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Abstract 

Deciding membership function of an object to uncertain class of objects in an 
information system is essential particularly, all things considered, displaying issues. This 
paper will present a comparison between different ways of constructing membership 
function of an object. We initiate a concept based on dissimilarity and similarity between 
objects using values of their features.  The fundamental tool is classes resulted from 
dissimilarity and similarity. We will also express a classification relation and minimum 
and maximum memberships correspond to these classifications.  
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1. Introduction 

Organizations need information to analyze problems, control their work, make 
decisions and produce new services. The information system handles and processes 
information which can be considered the backbone of organizations. Information systems 
are in every branch of our daily life such as education, finance, healthcare, businesses, and 
government. A tool to deal with the uncertainty of these systems became an utmost 
necessity. Rough set theory was presented by Pawlak [1-3] in 1980's to deal with uncertain 
data or incomplete knowledge. Rough sets handled the uncertainty of data depending on 
approximations and equivalence relations. Another issue of classification is clustering 
which has many methods and the more similar objects in the same cluster than the 
dissimilar objects in a different cluster under a specific condition. The nature of collected 
data determines the measuring criteria of similarity. Algorithms of quantitative and 
qualitative data, graph diagrams, and similarity and dissimilarity measures were presented 
[4-7]. Membership of an object to a set is an important issue to identify participation of 
each object in this set. Membership was discussed [8] from a topological view which was 
extended from the definition of  rough membership function[9].Topological space has an 
intersection between basis but rough set classes have no intersection. [10] discussed the 
opinion of classes intersection in rough set and introduced a membership of an object to a 
class. In this case, an object can belong to more than one class, so it has different 
memberships minimum, maximum and average. From this point of view, we will introduce 
a membership function of an object to a set depending on the dissimilarity measures and 
similarity between objects. We will also define relations or classes then determine the 
membership of an object to a set. Comparison between minimum, maximum and 
membership of topological view will be mentioned. The decision of most, least 
membership value can be chosen by the expert. 
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The next sections of this paper is developed to preliminaries used in the paper, section 
two presents main definitions, results and examples. Section three is reserved for the more 
results and illustrations. 

2. Preliminaries 

In this section, we will mention some essential basics and definitions of rough set and 
information system representation. The dissimilarity and similarity between attributes of 
objects esteem are presented. Likewise, the membership of rough set and topology is also 
mentioned.  

Definition 2.1 [1] 

The information system is a pair 𝑆 = (𝑈, 𝐴), where 𝑈 is a nonempty finite set called the 
universe and  𝐴 is a nonempty finite set of attributes. Every attribute 𝑎 ∈ 𝐴 is a total 
function 𝑎: 𝑈 → 𝑉𝑎 , where 𝑉𝑎 is the set of values of 𝑎 called the domain of 𝑎. 

Definition 2.2 [1] 

Let  𝐵 be a subset of attributes A  (𝐵 ⊂ 𝐴) , a binary relation 𝐼𝑁𝐷(𝐵) called 
indiscernibility relation is defined as follows: 

𝐼𝑁𝐷(𝐵) = {(𝑥, 𝑦) ∈ 𝑈2 ∶ ∀ 𝑎 ∈ 𝐵, 𝑎(𝑥) = 𝑎(𝑦)} 

So 𝐼𝑁𝐷(𝐵)is an equivalence relation and  𝐼𝑁𝐷(𝐵) = ⋂ 𝐼𝑁𝐷(𝑎)𝑎∈𝐵  

This view classify the objects depends on the equal features between objects as a result of 
this there is no intersection between relations. 

Definition 2.3[7] 

Let an information system 𝑆 = (𝑈, 𝐴)  and two objects  𝑥, 𝑦 ∈ 𝑈 described by 𝑎𝑘 attributes 
subset of  . Mismatches of the attributes between two objects are the dissimilarity measures 
which is defined as 

𝑑(𝑥, 𝑦) = ∑ 𝛿(𝑎𝑖(𝑥), 𝑎𝑖(𝑦))

𝑘

𝑖=1

 

Where 

𝛿(𝑎𝑖(𝑥), 𝑎𝑖(𝑦)) = {
0 ∶  𝑎𝑖(𝑥) = 𝑎𝑖(𝑦) 
1 ∶  𝑎𝑖(𝑥) ≠ 𝑎𝑖(𝑦)

 

This can be considered as another view of an information system classification. The 
produced classes are relations of dissimilarity between objects. The similarity between 
objects is the opposite way of dissimilarity or simply the number of matches between two 
objects. 
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Definition 2.4 [9] 

Let 𝑆 = (𝑈, 𝐴) be an information system and let ∅ ≠ 𝑋 ⊂ 𝑈. The rough 𝑆-membership 
function of the set 𝑋, denoted by 𝜇𝑋

𝑆  is defined as follows 

𝜇𝑋
𝑆 (𝑥) =  

|[𝑥]𝐴∩𝑋|

|[𝑥]𝐴|
 for 𝑥 ∈ 𝑈 

Definition 2.5 [8] 

Let 𝜏 be a topology on a finite set 𝑈, where its base is 𝛽,then the rough membership 
function is 

𝜇𝑋
𝜏 (𝑥) =  

|{∩𝛽𝑥}∩𝑋|

|∩𝛽𝑥|
  ,  𝛽𝑥 ∈ 𝛽 , 𝑥 ∈ 𝑈 

We will call this definition  rough-topology membership function in the following section. 

3. Results 

In this section, we will illustrate the previous definitions and introduce a comparison 
between membership views. We will also work on the resulted relations of the dissimilarity 
and similarity relations. 

Definition 3.1  

Let an information system 𝑆 = (𝑈, 𝐴)  and two objects  𝑥, 𝑦 ∈ 𝑈 are described by 𝑎𝑘 
attributes subset of  . The matches of the attributes between two objects is the similarity 
between objects which is defined as 

𝑠(𝑥, 𝑦) = ∑ 𝜆(𝑎𝑖(𝑥), 𝑎𝑖(𝑦))

𝑘

𝑖=1

 

Where 

𝜆(𝑎𝑖(𝑥), 𝑎𝑖(𝑦)) = {
0 ∶  𝑎𝑖(𝑥) ≠ 𝑎𝑖(𝑦) 

1 ∶  𝑎𝑖(𝑥) = 𝑎𝑖(𝑦)
 

Definition 3.2 

Let 𝑆 = (𝑈, 𝐴) be an information system, 𝑥𝑖 and 𝑥𝑗 subset of objects and 𝑥𝑖 𝑅 𝑥𝑗  represents 
the relation between them which is resulted from the dissimilarity measures and similarity 
representation can be defined as  
 

𝑥𝑖  𝑅 = {𝑥𝑗: 𝑥𝑖 𝑅 𝑥𝑗}  where  𝑑(𝑥𝑖, 𝑥𝑗) ≠ 0 and 𝑠(𝑥𝑖 , 𝑥𝑗) ≠ 0 

These relations are considered a classification of objects with respect to dissimilarity and 
similarity between objects. We will use these classes instead of the classical classes of an 
indiscernibility relation.  
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Example 3.1 

The following information system in Table 1 consists of 5-objects {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} and 3-
attributes  {𝑎1, 𝑎2, 𝑎3} .  

 
     U 

               attributes 

𝑎1 𝑎2 𝑎3 

𝑥1 1 5 20 

𝑥2 1 9 10 

𝑥3 1 5 10 

𝑥4 4 8 15 

𝑥5 3 5 20 

Table 1 an information system 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

𝑥1 0 2 1 3 1 

𝑥2 2 0 1 3 3 

𝑥3 1 1 0 3 2 

𝑥4 3 3 3 0 3 

𝑥5 1 3 2 3 0 

Table 2 dissimilarity measures representation 

Table 2 represents the dissimilarity measures of an information system of Table 1 
and we apply Definition 2.3.  This table represents the number of different attributes which 
can be considered dissimilarity representation of an information system.  Each value in this 
table represents the number of the corresponding attributes of objects are far away from 
each others. Each value of Table 2 takes 4-values 0,1,2 and 3 because we have only 3-
attributes. The value 0 means the corresponding 2-objects have an identical value for all 
attributes. The value 1 means only 1-mismatch attribute between the 2-objects. The value 2 
means 2-mismatches between attributes but, value 3 means there is no match at all between 
objects. 

It's obvious that similarity between objects is the complement of dissimilarity 
measures. Similarity can be obtained using Definition 3.1 to take 1 if the two objects have 
the same value and vice versa. 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 

𝑥1 3 1 2 0 2 

𝑥2 1   3 2 0 0 

𝑥3 2 2 3 0 1 

𝑥4 0 0 0 3 0 

𝑥5 2 0 1 0 3 



94 
 

Table 3 similarity representation 

Table 3 shown represents the similarities between objects of table 1. We can 
observe that this table is the opposite of Table 2. The number of matches between objects 
is calculated instead of the number of mismatches. So the value 3 means the two objects 
are identical, but value 0 means there are no matches between objects. The value 1 and 2 
mean there is one-match and two-match between objects, respectively.    

The resulting classes of Table 2 using Definition 3.2 are 

𝑥1 𝑅 = {𝑥2, 𝑥3, 𝑥4, 𝑥5}, 𝑥2 𝑅 = {𝑥1, 𝑥3, 𝑥4, 𝑥5}, 𝑥3 𝑅 = {𝑥1, 𝑥2, 𝑥4, 𝑥5} 

𝑥4 𝑅 = {𝑥1, 𝑥2, 𝑥3, 𝑥4},  𝑥5 𝑅 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} 

And classes of Table 3 are  

𝑥1 𝑅 = {𝑥1, 𝑥2, 𝑥3, 𝑥5}, 𝑥2 𝑅 = {𝑥1, 𝑥2, 𝑥5}, 𝑥3 𝑅 = {𝑥1, 𝑥2, 𝑥3, 𝑥5} 

𝑥4 𝑅 = {𝑥4}, 𝑥5 𝑅 = {𝑥1, 𝑥3, 𝑥5} 

We also observed the intersection between classes of dissimilarity and similarity alike 
classes of an indiscernibility relation.  

Membership function is an important concept which identifies the participation of 
an object with respect to a set. From the above relations, we can observe that an object 
participates in more than one class so it can have more than one membership value with 
respect to the class. In the following, we will calculate rough membership of Definition 2.4 
according to the classes of dissimilarity and similarity representation, respectively. 

To calculate the membership, we should choose a set 𝑋 so we will choose random sets, 
then we will apply Definition 2.4.  

Case 1: 𝑿 = {𝒙𝟏, 𝒙𝟐} 

 
objects 

𝜇𝑋
𝑆 (𝑥𝑖) with respect to 𝑥𝑖 𝑅 

𝑥1 𝑅 𝑥2 𝑅 𝑥3 𝑅 𝑥4 𝑅 𝑥5 𝑅 
𝑥1 − 1

4
 

1

2
 

1

2
 

1

2
 

𝑥2 1

4
 

− 1

2
 

1

2
 

1

2
 

𝑥3 1

4
 

1

4
 

− 1

2
 

1

2
 

𝑥4 1

4
 

1

4
 

1

2
 

− 1

2
 

𝑥5 1

4
 

1

4
 

1

2
 

1

2
 

− 

Table 4 membership of case 1 dissimilarity representation 
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Case 2: 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑} 

 
objects 

𝜇𝑋
𝑆 (𝑥𝑖) with respect to 𝑥𝑖 𝑅 

𝑥1 𝑅 𝑥2 𝑅 𝑥3 𝑅 𝑥4 𝑅 𝑥5 𝑅 
𝑥1 − 1

2
 

1

2
 

3

4
 

3

4
 

𝑥2 1

2
 

− 1

2
 

3

4
 

3

4
 

𝑥3 1

2
 

1

2
 

− 3

4
 

3

4
 

𝑥4 1

2
 

1

2
 

1

2
 

− 3

4
 

𝑥5 1

2
 

1

2
 

1

2
 

3

4
 

− 

Table 5 membership of case 2 dissimilarity representation 

Case 3: 𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒} 

 
objects 

𝜇𝑋
𝑆 (𝑥𝑖) with respect to 𝑥𝑖 𝑅 

𝑥1 𝑅 𝑥2 𝑅 𝑥3 𝑅 𝑥4 𝑅 𝑥5 𝑅 
𝑥1 − 3

4
 

3

4
 

3

4
 

1 

𝑥2 3

4
 

− 3

4
 

3

4
 

1 

𝑥3 3

4
 

3

4
 

− 3

4
 

1 

𝑥4 3

4
 

3

4
 

3

4
 

− 1 

𝑥5 3

4
 

3

4
 

3

4
 

3

4
 

− 

Table 6 membership of case 3 dissimilarity representation 

 

From Table 4 to Table 6, we can say that each object has a membership to 𝑋 with 
respect to the corresponding 𝑥𝑖  𝑅 which contains the object. And membership value of all 
objects belongs to 𝑥𝑖  𝑅 with respect to 𝑋 are equal. We need to have only one membership 
value of an object so we can choose minimum or maximum membership. In the following, 
we will apply Definition 2.5 in each case and compare the result with our previous results 
considering the minimum and maximum membership. 

 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 1

4
 

1

2
 

1 

𝑥2 1

4
 

1

2
 

1  
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𝑥3 1

4
 

1

2
 

0 

𝑥4 1

4
 

1

2
 

0 

𝑥5 1

4
 

1

2
 

0 

Table 7 dissimilarity representation membership comparison of case 1 
 

 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 1

2
 

3

4
 

1 

𝑥2 1

2
 

3

4
 

1  

𝑥3 1

2
 

3

4
 

1 

𝑥4 1

2
 

3

4
 

0 

𝑥5 1

2
 

3

4
 

0 

Table 8 dissimilarity representation membership comparison of case 2 
 

 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 3

4
 

1 1 

𝑥2 3

4
 

1 1  

𝑥3 3

4
 

1 1 

𝑥4 3

4
 

1 1 

𝑥5 3

4
 

1 0 

Table 9 dissimilarity representation membership comparison of case 3 
 

 

From Table 7 to Table 9 we illustrate the comparison in each case and topological 
view of classes taking into account the intersection between them. But in our case resulting 
classes only intersect on one object. As a result of this, the membership is 1 and 0 
according to the object belongs or not belongs to 𝑋, respectively. This makes the 
membership like the case of the classical crisp set. In some cases the maximum rough 
membership value equal to the topological rough membership value. This gives a chance to 
choose between more than membership value according to the problem we have. 

In the following, we will also make a comparison of each case, but we will take into 
account similarity between objects and their corresponding classes. Tables will consider 
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the resulting minimum and maximum of rough membership then we will compare them 
with the topological view of rough membership. 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 1

3
 

1

2
 

1

2
 

𝑥2 1

3
 

1

2
 

2

3
 

𝑥3 1

3
 

1

2
 

1

3
 

𝑥4 0 0 0 
𝑥5 1

3
 

1

2
 

1

2
 

Table 10 similarity representation membership comparison of case 1 
 

 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 2

3
 

3

4
 

1

2
 

𝑥2 2

3
 

3

4
 

2

3
 

𝑥3 2

3
 

3

4
 

2

3
 

𝑥4 0 0 0 
𝑥5 2

3
 

3

4
 

1

2
 

Table 11 similarity representation membership comparison of case 2 

 

objects Rough membership Rough-topology 
membership Min Max 

𝑥1 1

2
 

3

4
 

1

2
 

𝑥2 1

3
 

2

3
 

2

3
 

𝑥3 1

2
 

3

4
 

2

3
 

𝑥4 1 1 1 
𝑥5 1

2
 

3

4
 

1

2
 

Table 12 similarity representation membership comparison of case 3 
 

We can conclude from the above comparison that in some cases, there is a match among 
minimum or maximum membership and topological membership values. In other cases, 
the value of topological membership is 0 but minimum and maximum values are not and 
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the opposite is true. This gives us a variety of choice and we can take a decision according 
to our desire.  

 

Conclusion 

The proposed strategy for developing another view of membership function based on 
dissimilarity and similarity can help in decision making of uncertain issues. This view is 
constantly hard to be developed so our technique can take care of new issues of areas in 
social, financial aspects, arithmetic, and so on. 
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