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Abstract: This work is concerned with the derivation of the steady boundary layer equations that gives the laminar flow profile over
the outer surface of a paraboloid rotating in an otherwise still fluid. Also, the series solution formulation for the laminar flow equations
for a rotating paraboloid is given. The series solution were numerically calculated and the laminar flow profiles are visualized in detail.
Further, we showed that the formulation of the laminar flow equations for paraboloid has a mathematical flaw and this mistake led to
the work of P. D. Verma [1].
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1 Introduction

The history of three dimensional (3-D) boundary-layer
flow transition studies over the rotating disk is rather old
and has a huge associated literature (see, for example, [2,
3,4,5,6,7,8,9,10]). These studies served as the foremost
model problem for the subsequent investigations of the
3-D boundary-layer flows over axisymmetric bodies of
revolution. Although, both theoretically and
experimentally, the case of a flow field structure of the
laminar boundary-layer flow over rotating sphere had
been greatly clarified in the investigations of [11,12,13,
14,15,16,17]. The flow visualization studies led by
Kohama and Kobayashi [18,19,20,21,22,23,24] were
related to the transition of the laminar boundary-layer
flow over rotating sphere and cone.

The theoretical studies of in refs [25,26,27,28,29,30,
31,32] are related to the transition phenomena of the
laminar boundary-layer flow over various rotating
geometries like disk, sphere and cone were carried out in
such a way that the governing laminar flow equations
were first derived using some appropriate coordinate
system for each geometry. These laminar flow equations
are actually a set of simultaneous 3-D nonlinear partial
differential equations. These equations were solved using
advanced numerical methods. Subsequently the
perturbation equations that govern the transition of the
laminar boundary-layer, were derived for each body. The
solutions of the laminar flow equations are then used in

solving the related perturbation equations for each body.
Recently, in Refs [33,34,35], the authors used the
techniques in the aforementioned investigations and
successfully derived the laminar flow equations for the
general family of rotating prolate spheroids and oblate
spheroids. The solutions were then used in the transition
analysis of the laminar boundary-layer flow over the
general families of each type of spheroid.

2 The laminar boundary layer over a
rotating paraboloid

In this section, we give the derivation of the steady
boundary layer equations that gives the laminar flow
profile over the outer surface of a paraboloid rotating in
an otherwise still fluid. We can not fix an appropriate
coordinate system to model the laminar flow equations
within the boundary layer over rotating paraboloid in a
consistent way to the work related to other geometries, for
example, sphere, spheroids and cones. However, to our
knowledge the only existing work for the boundary layer
equations of rotating paraboloid is due to [1]. We
reproduce these equations in this section using the same
coordinate system with the intention to solve these by the
series solution method. However, we found major
inconsistency in the formulation of [1] and we will
elaborate this in detail. In §3, we derive the laminar flow
equations over rotating paraboloid in a similar way to P.
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D. Verma. In §4, we derive the series solution of the
laminar flow equations of paraboloid in a similar way to
that of [17,33]. In §5, we discuss the discrepancy in the
formulation. We also show in detail how the numerical
results of the series solution for the laminar flow
equations of paraboloid in the coordinates of P. D. Verma
[1] does not converge and that the results are not
consistent with other geometries.

3 Formulation of laminar boundary layer
flow over rotating paraboloid

A cartesian frame of reference is used, the paraboloid
rotates with constant angular velocity Ω? about the
z-axis. We use the following transformation of the
coordinates system for paraboloid of revolution.

x? = l?αβ cos θ,
y? = l?αβ sin θ,

z? = 1
2 l
?(α2 − β2),

where α , β are non-dimensional variables, l? is a
dimensional quantity and θ is the variable through which
the paraboloid rotates. Further, 0 ≤ θ ≤ π and α, β ≥ 0.
Note that this coordinate system (α, β, θ) is a simplified
form of that used by [1]. Further, we note that the new
coordinate system (α, β, θ) as introduced above is
orthogonal. We used the continuity and full Navier Stokes
equations derived by [33] in general orthogonal
curvilinear coordinates and transform them into the
aforementioned paraboloidal coordinate system. These
equations are shown in Appendix 6 as equations
(15)–(18).

By applying the Prandtl’s boundary-layer assumptions
to the continuity and Navier-Stokes equations in the
paraboloidal coordinate system for a particular body
surface β = β0, we obtained the following dimensional
laminar boundary layer flow equations for the paraboloid
rotating in an otherwise still incompressible fluid,

U?

l?
√
α2 + β2

0

∂U?

∂α
+

W ?

l?
√
α2 + β2

0

∂U?

∂β
− V ?2

l?α
√
α2 + β2

0

=ν?
1

l?2(α2 + β2
0)

∂2U?

∂β2
(1)

U?

l?
√
α2 + β2

0

∂V ?

∂α
+

W ?

l?
√
α2 + β2

0

∂V ?

∂β
+

V ?U?

l?α
√
α2 + β2

0

=ν?
1

l?2(α2 + β2
0)

∂2V ?

∂β2
(2)

1

l?
√
α2 + β2

0

∂U?

∂α
+

1

l?
√
α2 + β2

0

∂W ?

∂β
+(

α

l?(α2 + β2
0)

3
2

+
1

l?α
√
α2 + β2

0

)
U? = 0, (3)

where U?, V ? & W ? are the dimensional velocities in the
α, θ and β directions respectively. These equations are
derived by assuming steady-state incompressible flow
with the assumption δ?/r? � 1. Further, we have applied
the boundary-layer assumptions that U? ∼ O(1),
V ? ∼ O(1), W ? ∼ O(δ?) & (∂/∂α) ∼ O(1) where
δ? = (ν?/Ω?)1/2 is the boundary-layer thickness and ν?
is the coefficient of kinematic viscosity. Using these in the
continuity equation we can find that ∂/∂β? ∼ O(δ?−1),
and from the normal component of Navier-Stokes
equations we find P ? = P ?(θ). Since, the paraboloid is
rotating in an otherwise still fluid, P ?=constant. Note that
r? is the local radius of the paraboloid and is given by
r? = l?αβ0. In the fixed frame of reference, the above
equations are subject to the following boundary
conditions,

U? = W ? = V ? − l?αβ0Ω? = 0 on β = β0,
U? = V ? = 0 as β →∞. (4)

In order to obtain the non-dimensional boundary-layer
equations we scale the velocities on the equatorial surface
speed of the paraboloid , as in equation below. The
dimensionless Similarity variables are defined as

U = U?

l?αβ0Ω? , V = V ?

l?αβ0Ω? ,W = W?

(ν?Ω?)1/2
,

η = (Ω?/ν?)1/2l?β0 (β − β0) .
(5)

In the above non-dimensionalization of the velocity
components was indeed carried on the maximum speed at
each local radius of the paraboloid. The non-dimensional
normal η has been taken as the difference between the
radii of the circles formed for α = β and α = β0. This
non-dimensionalization of η is similar to that of [1]. This
is indeed transforming the orthogonal coordinates
(α, θ, β) into a non-orthogonal coordinate system
(α, θ, η). In fact replacing l?β by the radii differences of
the two circles is what the formulation leads to
inconsistency with the other related geometries. We will
further discuss it in §5. We again note that our
formulation is completely consistent with that of P. D.
Verma [1].

The non-dimensional laminar flow equations of the
boundary layer flow over the paraboloid, are shown as,

W
∂U

∂η
+ αU

∂U

∂α
+ U2 − V 2 =

β0√
α2 + β2

0

∂2U

∂η2
(6)

W
∂V

∂η
+ αU

∂V

∂α
+ 2V U =

β0√
α2 + β2

0

∂2V

∂η2
(7)

∂W

∂η
+ α

∂U

∂α
+

(
α2

α2 + β2
0

+ 1

)
U = 0. (8)
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Subject to the boundary conditions

U =W = V − 1 = 0 on η = 0, (9)
U = V = 0 as η →∞. (10)

These represent the non-slip boundary condition on the
paraboloid surface and the quiescent fluid condition at the
edge of the boundary layer.

4 Series solution for the laminar flow over
rotating paraboloid

In this section, we derive the series solutions for the
laminar flow equations (6)–(8) subject to the boundary
conditions (9) and (10), using the same techniques in the
existing literature.

To solve the above equations at some latitude, a series
expansion solution in powers of α is sought of the form,

U = F1 + α2F3 + α4F5 + ..., (11)

V = G1 + α2G3 + α4G5 + ..., (12)

W = H1 + α2H3 + α4H5 + . . . . (13)

Here Fn+1, Gn+1, Hn+1 are functions of the
non-dimensional variable,

η = (Ω?/ν?)1/2l?β0 (β − β0).
The boundary conditions can be written as,

Fn+1(0) = Hn+1(0) = Gn+1(0)− 1 = 0,

Fn+1(∞) = Gn+1(∞) = 0, (14)

for n = 0, 2, 4, 6, . . . .

The corresponding series solutions for the laminar
flow equations of paraboloid are shown in Appendix 7 as
equations (19)–(30). These equations were tried to solve
numerically through the well known bvp 4c code in
MatLab.

We have observed that the results converge for a very
small range of parameters, however not shown here.
Further, for most of the parameters involved the results do
not converge. For a range of small number of parameters
where the solution converges, are such that the value of
η ≤ 4 and this seems consistent with that of P. D. Verma
results. However, these results are not physically sensible.
The no-convergence of the laminar flow profiles for the
broad range of parameters and where convergence
observed but not sensible, we conclude that it is because
of the inconsistency in the formulation of the governing
laminar flow equations. We will further discuss this in §5.

5 Discussion

In this section we derived the full Navier-Stokdes
equations in the paraboloidal coordinate system which is
consistent with the work of [1]. We then showed the
non-dimensional laminar flow equations in this coordinate
system for the paraboloid. However, we can not fix the η
and took it similar to the one used by P. D. Verma. It is
showed as a difference of the radii of the local circles of
the paraboloid. The local radii of the circles are indeed
not normal at each α, θ of the paraboloid. This leads to a
non-orthogonal system in η. This is inconsistent with the
previous formulations in such geometries.

We suspect that the non-convergence of the laminar
flow profiles of the series solutions for a broad range of
the values of parameters involved is due to the incorrect
use of η. Further, the convergent profiles for a very
limited range of values of the parameters the results are
not sensible. This lead us to conclude that a different
coordinate system to model the laminar flow equations
for paraboloid rotating in an otherwise still fluid, should
be used and which should be orthogonal till the non-
dimensional form of the laminar flow equations.

We at this moment could not sort out such a suitable
coordinate system for paraboloid, however, it is observed
in detail that the formulation of P. D. Verma is not
consistent for the problem of the laminar flow equations
for paraboloid.

6 Dimensional equations of rotating
paraboloid

Now we derive the continuity and full Navier Stokes
equations in the paraboloidal coordinate system as
discussed in §3 from the continuity and full Navier Stokes
equations in general orthogonal curvilinear coordinates
[33]. We get the continuity equation as:

1

l?
√
α2 + β2

∂U?

∂α
+

1

l?
√
α2 + β2

∂W ?

∂β

+
1

l?αβ

∂V ?

∂θ
+

(
α

l?(α2 + β2)
3
2

+
1

l?α
√
α2 + β2

)
U?

+

(
β

l?(α2 + β2)
3
2

+
1

l?α
√
α2 + β2

)
W ? = 0 (15)
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The α component of the full Navier Stokes equations in paraboloidal coordinates is written as
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1
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−

(
1
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1
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+
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∂α

−

(
α
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+

α
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7
2

)
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1
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β
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+

1

l?2α2β2
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+

1

l?2(α2 + β2)

∂2U?

∂β2

]
(16)

The θ component of the full Navier Stokes equations in paraboloidal coordinates is written as

∂V ?

∂t
+

U?
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∂V ?

∂α
+

V ?

l?αβ

∂V ?
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ρl?αβ

∂P ?

∂θ

+ν?

[
2
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1
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1
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+

1
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The β component of the full Navier Stokes equations in paraboloidal coordinates is written as
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7 Details of the series solution for paraboloid

F 2
1 +H1F

′
1 −G2

1 =F ′′1 (19)

4F1F3 +H1F
′
3 +H3F

′
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1
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1
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3
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0
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′
1

)
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2
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4
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0

(
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′
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′
1

)
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(22)
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′
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′
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2
0
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2
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′
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′
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0

(
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)
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4
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(
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′
7+
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′
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′
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0

(
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′
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′
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′
1
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− 1/8β4

0
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′
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′
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6
0 + 1/β2

0

(
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2F3G3 + F5G1

)
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0

(
2F1G3+

F3G1

)
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6
0 = G′′7 (26)

F1 +H ′1 = 0 (27)

3β2
0F3 + β2

0H
′
3 + F1 = 0 (28)

5β2
0F5 + F1F5 +H ′5 − F1/β

2
0 + F3 = 0 (29)

7β2
0F7 + β2

0H
′
7 − F1/β

4
0 − F3/β

2
0 + 2F5 = 0 (30)

8 Conclusion

The equations of fluid motion within the boundary layer
can be simplified because of the layer’s thinness, and
exact or approximate solutions can be obtained in many
cases. The intent of this manuscript is discuss the laminar
flow profile over the outer surface of a paraboloid rotating
in an otherwise still fluid which arises from the steady
boundary layer equations. Moreover, the laminar flow
equations for a rotating paraboloid is derived. Ultimately,
we proved that the formulation of the laminar flow
equations for paraboloid has a mathematical flaw which
leads to the exciting work of P. D. Verma [1].

Conflict of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1] P. D. Verma, Boundary layer on rotating body of revolution
with or without suction, Proceedings of Indian National
Science Academy, National Institute of Sciences of India,
Physical sciences, Part 1, (1962) 483–514.

[2] Theodorsen and Regier, Experiments on drag of revolving
disks, cylinders and streamline rods at high speeds, National
Advisory Committee for aeronautics, Report no. 793,
Washington DC, USA (1945).

[3] N. H. Smith, Exploratory investigation of laminar-boundary-
layer oscillations on a rotating disk, National Advisory
Committee for aeronautics, Technical Note no. 1227,
Washington DC, USA, (1947).

[4] N. Gregory, J. T. Stuart and W. S. Walker, On the stability
of the three-dimensional boundary-layer with application to
the flow due to a rotating disk, Phil. Trans. Roy. Soc. A., 248
(1955) 155–199 .

[5] H. L. Reed and W. S. Saric, Stability of three-dimensional
boundary layers, Annu. Rev. Fluid Mech., 21 (1989) 235.

[6] W. S. Saric, H. L. Reed and E. B. White, Stability and
transition of three-dimensional boundary layers, Annu. Rev.
Fluid Mech., 35 (2003), 413.

[7] M. Wimmer, Viscous flows and instabilities near rotating
bodies, Prog. Aerospace Sci., 25(1), (1988) 43–103.

[8] J. M. Owen and R. H. Rogers, Flow and heat transfer
in rotating-disc systems, Volume 1. Rotor—Stator Systems,
Wily, (1989).

c© 2020 NSP
Natural Sciences Publishing Cor.

5

Shah and A. Hammad: The laminar boundary layer over a rotating paraboloid

Published by Arab Journals Platform, 2020

www.naturalspublishing.com/Journals.asp


204 R. Shah and H.A. Hammad: The laminar boundary layer over...

[9] M. R. Malik, The neutral curve for stationary disturbances in
rotating-disk flow, J. Fluid Mech., 164 (1986) 275–87.

[10] R. J. Lingwood, Absolute instability of the boundary layer
on a rotating disk, J. Fluid Mech., 299 (1995) 17–33.

[11] L. Howarth, Note on the boundary layer on a rotating sphere,
Phil. Mag. Ser.7, 42 (1951) 1308–1315.

[12] S. D. Nigam, Note on the boundary layer on a rotating
sphere, J. Appl. Math. Phys., 5 (1954) 151–155.

[13] Y. Kobayashi, Measurements of boundary layer of a rotating
sphere, J. Sci., Hiroshima Univ. A., 20 (1957) 149–157.

[14] W. H. H. Banks, The boundary layer on a rotating sphere,
Q. J. Mech. Appl. Math., 48 (1965) 443–454.

[15] R. Manohar, The boundary on a rotating sphere, Z.angew.
Math. Phys., 18 (1967) 320.
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