph by using the NLPID, MARC with PID Compensator, and Fuzzy PD+I control through 

the trajectory planning path at the end-effector, which is presented as four corners, analyzed to X-axis and Y-axis to display the extent of their conformity 

with the design to be implemented. 

20

Future Engineering Journal, Vol. 3, Iss. 2 [], Art. 2

https://digitalcommons.aaru.edu.jo/fej/vol3/iss2/2



Future Engineering Journal  2 (2022)  2314-7237                                                                                                                   21 

 

Table 11: Average root mean square error of Actual angles (𝜽𝟏 & 𝜽𝟒) at each controller compared to the desired. 

 
MRAC with PID 

compensator 
NLPID FUZZY PD+I 

Theta 1 (𝜽𝟏) 0.06° 0.90° 0.17° 

Theta 4 (𝜽𝟒) 0.047° 0.673° 0.15° 

Table 12: Average root mean square error of actual coordinates (X & Y) at each controller compared to the desired. 

 
MRAC with PID 

Compensator 
NLPID FUZZY PD+I 

X coordinates 0.010 cm 0.039 cm 0.011 cm 

Y coordinates 0.014 cm 0.117 cm 0.13 cm 

It is worth noting here that there is a clear difference between the percentage of the errors in the angles (𝜃1 & 𝜃4 ) and the coordinates of the 

points of the end-effector, the reason for this is the location of the controllers on the joints (angles 𝜃1 & 𝜃4 ). 

After evaluating the results presented previously, it was found that the preference for the nonlinear (MRAC) with PID Compensator 

controller. It has the least error and no overshoot and undershoot, and it is the fastest among others to reach the design, obtained based on flower 

pollination algorithm. 

4.2 Trajectory Planning with Load  

After testing all proposed controllers, obvious that the best performance controllers are NLPID, Fuzzy PD+I, and MRAC. So, the trajectory 

planning will be applied with load to ensure the controllers unsensitivity to disturbance. 

4.2.1 A Comparative Study between NLPID, MRAC & Fuzzy PD+I Control  

Figure 27 shows the dynamic response of θ1 and θ4 respectively for each improved control techniques to the pantograph model under load equal 

3N in X axis and 3N in Y axis. 

It can be noted that the performance of each control techniques under the load is a same as no load which is presented in figure 18 above. 

 

 

Fig.  27 - Position response of θ1 & θ4 under load, through NLPID, Fuzzy PD+I, and MRAC.  
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4.2.2 A Comparative Study between NLPID, MRAC & Fuzzy PD+I Control for triangle profile  

Figure 28 displays the controllers’ trajectory planning for end-effector under load, which is equal 3N at X axis and 3N at Y axis. It is clear thus 

the proposed controllers NLPID, Fuzzy PD+I, and MRAC with PID compensator have a same performance as no load. 

The MRAC compensator with PID controller has no disturbance, it has the highest accuracy compared to other controllers. 

 

 

Fig.  28 -: The trajectory planning of NLPID, Fuzzy PD+I, and MRAC with PID compensator control technics. 

5 Conclusion 

In this work, a verified mathematical model for Pantograph Robot Mechanism had been developed where the boundary conditions are taken into account. 

Also, an advanced intelligent control techniques had been implemented to increase the performance of the Pantograph Robot Mechanism. The first control 

technique is the famous PID controller which has a simple structure but it considers a linear controller. So, it suffers from a poor performance for nonlinear 

systems as occurred in the Pantograph Robot Mechanism. The second control technique is fractional order PID controller which considers the other face of 

PID control in a nonlinear form. It achieved a satisfied response when it applied on the Pantograph Robot Mechanism compared to the PID controller. The 

third controller is a new enhanced nonlinear PID (NPID) controller which has a hybrid gain consists of linear and nonlinear parts. A comparative study had 

been implemented to find the best performance among the PID’s family controllers. The NPID had achieved the best performance compared to the PID and 

FOPID controllers. The fourth controller is the model reference adaptive with PID compensator which can absorb the nonlinearity and the system 

disturbances as demonstrated in the results. The fifth controller is an intelligent fuzzy PD+I controller where the fuzzy logic system has the flexibility to 

manage the sudden disturbances fastly and nonlinear behavior as illustrated in the results. Moreover, the proposed control techniques were designed and 

optimized by Flower Pollination (FP) algorithm optimization. A rectangular trajectory was selected to be a position reference of the end effector of the 

pantograph robot, which gives a more accurate study because it shows performance during sharp edges. This task was done using the proposed controllers 

to investigate the performance. The results show that the Fuzzy PD+I control has a better performance compared to the PID, FOPID, NLPID, and MRAC 

with PID Compensator controllers. 
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