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Abstract: Finite element simulation of a 3-D information, despite having enormous significance and applications, could not get its
due. Because of the complexity in the formulation of the basis functions, this topic is not much researched. In this paper, we propose
a simple formulation of the Wachspress coordinates over a 3-D domain, where each node is considered to be of order 3(i.e. 3 planes
do intersect at each node). The concept of barycentric coordinates for a polyhedron was proposed by Wachspress(1975), but being
dependent on the Exterior Triple Points (ETPs), the computation of denominator function (adjoint) was quite intricate. Inspired by the
simple recursive relation proposed by Dasgupta (2003), and with the help of a property which is being explored in this paper that,”for
a polyhedron, wedge functions corresponding to the consecutive nodes which are linear on the common face, attain the same value
at the mid point of the edge joining them”, a simple recursive relation has been derived in this paper. The entire analysis has been
experimented over the convex hexahedron.

Keywords: GADJ, Polyhedronal discretization, Wedge functions, Adjoint, Approximation, Wachspress’ coordinates.

1 Introduction

The usual process employed in the computer aided
patchwork approximation is to obtain a patch locally on
one member of the discretized domain and since
C0-continuity holds globally by construction, these
patches are combined together to yield a global
approximation over the entire domain. This method of
subdividing the domain is widely known as the Finite
Element Method. The use of finite element method
algorithm in the field of computer graphics and geometric
modeling got enhanced with the use of barycentric
coordinates [1,2,3,4]. Barycentric coordinates initiated
by Möbius [5], were the coordinates capable of
representing any point within an m simplex in an n
dimensional Euclidean space(m ≤ n + 1) as a convex
combination of its vertices [6,7,8]. Barycentric
coordinates have a wide range of applications, its
simplicity in interpolation makes it a very useful tool for
interpolation. The shading methods like Gauraud shading
method, Phong’s shading methods, generalized Phong
shading method etc., are some good applications of
barycentric coordinates. There are several other fields of

engineering and mathematical physics where the
barycentric coordinates have a special importance.

Inspired by the barycentric coordinates Kalman [9]
proposed the generalized barycentric coordinates in 1961.
The following theorem due to Kalman plays a key role in
the field of finite element method:

Theorem 1. Let s0, s1,...,sm be points in Rn and let
S = H(s0, s1, ..., sm). Then there exist non-negative
real-valued continuous functions λ0, λ1,..., λm on S with
λ0 a convex function such that, for each x ∈ S,∑m
i=0 λi(x)si = x and

∑m
i=0 λi(x) = 1.

(Here H(s0, s1, ..., sm) is the smallest convex set
containing {s0, s1, ..., sm}, also known as convex hull of
the set {s0, s1, ..., sm}.) At that time it was just a concept
of pure mathematics and its applications were limited.

The above theorem steerage to identify the following
conditions which are mandatory for the generalized
barycentric coordinated {Wi}ni=1 to obey:

•
∑n
i=1Wi = 1.

• Wi attains the value 1 at the ith node 0 on every other
node.
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•
∑n
i=1 xWi = ∀x belonging to the considered

element.
• Wi ∈ C∞.
• Wi is linear on the sides adjacent to i.

Wachspress [10], initiated the concept of rational
basis functions over the polygons. These basis
functions(Wachspress coordinates) were the first [6]
known generalized barycentric coordinates for the
polygonal discretization of the domain. Later many
generalized barycentric coordinates, came into existence
[11,12,13] even then the Wachspress coordinates remain
unbeatable [11,6,14,15] due to their efficient execution to
obtain favorable results.

The use of 3D elements in the field of computer
graphics, grew rapidly in the last two decades [1,16,17].
Due to its applications in computer animation for movies
[1], in medical field for surgery simulation [17], crack
recognition [18], predicting crack initiation [19,20] in
civil and mechanical engineering. Wachspress [21]
proposed the construction of generalized barycentric
coordinates for 3D elements by using an interesting
algebraic geometry property of the element to compute
the adjoint for the construction of wedge functions. Some
other coordinates, have also been proposed, but either the
study was restricted to some simple elements like
tetrahedron or hexahedron [1,16] or [17]they failed to
achieve the versatility of the Wachspress coordinates.

Dasgupta [22], proposed a recursive relation for the
computation of the Wachspress coordinates. In the
technique proposed by Dasgupta, one could compute the
adjoint for the Wachspress coordinates for a convex
polygon by simply substituting the Cartesian coordinates
of the nodes in a recursive formula, and obtain the
adjoint(denominator) function.

In the present work, a method for the computation of
Wachspress coordinates for 3D domain has been
proposed. Inheriting by the technique of Dasgupta, a
simple recursive relation has been derived with the help
of a property, that “for a polyhedron, wedge functions
corresponding to the consecutive nodes which are linear
on the common face, attain the same value at the mid
point of the edge joining them”, and this property has also
been explored in this paper. This recursive relation
contains two(ki, ki+1(say)) consecutive unknown
normalizing constants along with the ratio of two
polynomials evaluated at the mid point of the common
edge. Hence, by setting the value 1 for k1, the remaining
k′js have been computed exactly which in turn is used to
get the value of adjoint for the wedge function.

It is quite interesting to note that the technique
explored in this paper covers all shapes of convex
polyhedron and computes appropriate adjoint function for
the wedge construction.

In support of the technique described in this paper an
adjoint for linear approximation over the hexahedron has
been studied and discussed in detail.

2 Setup and Formulation

Let Ω ⊆ R3, be the polyhedral discretization of the
domain. An element Pm ∈ Ω, is a geometric shape with
m faces, 2(m-2) vertices and 3(m-2) edges [21] where
each face is an n sided polygon contained in a plane
F j = 0. Hence associated with each vertex of Pm there is
a wedge function Wi =

Ni

D , (i = 1, ..., 2(m − 2)), where
Ni is a tri-variate polynomial of degree (m-3) and D is
also a tri-variate polynomial of degree (m-4), in order to
achieve degree one approximation. These W ′is are
defined in accordance with the following properties:

a)There is one node at each vertex of the
polyhedron(throughout this work, the ith node is
considered to have the Cartesian coordinates
(xi, yi, zi))(cf. [21]). For each node there is an
associated wedge within each polyhedron containing
the node.

b)Wedge Wi(x, y, z) associated with node i is
normalized to unity at i.

c)Wedge Wi(x, y, z) is of degree one on faces adjacent
to i.

d)Wedge Wi(x, y, z) vanishes on all nodes j(6= i).
e)The wedges associated with Pm form a basis for

degree one approximation over it. For the polyhedron
Pm, there must be at least 2(m − 2) nodes. For these
to suffice, we must have:

2(m−2)∑
k=1

xiky
j
kz
ν
kWk = xiyjzν 0 ≤ i+ j + ν ≤ 1(1)

f)Each wedge function and all its derivatives are
continuous within the polyhedron for which the
wedge is a basis function.

3 Background

In the Wachspress method [23], for a well set convex
polyhedron of order m, the Wachspress coordinate for
degree one approximation associated with the ith node is

Wi(x, y, z) =
KiP

i
m−3(x, y, z)

Qm−4(x, y, z)
(2)

where P im−3 is polynomial of degree (m-3), which is the
product of all the linear forms of the faces of the polyhedra
which do-not contain the node i, Ki’s are the normalizing
constants andQm−4 is the unique polynomial representing
the curve passing through the Exterior Triple Points(ETPs)
[23]. It has been noted that the computation of ETPs is
quite lengthy and consequently the computation of adjoint
becomes tedious. In particular, if two opposite faces are
parallel then some of the ETPs lie on the absolute line and
the computation of adjoint is not possible by following the
technique of Wachspress [23].
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In order to make the process of constructing wedge
functions for linear approximation independent of
geometric properties of the element viz. EIPs, Dasgupta
[22], proposed an alternative approach to deal with the
adjoint as follows:∑

Wi = 1⇒ D =
∑

Ni

Instead of computing D directly, the aim is to compute∑
Ni [22].

4 Governing Result

Let i = ij,k,l be the nodes of the polyhedral element
Pm ∈ Ω under consideration, where
(i = 1, 2, · · · , 2(m − 2)), j, k, l ∈ Bm where Bm is a
block of integers {1, 2, ...,m} and F j is the jth face of
the considered polyhedral element. The notation i = ijkl

is devised to denote that the ith node is the intersection of
the faces F j , F k and F l, where each face F ν is the linear
form of the plane containing all the vertices of the
corresponding polygonal face of the polyhedron. Let ei
be the edge joining the vertices i and i+ 1.

The wedge function, corresponding to the node i is
defined as

Wi =
Ni
D

=

∏
ν 6=j,k,lKiF

ν

D
(3)

Theorem 2.Let ei be an edge of Pm, joining the vertices i
and i + 1 and m(i,i+1) be the mid point of ei. Let
Wi(x, y, z) and Wi+1(x, y, z) be the wedges for linear
approximation associated with the nodes i and i + 1
respectively then

Wi(x, y, z)|m(i,i+1)
=Wi+1(x, y, z)|m(i,i+1)

Proof.The restriction of the wedges Wi and Wi+1 along
the adjacent faces is a bivariate polynomial of degree one
and when restricted over ei, consequently the restrictions
of both Wi and Wi+1 is a univariate polynomial of degree
one. In view of, properties (b) and (d), Wi(x, y, z) attains
value 0 at the node i + 1 and 1 at the node i. Similarly,
Wi+1(x, y, z) attains value 1 at the node i+1 and 0 at the
node i. Thus, forms a rectangle R with vertices
i, i + 1, P,Q(see Fig.1) whose diagonals mutually bisect
at m′i,(i+1).

Let L be the perpendicular, dropped from m′(i,i+1), on
the edge ei and it is obvious that the foot of the
perpendicular is the point m(i,i+1) i.e. the mid point of ei
and hence, Wi(x, y, z) and Wi+1(x, y, z) attain the same
value at m(i,i+1)(cf. Fig1)

Fig. 1: Figure representing rectangle R.

Thus,

Wi(x, y, z)|m(i,i+1)
=Wi+1(x, y, z)|m(i,i+1)

5 Recurrence relation

In this section, a recurrence relation has been established
with the help of the Lemma 2, by which all the
normalizing constant Ki’s can be computed instantly if
the Cartesian coordinates of the vertices are known and
thus the adjoint can be found easily without indulging in
the complex geometry of the element.

To establish the recurrence relation we refer property
(e)(cf. section 2) with i = j = ν = 0, which gives

2(m−2)∑
i=1

Wi = 1 (4)

⇒
2(m−2)∑
i=1

Ni
D

= 1 (5)

⇒ D =

2(m−2)∑
i=1

Ni (6)

where Ni is the numerator of the wedge function Wi for
the linear approximation over Pm.

In view of Lemma 2, we know that

Wi(x, y, z)|m(i,i+1)
=Wi+1(x, y, z)|m(i,i+1)

(7)

Clearly, every pair of consecutive nodes have two faces in
common, let the common faces of i and (i+ 1) be F j and
F k. Let F l

i

be the face of the polyhedro containing i but
not i+1 and similarly F l

i+1

is the face containing (i+1)
but not i. Then,

Wi =
∏

ν 6=j,k,li

KiF
ν

D
(8)

Wi+1 =
∏

ν 6=j,k,li+1

Ki+1F
ν

D
(9)
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Substituting the values of Wi and Wi+1 in (7) the following recurrence relation is obtained

Ki+1 = Ki
F l

i+1

F li
|m(i,i+1)

(10)

Which is the desired recurrence relation.

6 Numerical Example

It is quite interesting to observe that, following the recurrence relation(10) the adjoint function for hexahedral element(P6

say) can be obtained conveniently without knowing ETPs. The elaborative study of this element has been presented
in this section by considering a specific choice of P6. Moreover, it has been verified that the restriction of the wedge
function associated with four vertices lying in the same plane, along the plane turns out to be the same as the Wachspress
coordinates for the corresponding quadrilateral element of R2.
Let the domain Ω ⊆ R3 be discretized using polyhedron of order 6, P6 = (1, 2, · · · , 8) ∈ Ω. The Cartesian coordinates
of the vertices are 1 = (0, 0, 0), 2 = (1, 0, 0), 3 = (2, 2, 0), 4 = (0, 1, 0), 5 = (0, 5

26 ,
21
26 ), 6 = ( 32 ,

1
4 ,

3
2 ), 7 = ( 54 , 0, 1)

and 8 = (0, 0, 12 )(cf. Fig. 2).

Fig. 2: Hexahedral element.
(i,j,k,l) denotes the face passing through the nodes i, j, k, l of P6, and are computed as follows:

F 1 ∼= (7, 8, 1, 2) = x

F 2 ∼= (1, 2, 3, 4) = z

F 3 ∼= (2, 3, 6, 7) = −12 + 12x− 6y − 3z

F 4 ∼= (5, 6, 7, 8) = −75− 60x− 240y + 150z

F 5 ∼= (3, 4, 5, 6) = 42 + 21x− 42y − 42z

F 6 ∼= (1, 2, 7, 8) = y

Using relation(6), the numerator Ni of wedge function corresponding to the ith node (i=1,2,3,4) of the considered
hexahedron are defined as

c© 2020 NSP
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N1 = K1

∏
ν 6=1,2,6

F ν , N2 = K2

∏
ν 6=2,3,6

F ν ,

N3 = K3

∏
ν 6=2,3,5

F ν , N4 = K4

∏
ν 6=1,2,5

F ν ,

N5 = K5

∏
ν 6=1,4,5

F ν , N6 = K6

∏
ν 6=3,4,5

F ν ,

N7 = K7

∏
ν 6=3,4,6

F ν , N8 = K8

∏
ν 6=1,4,6

F ν

On substituting K1 = 1 in relation(10), we obtain K2 = −6 K3 = − 756
65 , K4 = 168

65 , K5 = 63
52 , K6 = − 8505

1352 ,
K7 = − 405

416and K8 = 75
416 .

Thus, by (6) we obtain

D =
945(40 + 52x+ 16x2 + 148y + 80xy + 64y2 − 30z − 27xz + 12yz − 10z2)

43264
(11)

Referring relation(11), we are now set to define wedge functions Wi( i=1,2,...,8):

Wi =
Ni
D

(i = 1, 2, ..., 8) (12)

It has been verified that Wi(cf relation(12)) satisfies all the properties specified in section 2.

Validation of Wachspress’ averments It has been asserted by Wachspress that the restriction of all the wedge functions
along the six quadrilateral faces of hexahedral element gives precisely the corresponding wedge functions which have
been already defined corresponding quadrilateral element(cf. Fig. 3).

–Restriction along the face F 1 It may be noted that, Wi|F 1 = 0 for i 6= 1, 4, 5, 8 and

W1|F 1 = − (5 + 16y − 10z)(−1 + y + z)

5 + 16y − 5z
,

W4|F 1 =
y(5 + 16y − 10z)

5 + 16y − 5z
,

W5|F 1 =
26yz

5 + 16y − 5z
,

W8|F 1 = −10z(−1 + y + z)

5 + 16y − 5z

One may easily verify that these four restrictions are precisely the the rational wedge functions corresponding to the
quadrilateral element(1,2,7,8)(cf Fig. 3)

–Restriction along the face F 2

It is clear that Wi|F 2 = 0 i 6= 1, 2, 3, 4 and

W1|F 1 = − (2 + x− 2y)(−2 + 2x− y)
2(2 + x+ y)

,

W2|F 1 =
x(2 + x− 2y)

2 + x+ y
,

W3|F 1 =
3xy

2(2 + x+ y)
,

W4|F 1 = − (−2 + 2x− y)y
2 + x+ y

All the wedge properties for the quadrilateral element (1,2,3,4) (see Fig.4) follows similarly for the wedge functions
Wi|F 2 (i=1,2,3,4)
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Fig. 3: Restriction along the face F 1.

Fig. 4: Restriction along the face F 2.

Fig. 5: Restriction along the face F 3.
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Fig. 6: Restriction along the face F 4.

Fig. 7: Restriction along the face F 5.

Fig. 8: Restriction along the face F 6.

Similarly, when restricted on the faces F 3, F 4, F 5 and F 6 the adjoint for the wedge functions are represented in the
figures (5), (6), (7) and (8) respectively.
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7 Conclusion

In this paper , we have presented a new as well as simple
method for the computation of the interpolant for a 3D
domain. Apart from this, a numerical implementation of
this method is given which guarantees that the
construction abides all the prescribed conditions. The
claims of Wachspress [23], regarding the interpolants are
also verified and found valid. This method provides a
simple way to interpolate the data dependent on three
variables and hence has a wide range of applications.
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