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Abstract: In this paper, we use the Caputo-Fabrizio (CF) fractional integral to establish some new integral inequalities in the case of

functions with the same sense of variation.
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1 Introduction

The Fractional Calculus can be defined as a
generalization of the integer-order differentiation. Its
history goes back to seventeenth century, when in 1695
the derivative of order α = 1/2 was described by Leibnitz
in his letter to L’Hospital [25]. The Fractional Calculus
has become more popular and useful due to its ability to
describe some natural phenomena in numerous fields of
engineering [21-24]. Moreover, it is well-known the
importance of fractional calculus in obtaining fractional
integral inequalities which are often used to prove the
existence and uniqueness of fractional differential
equations. In this line, there are several known forms of
the fractional integrals which have been used to obtain
fractional inequalities. The first is the Riemann-Liouville
fractional integral [5]:

Theorem 1.Let f ,g and h be positive and continuous

functions on [0,∞), such that

(

g(τ)−g(ρ)
)

( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ [0, t], t > 0.

Then we have

Jα
(

f (t)
)

Jα
(

h(t)
) ≥

Jα
(

g f (t)
)

Jα
(

gh(t)
) ,

for all α > 0, t > 0.

Theorem 2.Let f ,g and h be positive and continuous

functions on [0,∞), such that

(

g(τ)−g(ρ)
)

( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ [0, t], t > 0.

Then for all α > 0, w, t > 0, we have

Jα
(

f (t)
)

· Jw
(

gh(t)
)

+ Jw
(

f (t)
)

· Jα
(

gh(t)
)

Jα
(

h(t)
)

· Jw
(

g f (t)
)

+ Jw
(

h(t)
)

· Jα
(

g f (t)
) ≥ 1.

Theorem 3.Let f and h be two positive continuous

functions and f ≤ h on [0,∞). If
f
h

is decreasing and f is

increasing on [0,∞), then for any p ≥ 1,α > 0, t > 0, the

inequality

Jα
(

f (t)
)

Jα
(

h(t)
) ≥

Jα
(

f p(t)
)

Jα
(

hp(t)
) ,

is valid.

Theorem 4.Let f and h be two positive continuous

functions and f ≤ h on [0,∞). If
f
h

is decreasing and f is

increasing on [0,∞), then for any

p ≥ 1,α > 0,w > 0, t > 0, we have

Jα
(

f (t)
)

· Jw
(

hp(t)
)

+ Jw
(

f (t)
)

· Jα
(

hp(t)
)

Jα
(

h(t)
)

· Jw
(

f p(t)
)

+ Jw
(

h(t)
)

· Jα
(

f p(t)
) ≥ 1.

The second is the Hadamard fractional integral [8, 20]:
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Theorem 5.Let f be an integrable function on [1,∞) such

that there exist two integrable functions φ1,φ2 on [1,∞)
with φ1(t) ≤ f (t) ≤ φ2(t), ∀t ∈ [1,∞). Then, for t > 1,

α,β > 0, one has

H Iβ φ1(t) ·
H Iα f (t)+H Iα φ2(t) ·

H Iβ f (t)

≥H Iα φ2(t) ·
H Iβ φ1(t)+

H Iα f (t) ·H Iβ f (t).

Theorem 6.Let f be an integrable function on [1,∞) and

p,q > 0 satisfying 1/p+1/q= 1. Suppose that there exist

two integrable functions φ1,φ2 on [1,∞) such that φ1(t)≤
f (t) ≤ φ2(t) for all t ∈ [1,∞). Then, for t > 1,α,β > 0,

one has

1

p
·
(log t)β

Γ (β + 1)
·H Iα

(

(φ2 − f )p
)

(t)

+
1

q
·
(log t)α

Γ (α + 1)
·H Iβ

(

( f −φ1)
p2
)

(t)

+H Iα φ2(t) ·
H Iβ φ1(t)+

H Iα f (t) ·H Iβ f (t)

≥H Iα φ2(t) ·
H Iβ f (t)+H Iα f (t) ·H Iβ φ1(t).

Theorem 7.Let f be an integrable function on [1,∞) and

p,q > 0 satisfying p+ q = 1. Suppose that there exist two

integrable functions φ1,φ2 on [1,∞) such that

φ1(t) ≤ f (t) ≤ φ2(t) for all t ∈ [1,∞). Then, for

t > 1,α,β > 0, one has

p ·
(log t)β

Γ (β + 1)
·H Iα φ2(t)+ q ·

(log t)α

Γ (α + 1)
·H Iβ f (t)

≥H Iα(φ2 − f )p(t) ·H Iβ ( f −φ2)
q(t)

+ p ·
(logt)β

Γ (β + 1)
·H Iα f (t)+ q ·

(log t)α

Γ (α + 1)
·H Iβ φ1(t).

Another kind of fractional integral that appears in integral
inequalities is the Saigo fractional integral [3, 4, 12, 16,
??]:

Theorem 8.Let p ≥ 1 and let f ,g be two positive

functions on [0,∞) such that for all x > 0,

I
α ,β ,η
0,x [ f p(x)] < ∞, I

α ,β ,η
0,x [gq(x)] < ∞. If

0 < m ≤
f (τ)

g(τ)
≤ M < ∞, τ ∈ (0,x) we have

[

I
α ,β ,η
0,x [ f p(x)]

]
1
p
+
[

I
α ,β ,η
0,x [gq(x)]

]
1
p

≤
1+M(m+ 2)

(m+ 1)(M+ 1)
·
[

I
α ,β ,η
0,x [( f + g)p(x)]

]
1
p

for any α > max{0,−β},β < 1,β − 1 < η < 0.

Theorem 9.Let p > 1, 1
p
+ 1

q
= 1 and f ,g be two positve

functions on [0,∞) such that I
α ,β ,η
0,x [ f (x)] < ∞,

I
α ,β ,η
0,x [g(x)] < ∞. If 0 < m ≤

f (τ)

g(τ)
≤ M < ∞, τ ∈ [0,x],

we have

[

I
α ,β ,η
0,x [ f (x)]

] 1
p
+
[

I
α ,β ,η
0,x [g(x)]

] 1
q

≤
(M

m

)
1
pq
·
[

I
α ,β ,η
0,x

[

[ f (x)]
1
p · [g(x)]

1
q

]]

,

for all x > 0,α > max{0,−β},β < 1,β − 1 < η < 0.

Theorem 10.Let f ,g be two positive function on [0,∞)

such that I
α ,β ,η
0,x [ f p(x)] < ∞, I

α ,β ,η
0,x [gq(x)] < ∞, x > 0. If

0 < m ≤
[ f (τ)]p

[g(τ)]q
≤ M < ∞, τ ∈ [0,x]. Then we have

[

I
α ,β ,η
0,x [ f p(x)]

]
1
p
+
[

I
α ,β ,η
0,x [gq(x)]

]
1
q

≤
(M

m

)
1
pq
·
[

I
α ,β ,η
0,x [ f (x) ·g(x)]

]

,

where p > 1, 1
p

+ 1
q

= 1, for all

x > 0,α > max{0,−β},β < 1,β − 1 < η < 0.

Theorem 11.Let f ≥ 0,g ≥ 0 be two functions defined on

[0,∞) such that g is non-decreasing. If

I
α ,β ,η
0,x f (x)≥ I

α ,β ,η
0,x g(x), x > 0,

then for all α > max{0,−β},β < 1,β − 1 < η < 0,γ >
0,δ > 0,γ − δ > 0, we have

I
α ,β ,η
0,x f γ−δ (x)≤ I

α ,β ,η
0,x f γ (x)g−δ (x).

Theorem 12.Suppose that f ,g and h be positive and

continuous functions on [0,∞) such that

[g(τ)− g(ρ)]
( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ [0,x),x > 0.

Then for all x > 0,α >max{0,−β},β < 1,β −1< η < 0,

we have

I
α ,β ,η
0,x [ f (x)]

I
α ,β ,η
0,x [h(x)]

≥
I

α ,β ,η
0,x [(g f )(x)]

I
α ,β ,η
0,x [(gh)(x)]

.

Theorem 13.Suppose that f ,g and h be positive and

continuous functions on [0,∞) such that

[g(τ)− g(ρ)]
( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ (0, t), t > 0.

Then for all x > 0,α > max{0,−β},ψ >
max{0,−φ},β < 1,β − 1 < η < 0,φ < 1,φ − 1 < ξ < 0,

we have

I
α ,β ,η
0,x [ f (x)]I

ψ,φ ,ξ
0,x [(gh)(x)]+ I

ψ,φ ,ξ
0,x [ f (x)]I

α ,β ,η
0,x [(gh)(x)]

I
α ,β ,η
0,x [h(x)]I

ψ,φ ,ξ
0,x [(g f )(x)]+ I

ψ,φ ,ξ
0,x [h(x)]I

α ,β ,η
0,x [(gh)(x)]

≥ 1.
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In 2015, Caputo and Fabrizio introduced a new fractional
derivative [13]. The interest for this approach was due to
the necessity of using a model describing structures with
different scales [13]. In the literature there is no evidence
of the use of the Caputo fractional derivative and
Caputo-Fabrizio fractional integral to obtain fractional
integral inequalities. The propose of this paper is to use
the CF fractional integral to establish some new integral
inequalities which have been obtained before by using the
Riemann-Liouville, Hadamard and Saigo fractional
operators [1, 5, 9]. The obtained Caputo-Fabrizio
fractional inequalities could be helpful to prove the
existence and uniqueness of some ordinary
Caputo-Fabrizio fractional differential equations. The
paper has been organized as follows, in Section 2, we
define basic definitions related to fractional integrals. In
Section 3, appears the main results. Finally, conclusion is
summarized in Section 4.

2 Preliminaries

Here we give the following definitions:

Definition 1.Let α ∈ R such that 0 < α < 1. The Caputo-

Fabrizio fractional integral of order α of a function f is

defined by [10]

Iα
0t f (t) =

1

α

∫ t

0
e−

1−α
α (t−s) f (s)ds.

Definition 2.Let α,a ∈ R such that 0 < α < 1. The

Caputo-Fabrizio fractional derivative of order α of a

function f is defined by

Dα
at f (t) =

1

1−α

∫ t

a
e−

α
1−α (t−s) f ′(s)ds.

Definition 3.Let α > 0,β ,η ∈ R, then the Saigo

fractional integral I
α ,β ,η
0,t [ f (t)] of order α for a

real-valued continuous function f (t) is defined by

I
α ,β ,η
0,t { f (t)}

=
t−α−β

Γ (α)

∫ t

0
(t − τ)α−1F1(α +β ,−η ;α;1−

τ

t
) f (τ)dτ,

where the function F1(−) is the Gaussian hypergeometric

function defined by

F1(a,b;c;t) =
∞

∑
n=0

(a)n(b)n

(c)n
·

tn

n!
,

and (a)n is the Pochhammer symbol

(a)n = a(a+ 1) · · ·(a+ n− 1),(a)0 = 1.

Definition 4.The Hadamard fractional integral is defined

by

H Iα f (t) =
1

Γ (α)

t
∫

1

(

log
t

τ

)α−1

f (τ)
dτ

τ

for Re(α)> 0, t > 1.

Definition 5.The Riemann-Liouville fractional integral is

defined by

RLIα
0t f (t) =

1

Γ (α)

t
∫

0

(t − τ)α−1 f (τ)dτ.

Definition 6.We say that two functions f and g have the

same sense of variation (synchronous) on [0,∞) if [16]

( f (τ)− f (ρ))(g(τ)− g(ρ))≥ 0 τ,ρ ∈ (0, t), t > 0.

For more details, see [1, 6, 7, 8, 11-15, 17-20].

3 Main Results

Here, we give some interesting inequalities concerning the
Caputo-Fabrizio fractional integral.

Theorem 14.Let p be a positive function on [0,∞) and let

f and g be two differentiable functions having the same

sense of variation on [0,∞). If f ′,g′ ∈ L∞

(

[0,∞)
)

, then for

all t > 0,α ∈ (0,1), we have

0 ≤ Iα
0t p(t)Iα

0t p f g(t)− Iα
0t p f (t) · Iα

0t pg(t)

≤ ‖ f ′‖L∞ · ‖g′‖L∞ ·
[

Iα
0t p(t) · Iα

0tt
2 p(t)−

(

Iα
0tt p(t)

)2]
. (1)

Proof.Let f and g be two functions satisfying the
conditions of theorem 14 and let p be a positive function
on [0,∞). Define

H(τ,ρ) :=
(

f (τ)− f (ρ)
)(

g(τ)− g(ρ)
)

(2)

for all τ,ρ ∈ (0, t). We have

H(τ,ρ)≥ 0. (3)

Thanks to (3), we have

1

2α2

∫ t

0

∫ t

0
e−

1−α
α (t−τ) · e−

1−α
α (t−ρ)·

· p(τ)p(ρ)H(τ,ρ)dτdρ

= Iα
0t p(t) · Iα

0t p f g(t)− Iα
0t p f (t) · Iα

0t pg(t)≥ 0. (4)

The relation (3) can be written as follows:

H(τ,ρ) =

∫ ρ

τ

∫ ρ

τ
f ′(y)g′(z)dydz. (5)
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Hence, we can write

H(τ,ρ)≤
∣

∣

∣

∫ ρ

τ
f ′(y)dy

∣

∣

∣

∣

∣

∣

∫ ρ

τ
g′(z)dz

∣

∣

∣

≤ ‖ f ′‖L∞ · ‖g′‖L∞ · (τ −ρ)2. (6)

Therefore

1

2α2

∫ t

0

∫ t

0
e−

1−α
α (t−τ) · e−

1−α
α (t−ρ)·

· p(τ)p(ρ)H(τ,ρ)dτdρ

≤
‖ f ′‖L∞‖g′‖L∞

2α2

∫ t

0

∫ t

0
e−

1−α
α (t−τ)e−

1−α
α (t−ρ)·

· (τ2 − 2τρ +ρ2)p(τ)p(ρ)dτdρ . (7)

Consequently

1

2α2

∫ t

0

∫ t

0
e−

1−α
α (t−τ) · e−

1−α
α (t−ρ) · p(τ)p(ρ)H(τ,ρ)dτdρ

≤ ‖ f ′‖L∞ · ‖g′‖L∞ ·
[

Iα
0t p(t) · Iα

0tt
2 p(t)−

(

Iα
0tt p(t)

)2]
. (8)

According to (4) and (8), we get (1), and thus theorem 14
is proved.

Now, we are ready to generalize Theorem 14 to the
following theorem:

Theorem 15.Let p be a positive function on [0,∞) and let

f and g be two differentiable functions having the same

sense of variation on [0,∞). If f ′,g′ ∈ L∞

(

[0,∞)
)

, then for

all t > 0,α,β ∈ (0,1), we have

0 ≤ Iα
0t p f g(t) · I

β
0t p(t)+ Iα

0t p(t) · I
β
0t p f g(t)

− Iα
0t p f (t) · I

β
0t pg(t)− Iα

0t pg · I
β
0t p f

≤ ‖ f ′‖L∞ · ‖g′‖L∞

{

Iα
0tt

2 p(t) · I
β
0t p(t)

+ Iα
0t p(t) · I

β
0tt

2 p(t)− 2Iα
0tt p(t) · I

β
0tt p(t)

}

(9)

Proof.It is easy to see that

1

1−α
·

1

1−β

∫ t

0

∫ t

0
e−

α
1−α (t−τ)

· e
−

β
1−β

(t−ρ)
p(τ)p(ρ)H(τ,ρ)dτdρ

= Iα
0t p f g(t) · I

β
0t p(t)+ Iα

0t p(t) · I
β
0t p f g(t)

− Iα
0t p f (t) · I

β
0t pg(t)

− Iα
0t pg(t) · I

β
0t p f (t)≥ 0. (10)

From the relation (6), we obtain the following estimate

1

1−α

1

1−β

∫ t

0

∫ t

0
e−

α
1−α (t−τ)

· e
− β

1−β
(t−ρ)

· p(τ)p(ρ)H(τ,ρ)dτdρ

≤ ‖ f ′‖L∞ · ‖g′‖L∞

[

Iα
0tt

2 p(t) · I
β
0t p(t)

+ Iα
0t p(t) · I

β
0tt

2 p(t)− 2Iα
0tt p(t) · I

β
0tt p(t)

]

. (11)

Combining (10) with (11), inequality (9) follows.

Theorem 16.Let f ,g and h be positive and continuous

functions on [0,∞), such that

(

g(τ)− g(ρ)
)( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ [0, t], t > 0,

(12)
then we have

Iα
0t f (t)

Iα
0th(t)

≥
Iα
0tg f (t)

Iα
0tgh(t)

(13)

for any α ∈ (0,1), t > 0.

Proof.Suppose that f ,g and h are positive and continuous
functions on [0,∞). Using (12), we can write

g(τ) ·
f (ρ)

h(ρ)
+ g(ρ) ·

f (τ)

h(τ)

− g(ρ) ·
f (ρ)

h(ρ)
− g(τ) ·

f (τ)

h(τ)
≥ 0

for all τ,ρ ∈ [0, t], t > 0. That is

g(τ) f (ρ)h(τ)+ g(ρ) f (τ)h(ρ)

− g(ρ) f (ρ)h(τ)− g(τ) f (τ)h(ρ)≥ 0 (14)

for all τ,ρ ∈ [0, t], t > 0.

Now, multiplying both sides of (14) by 1
α2 · e−

1−α
α (t−τ) ·

e−
1−α

α (t−ρ), then integrating the resulting inequality with
respect to τ and ρ over (0, t)× (0, t), we get

Iα
0tgh(t) · Iα

0t f (t)− Iα
0tg f (t) · Iα

0th(t)≥ 0 (15)

From (15), inequality (13) follows.

Theorem 17.Let f ,g and h be positive and continuous

functions on [0,∞), such that

(

g(τ)− g(ρ)
)( f (ρ)

h(ρ)
−

f (τ)

h(τ)

)

≥ 0; τ,ρ ∈ [0, t], t > 0,

(16)
then for all α,β ∈ (0,1), t > 0, we have

Iα
0tgh(t) · I

β
0t f (t)+ I

β
0tgh(t) · Iα

0t f (t)

Iα
0th(t) · I

β
0tg f (t)+ Iα

0tg f (t) · I
β
0th(t)

≥ 1 (17)

Proof.Suppose that f ,g and h are positive and continuous
functions on [0,∞). Now, multiplying both sides of (14) by

1
α ·β · e−

1−α
α (t−τ) · e

− 1−β
β

(t−ρ)
, then integrating the resulting

inequality with respect to τ and ρ over (0, t)× (0, t), we
get

Iα
0tgh(t) · I

β
0t f (t)+ I

β
0tgh(t) · Iα

0t f (t)

≥ Iα
0th(t) · I

β
0tg f (t)+ Iα

0tg f (t) · I
β
0th(t).

Hence, we obtain (17).

Note 1.It is obviously to see that (16) holds true for f ,g,h
such that either
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(i)g is increasing and
f
h

is decreasing

or

(ii)g is decreasing and
f
h

is increasing.

Theorem 18.Let f and h be two positive continuous

functions and f ≤ h on [0,∞). If
f
h

is decreasing and f is

increasing on [0,∞), then for any p ≥ 1, α ∈ (0,1), t > 0,

the inequality
Iα
0t f (t)

Iα
0th(t)

≥
Iα
0t f p(t)

Iα
0th

p(t)
, (18)

is valid.

Proof.Since p ≥ 1 and f is increasing, then g := f p−1 is
also increasing. Then by applying the theorem 16, we get

Iα
0t f (t)

Iα
0th(t)

≥
Iα
0t( f · f p−1(t))

Iα
0t(h · f p−1(t))

, (19)

now, since f ≤ h on (0,∞], then

1

α
· e−

1−α
α (t−τ) ·h(τ) · f p−1(τ) ≤

1

α
· e−

1−α
α (t−τ) ·hp(τ)

(20)
for all τ ∈ [0, t], t > 0. Integrating both sides of (20) with
respect to τ over (0, t), yields

Iα
0t

(

h f p−1(t)
)

≤ Iα
0t

(

hp(t)
)

. (21)

Consequently

Iα
0t( f · f p−1(t))

Iα
0t(h · f p−1(t))

=
Iα
0t f p(t)

Iα
0t(h · f p−1(t))

≥
Iα
0t f p(t)

Iα
0th

p(t)
. (22)

Combining (19) with (22), we obtain (18).

Theorem 19.Let f and h be two positive and continuous

functions and f ≤ h on [0,∞). If
f
h

is decreasing and f is

increasing on [0,∞), then for any p ≥ 1, α,β ∈ (0,1), t >
0, we have

I
β
0t f (t) · Iα

0th
p(t)+ Iα

0t f (t) · I
β
0th

p(t)

Iα
0th(t) · I

β
0t f p(t)+ I

β
0th(t) · I

α
0t f p(t)

≥ 1. (23)

Proof.Taking g := f p−1, then by theorem 17, yields

Iα
0t [h · f p−1(t)] · I

β
0t f (t)+ Iα

0t f (t) · I
β
0t [h · f p−1(t)]

Iα
0th(t) · I

β
0t f p(t)+ I

β
0th(t) · I

α
0t f p(t)

≥ 1.

(24)
Using the fact that f ≤ h on [0,∞), we can write

1

β
e
− 1−β

β
(t−ρ)

·h · f p−1(ρ)≤
1

β
· e

− 1−β
β

(t−ρ)
·hp(ρ) (25)

for all ρ ∈ [0, t], t > 0. Integrating both sides of (25) with
respect to ρ over (0, t), we obtain

I
β
0th f p−1(t)≤ I

β
0th

p(t). (26)

Multiplying (21) by I
β
0t f (t) and (26) by Iα

0t f (t), we can
write

I
β
0t f (t) · Iα

0t

(

h f p−1(t)
)

+ Iα
0t f (t) · I

β
0t

(

h f p−1(t)
)

≤ I
β
0t f (t) · Iα

0t

(

hp(t)
)

+ Iα
0t f (t) · I

β
0t

(

hp(t)
)

. (27)

Now, using (24) and (27), we deduce (23).

Theorem 20.Let α ∈ (0,1), p ≥ 1 and f ,g be two positive

continuous functions on [0,∞). If 0 < m ≤
f (τ)

g(τ)
≤ M, τ ∈

(0, t), then we have

[

Iα
0t f p(t)

]1/p
+
[

Iα
0tg

p(t)
]1/p

≤
M(m+ 2)+ 1

(M + 1)(m+ 1)

[

Iα
0t( f + g)p(t)

]1/p
. (28)

Proof.Using the condition
f (τ)

g(τ)
≤ M,τ ∈ (0, t), t > 0, we

can write

(M+ 1)p · f p(τ)≤ Mp · ( f + g)p(τ). (29)

Multiplying both sides of (29) by 1
α · e−

1−α
α (t−τ), then

integrating resulting identity with respect to τ from 0 to x,
we get

(M+ 1)p · Iα
0t f p(t)≤ Mp · Iα

0t( f + g)p(t)

Hence, we can write

[

Iα
0t f p(t)

]1/p
≤

M

M+ 1
·
[

Iα
0t( f + g)p(t)

]1/p
, (30)

on the other hand, using condition m ≤ f (τ)
g(τ) , we obtain

(

1+
1

m

)

g(τ)≤
1

m

(

f (τ)+ g(τ)
)

,

therefore

(

1+
1

m

)p

gp(τ)≤
( 1

m

)p
(

f (τ)+ g(τ)
)p
. (31)

Now, multiplying both sides of (31) by 1
α ·e−

1−α
α (t−τ), then

integrating resulting identity with respect to τ from 0 to t,
we have

[

Iα
0tg

p(t)
]1/p

≤
1

m+ 1
·
[

Iα
0t( f + g)p(t)

]1/p
. (32)

The inequality (28) follows on adding the inequalities (30)
and (32)

Theorem 21.Let α ∈ (0,1), p > 1, 1
p
+ 1

q
= 1 and f ,g be

two positive and continuous functions on [0,∞). If

0 < m ≤
f (τ)

g(τ)
≤ M < ∞, τ ∈ [0, t], (33)
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then the inequality

[

Iα
0t f (t)

]1/p
·
[

Iα
0tg(t)

]1/q

≤
(M

m

)1/pq

· Iα
0t

[

f 1/p(t) ·g1/q(t)
]

(34)

holds.

Proof.Since
f (τ)
g(τ)

≤ M,τ ∈ [0, t], t > 0, therefore

[

g(τ)
]1/q

≥ M−1/q · [ f (τ)]1/q,

and so,

[

f (τ)
]1/q

·
[

g(τ)
]1/q

≥ M−1/q · [ f (τ)]1/q ·
[

f (τ)
]1/q

= M−1/q · f (τ). (35)

Multiplying both sides of (35) by 1
α · e−

1−α
α (t−τ), then

integrating resulting identity with respect to τ from 0 to t,
we have

Iα
0t

[

f 1/p(t) ·g1/q(t)
]

≥ M−1/q · Iα
0t f (t),

and consequently

(

Iα
0t

[

f 1/p(t) ·g1/q(t)
])1/p

≥ M−1/pq ·
(

Iα
0t f (t)

)1/p
. (36)

On the other hand, since mg(τ) ≤ f (τ),τ ∈ [0, t], t > 0,
then we have

[

f (τ)
]1/p

≥ m1/p · [g(τ)]1/p,

and so,

[

g(τ)
]1/q

·
[

f (τ)
]1/p

≥ m1/p · [g(τ)]1/p ·
[

g(τ)
]1/q

= m1/p ·g(τ). (37)

Now, multiplying both sides of (35) by 1
α ·e−

1−α
α (t−τ), then

integrating resulting identity with respect to τ over (0, t),
we obtain

Iα
0t

[

g1/q(t) · f 1/p(t)
]

≥ m1/p · Iα
0tg(t).

Hence, it follows

(

Iα
0t

[

g1/q(t) · f 1/p(t)
])1/q

≥ m1/pq ·
(

Iα
0tg(t)

)1/q
. (38)

Thanks to (36) and (38), we obtain (34).

Theorem 22.Let 0 < α < 1, p > 1, 1
p
+ 1

q
= 1, f and g be

two positive and continuous functions on [0,∞). If

0 < m ≤
f p(τ)

gq(τ)
≤ M < ∞, τ ∈ [0, t],

then we have

[

Iα
0t f p(t)

]1/p
·
[

Iα
0tg

q(t)
]1/q

≤
(M

m

)1/pq

· Iα
0t [ f (t) ·g(t)].

(39)

Proof.Replacing f (τ) and g(τ) respectively by
(

f (τ)
)p

and
(

g(τ)
)q
,τ ∈ [0, t], t > 0 in theorem 21, we obtain

(39).

Theorem 23.Let 0 < α < 1, p > 1, 1
p
+ 1

q
= 1, f and g be

two positive and continuous functions on [0,∞). If

0 < m ≤
f (τ)

g(τ)
≤ M < ∞, (40)

then we have

Iα
0t

( f p(t)

gp/q(t)

)

≤
(M

m

)1/q

·

(

Iα
0t f (t)

)p

(

Iα
0tg(t)

)p/q
. (41)

Proof.Using theorem 21, we obtain

Iα
0t f (t) = Iα

0t

[( f p(t)

gp/q(t)

)1/p

·
(

g(t)
)1/q

]

≥
( m

M

)1/pq

·
[

Iα
0t

f p(t)

gp/q(t)

]1/p
[

Iα
0tg(t)

]1/q
.

Hence, we can write

[

Iα
0t f (t)

]p
≥
(m

M

)1/q

·

[

Iα
0t

f p(t)

gp/q(t)

]

[

Iα
0tg(t)

]p/q
. (42)

Thanks to (42), we obtain (41).

Theorem 24.Let 0 < α < 1, p > 1, 1
p
+ 1

q
= 1 and f be

a positive and continuous function on [0,∞). If 0 < m ≤
f (τ) ≤ M < ∞ and

Iα
0t f (t)≥

( 1

1−α

[

1− e−
1−α

α ·t
])−p/q

, (43)

then the inequality

Iα
0t

[

f p(t)
]

≤
(M

m

)1/q

·
(

Iα
0t f (t)

)p+1

holds.

Proof.Using theorem 23 and condition (43), we obtain

Iα
0t

[

f p(t)
]

= Iα
0t

[ f p(t)

(1)p/q

]

≤
(M

m

)1/q

·

(

Iα
0t f (t)

)p

(

Iα
0t1

)p/q

=
(M

m

)1/q

·
( 1

1−α

[

1− e−
1−α

α ·t
])−p/q

·
(

Iα
0t f (t)

)p

≤
(M

m

)1/q

·
(

Iα
0t f (t)

)p+1

as required.
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Remark.For any p > 1, with f a positive and continuous
function, we note that

0< m ≤ f p(τ)≤ M < ∞ ⇔ 0< m1/p ≤ f (τ)≤ M1/p < ∞.
(44)

Theorem 25.Let 0 < α < 1, p > 1 with 1
p
+ 1

q
= 1, and f

be a positive and continuous function on [0,∞). If

0 < m ≤ f p(τ) ≤ M < ∞, τ ∈ [0, t],

then

[

Iα
0t f p(t)

]1/p

≤
(M

m

)2/pq( 1

1−α

[

1− e−
1−α

α ·t
])− p+1

q
(

Iα
0t f 1/p(t)

)p

.

(45)

Proof.Putting g(τ) = 1 into theorem 22, yields

[

Iα
0t f p(t)

]1/p
·
[

Iα
0t(1)

]1/q
≤
(M

m

)1/pq

· Iα
0t

[

f (t)
]

.

which is equivalent to

[

Iα
0t f p(t)

]1/p

≤
(M

m

)1/pq

·
( 1

1−α

[

1− e−
1−α

α ·t
])−1/q

· Iα
0t [ f (t)].

(46)

Substituting g(τ) = 1 into theorem 21 and using (44), we
obtain

[

Iα
0t f (t)

]1/p
·
[

Iα
0t(1)

]1/q
≤
(M

m

)1/p2q

· Iα
0t

[

f 1/p(t)
]

,

that is

[

Iα
0t f (t)

]1/p

≤
(M

m

)1/p2q

·
( 1

1−α

[

1− e−
1−α

α ·t
])−1/q

· Iα
0t [ f

1/p(t)].

Hence, we can write

Iα
0t f (t)

≤
(M

m

)1/pq( 1

1−α

[

1− e−
1−α

α ·t
])−p/q(

Iα
0t [ f

1/p(t)]
)p

.

(47)

Combining (46) with (47), inequality (45) follows.
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4 Conclusion

In this paper, we presented some interesting fractional
inequalities using the Caputo-Fabrizio fractional integral.
The results are concerned with some inequalities using
functions with the same sense of variation. As a future
work, authors are planning to use these inequalities to
prove existence and uniqueness of some Caputo-Fabrizio
ordinary fractional differential equations.
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[18] J.F. Gómez-Aguilar et. al, Electrical circuits described by a

fractional derivative with regular Kernel, Revista Mexicana

de Fı́sica (2016), vol. 62, pp. 144-154.
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