Evaluation of implant stability simultaneously placed with sinus lift augmented with putty versus powder form of demineralized bone matrix in atrophied posterior maxilla

Lobna Abdel Aziz Aly a, *, Nelly I Hammouda b

a Faculty of Dentistry, Future University, Cairo, Egypt
b Faculty of Dentistry, Mansoura University, Cairo, Egypt

Article history:
Received 28 November 2016
Received in revised form
21 December 2016
Accepted 22 December 2016
Available online 30 December 2016

Keywords:
Implant stability
Sinus lift
Putty and powder DBM

1. Introduction

Recently, clinicians have recommended augmenting the maxillary sinus to facilitate placement of endosseous implants in the severely atrophic posterior maxilla [1]. There are various techniques for sinus lift such as lateral window, crestal approach, summers osteotomy, bone aided augmentation. The most popular technique for sinus lift is found to be lateral window with autogenous corticocancellous grafts. The most effective standardized grafting material is autogenous bone grafts due to osteoinductive and osteoconductive potential [2–4]. Various alternative materials have also been used however compromising the osteoinductive potential, such as allografts, xenografts and alloplastic grafts that used for bone substitution to make implantation more predictable and successful clinically [4–7].

Over the years demineralized bone matrix (DBM) has been frequently used for bone grafting. DBM contains active proteins such as bone morphogenetic protein (BMP), transforming growth factor-beta (TGF-β), osteogenin, insulin-like growth factor, and...
fibroblast growth factor, which are mostly regarded as members of the TGF-β superfamily [8]. In recent years, several studies have demonstrated the success of DBM for reconstructive maxillofacial surgery, and sinus augmentation is used in various graft sizes and forms [9–11].

The types of DBM based on particulate size, survival of implants and operation time have been compared, resulting in no significant difference in terms of implant success during the loading time, but the putty form was found to be more successful than the powder form for the ease of application and operation time. Also, optimal bone induction was found with DBM particle sizes of 250–500 μm. On the other hand, marginal bone resorption and implant success between the putty and powder forms has not been evaluated [10,12].

Implant stability can be defined as the absence of clinical mobility, which considered to be the most important prerequisite for success of osseointegrated dental implants. Implant success is influenced by primary stability factors such as implant diameter, shape, thread forms and pitch values, and adequate bone height. While the secondary stability factors included the host environment where bone density plays a vital role in their placement and successful osseointegration [13].

Primary stability can be measured by different methods [14]: “biomechanical tests, including insertion and disinsertion torque measurements, and non-invasive techniques such as resonance frequency analysis (RFA)”. RFA offers a clinical measure for implant stability and presumed osseointegration and make it possible to measure implant stability without damaging the bone-implant junction [15]. Most studies have focused on implant stability in augmented posterior regions of maxilla after osseointegration [15,16].

The aim of this study was to compare the dental implant stability and the marginal bone resorption around dental implants placed simultaneously placed with sinus lifting using piezosurgery and the efficacy of augmentation with putty and powder forms of DBM.

2. Patients and methods

Twelve patients referred to private practice in Cairo, Egypt, for bilateral maxillary sinus lifting between 2013 and 2016. The study was conducted in accordance with the moral, ethical, regulatory, and scientific principles governing clinical research as set out in the Declaration of Helsinki (2013). All patients were fully informed about the treatment prior to the surgical procedure and provided written consent for the procedure. All procedures and materials were approved by the local Ethics Committee of Future University, Egypt.

A preoperative computer tomography scan was used to quantify the amount of available bone at individual implant sites under the maxillary sinus to decide whether the patient could be included in the study. Before the procedure, the anatomy and pathology of the sinuses were evaluated using panoramic view (Fig. 1). The width of the alveolar bone ridges was considered a noninterfering parameter because the width was always sufficient for a secure implantation. According to Cawood-Hawell’s classification [17], Class V and VI cases were included in the study. Patients who had residual bone height less than 2 mm were excluded. The other exclusion criteria were sinus pathologies, systemic diseases, smoking habits, alcohol consumption and poor oral hygiene. All patients underwent bilateral sinus surgery and the residual bone height of the edentulous sites for implant placement was measured, a 4–6 mm of the bone level was required in the alveolar ridge for primary stability, with sufficient inter-arch space for the prosthesis.

Treated lateral window open sinus lifts performed bilaterally on 12 partially or completely edentate patients (8 males and 4 females, aged 49–68 years) with a piezoelectric surgery unit. Patients were treated under local anesthesia using articaine 4% with 1:100,000 epinephrine. After elevation of a full-thickness flap, all cases had their lateral antrostomies created by outlining an island of bone or completely removing the entire lateral aspect of the window using the piezoelectric unit according to the manufacturer's instructions. The elevation of the Schneiderian membrane was accomplished by initially exposing and mobilizing the membrane using the piezoelectric hand piece followed by hand instrumentation to further elevate the membrane along the medial wall of the sinus (Fig. 1).

A total of 24 sinus lifts were performed and 64 tapered dental implants (Implant Microdent System S.L-Comapedrosa, Barcelona, Spain) measuring 3.4–5.0 mm in width and 12–14 mm in length were placed concurrently with sinus augmentation to achieve primary stability. In all patients, the left side was grafted with DBM putty form (DynaGraft Keystone Dental, Burlington, Massachusetts) and the right side was grafted with DBM powder form (Pacific Coast Tissue Bank, Los Angeles, California) after a minimum of 30 min rehydration process in 0.9% Saline solution. The lateral wall of the sinus was then covered with a membrane (Bio-Gide, Geistlich Pharma AG) (Fig. 2).

After the graft had been placed, the flap was re-positioned and sutured with 3/0 silk suture. Antibiotic (Augmentin 625 mg, Glaxo Smith Kline, Egypt) and analgesic (BRUFEN 600 (Ibuprofen 600 mg)) therapy was administered 1 h before surgery and for 5 days following the surgery. Chlorohexidine gluconate 0.12% mouthwash was used twice daily for 2 weeks. The patients were advised to have a soft diet and to avoid sneezing till suture removal.

None of the implants were loaded before a minimum of 6 months from the date of first surgery. Implants were manually tested for stability when unscrewing the cover screws and impressions were taken with pick-up impression copings using a polyether material (Impregum 3M/ESPE, Neuss, Germany) with customised resin impression trays. The vertical dimension as registered and models were made with class 4 precision plaster and mounted in standard articulators. Implant stability as manually checked by tightening the abutment screws with a 20 Ncm torque, and definitive restorations were delivered.

2.1. Clinical and radiographic evaluation

One dentist not involved in the treatment of the patients, made all clinical assessments without knowing group allocation, therefore outcome assessor was blind. Implant success was evaluated based on the clinical and radiologic criteria [18,19] that included: absence of mobility; absence of persistent subjective complaints (pain, foreign body sensation and/or dysesthesia); absence of a continuous radiolucency around the implant; and marginal bone level changes in the first year implant insertion less than 1–1.5 mm and the ongoing annual bone loss less than 0.2 mm. Marginal bone loss around mesial and distal side of the implants were measured (in mm) at implant placement, at the time of loading, after 12 and 18 months of placement. For measurements purposes, 2 visible and easily localized reference points were set at the junction point between the implant and prosthetic restoration. A straight line was traced joining the 2 reference points. The marginal bone resorption was determined by measuring between this line and the highest crestal bone point around the implant.

The implant stability quotient (ISQ) of each implant was measured using resonance frequency analysis (an Ostell device (Integration Diagnostic AB, Svedalen, Sweden)) on the day of surgery (baseline, ISQ0) and monitored at 14 days (ISQ1), 30days (ISQ2) and 60 days (ISQ3) post-implantation in each group.
Fig. 1. A) An OPG view of a patient with deficient vertical bone height. B) Preoperative clinical picture of completely edentulous alveolar ridge. C) Elevation of a full-thickness flap that was initiated slightly palatal to the crest of the ridge. D) Bony cut was done to outline the window to be opened on the lateral wall of the maxillary sinus. E) Partially raised lining was then lifted to a greater extent using the BS4 & BS5 tips. F) The bony window was pushed and rotated horizontally along with membrane elevation and a Bio-Gide membrane is inserted under the elevated sinus membrane. G) Implant was placed in the prepared bed.
2.2. Statistical evaluation

Statistical analyses were performed with SPSS 11.5. Two way repeated measures analysis of variance (ANOVA) and Fisher’s LSD tests were used for between and within group comparisons in different time points. A p value less than 0.05 were considered significant.

3. Results

Of the 12 patients, 8 (66.6%) were males and 4 (33.3%) were females. The overall age range of the patients was 49–68 years. All implants with upper prosthesis had a 100% survival rate at the point of final observation. All implants osteointegrated successfully in both grafted sides and showed successful results. Six months after surgery, all implants were clinically stable during abutment tightening. Patients’ and interventions’ characteristics are summarized in (Table 1).

Radiographic bone formation was evident in all 12 patients, and all implants were stable after 18 months of placement. The newly formed sinus floor was smooth, showing that there was no perforated area. No change of membrane thickness was seen. The graft area was clearly visible in the radiograph and could be distinguished from the existing alveolar bone. The average alveolar ridge height was 15.6 ± 2.5 mm 6 months postoperatively.

3.1. Peri-implant marginal bone level changes

Means bone levels up to 18 months post-placement are presented in Table 2. There was no statistically significant difference between the 2 groups for peri-implant bone level changes at loading (P = 0.83) and 18 months after placement (P = 0.56) (Table 3). Both groups gradually lost marginal peri-implant bone at loading (P < 0.0001) and at 18 months after placement (P < 0.001) (Table 3). 18 months after placement, patients of the putty group lost an average of 1.01 mm peri-implant bone versus 0.93 mm of the powder group (Table 3).

The mean ISQ value in both groups is shown in (Fig. 3). The difference between ISQ values in both groups was only significant at the baseline (p = 0.023). The correlations between the ISQ0, ISQ1, ISQ2 and ISQ3 values in each group were evaluated. In the putty DBM group, correlations between ISQ values were significant between ISQ0 and ISQ1 (r = 0.690, p = 0.006), ISQ1 and ISQ3 (r = 0.569, p = 0.034) and ISQ2 and ISQ3 (r = 0.540, p = 0.046). In the powder DBM group, the correlation was significant only between ISQ0 and ISQ1 (r = 0.716, p = 0.002).

4. Discussion

The sinus lift procedure with bone augmentation is now a well accepted technique for rehabilitation of the posterior atrophic maxilla with implant placement. Simplicity, less invasive, complication-free technique is the most important rules in the success of grafting procedure[20]. Shrinkage and ossification of the blood clot around titanium implants placed in the maxillary sinus and the formation of a new sinus floor have been observed in several studies. Nonetheless, irrespective of the bone-forming site, bone formation and healing require the recruitment, migration and differentiation of osteogenic cells. The lifting of the periosteum may have initiated a resorption process, exposure of the bone marrow and access of stem cells to the sinus cavity, a sequence of events that has been described in animal studies[21,22].

The lateral window sinus lift is the traditional treatment option prior to implant placement when < 5 mm of residual bone remains between the alveolar crest and the maxillary sinus[23,24]. This approach using a “window” in the lateral bony wall of the maxillary sinus to gain access to the underlying Schneiderian membrane [25]. Although implant survival rates associated with this procedure routinely exceed 90% [26,27], the lateral window

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Patients’ and interventions’ characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putty DBM group</td>
<td>Powder DBM group</td>
</tr>
<tr>
<td>Number of lifted sinuses</td>
<td>12</td>
</tr>
<tr>
<td>Age at insertion (range)</td>
<td>49-68 years</td>
</tr>
<tr>
<td>Total number of implants placed</td>
<td>36</td>
</tr>
<tr>
<td>Implants inserted with a torque up to 30 Ncm</td>
<td>23</td>
</tr>
<tr>
<td>Implant inserted with a torque >30 Ncm</td>
<td>13</td>
</tr>
<tr>
<td>Sites characterised by soft bone quality</td>
<td>23</td>
</tr>
<tr>
<td>Sites characterised by medium bone quality</td>
<td>13</td>
</tr>
<tr>
<td>Sites characterised by hard bone quality</td>
<td>0</td>
</tr>
</tbody>
</table>
The present study compared the implant stability and marginal bone levels of dental implants immediately placed into grafted maxillary sinus with powder and putty forms of DBM. There have been studies comparing the types of DBM based on particulate size, survival of implants and operation time [8,10]. In these studies, there were no significant differences in terms of implant success during the loading time, but on the other hand the putty form was found to be more successful than the powder form for the ease of application and operation time. In the present study, DynaGraft was used in one side of the patients as a putty form and the other side as powder form for sinus graft material. DynaGraft is a unique graft substitute composed of a high content of human DBM, and is designed to promote natural bone formation [10], the findings of this study, were no significant differences between both putty and powder DBM groups after 18 months from placement as regard marginal bone levels of dental implants.

The average residual bone in this study was 4–6 mm and the simultaneous grafting was performed. As Fugazzotto [34] reported that when greater than 4 mm of bone remains coronal to the sinus, a sinus grafting with implant placement could be performed simultaneously. The one-step procedure offers the advantages of reducing the number of surgical procedures and the time needed. Tarnow et al. [35] reported that the implant with membrane showed a higher survival rate and more vital bone than the implant without a membrane. The membrane in this study was used to give more stability to the graft and to prevent the migration of the graft particles. It is well known that bone can be formed in secluded spaces on a bone surface by using various types of barrier membranes or other space-making devices.

Delayed implant placement resulted in a mean marginal bone loss three times greater than that of simultaneous implant positioning [36,37]. Primary implant stability and graft is related to adequate bone height. Delayed implant placement is not recommended for badly destructed alveolar ridge with no proper implant base [38]. In the current study, all implants were performed with simultaneous sinus lifting and demonstrated acceptable results in line with these studies as regard the mean marginal bone loss. A systematic review about simultaneous sinus lifting and implant placement reported a survival rate of 90.1% after 3 years of follow-up [39]. The benefits for sinus lifting and simultaneous implant placement are the following: reduced number of surgeries, reduced treatment time, and lateral window access to the maxillary sinus during implant placement.

Obviously, one major goal in implant dentistry is to avoid implant failure. Although the failure rate of implants used in two-stage procedures is rather low, it is likely that higher failure rates are associated with immediate loaded or grafted implants. Because primary stability is important in achieving osseointegration [36], selecting implants that maximize primary stability is essential when bone is limited in the maxillary sinus. Fixure designs (e.g., implant taper) can affect the initial stability of the implant [40]. In this study, tapered implants were used and had high success rates as they increase the compression of bone and primary stability when placed into a conventional parallel osteotomy [41].

Degidi et al., in 2009 evaluated the ISQ values at 6 and 12
months from the implant insertion in sinus grafted and non-grafted sites. Sites treated with open sinus lift could offer good long-term stability. However, after 6 and 12 months, the geometric characteristics of the implant were no longer important to obtain high RFA values, and the bone implant contact was comparable [16]. Thus, in the present study, implant stability was measured at four intervals for each implant; namely, immediately after placement as the primary stability, day 14 as the time for the newly formed woven bone around the implant, day 30 as the time when the woven bone lines most parts of the implant surface and the start of the remodeling phase, and finally day 60 as the time at which the implant surface is lined with lamellar bone as accepted by Lozada and colleagues and Vercellotti in their series [42,43]. There was significant difference between ISQ values in both groups in the current study at the baseline, the difference had disappeared after the first month, and this could be explained by the occurrence of osseointegration.

5. Conclusions

In conclusion, a lateral approach to sinus elevation using piezoeurgery technique was an effective mean to achieve sinus elevation with minimal intraoperative complications. Both putty and powder forms of DBM showed no significant difference as regard implant stability and also had no significant difference at marginal bone loss around dental implants and survival rates according to long-term follow up. DBM is considered as a good alternative graft material for augmentation of lifted sinuses simultaneously with implant placement in atrophic posterior maxilla.

Disclosure

There was no financial assistance from any source for this study.

Contribution of author

Aly L: Concept/Design, surgical procedure, Data collection, Data analysis/interpretation, writing article. Critical revision of article.

Hammouda N: Surgical procedure, data collection, Data analysis/interpretation.

Conflict of interest

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

References

