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Abstract: Thin film materials are important because of their potential low cost processing with minimal material usage 
while fulfilling application requirements. Thin films also enable applications where low weight and mechanical flexibility 

are decisive. A number of studies verified that their physical and chemical properties are highly dependable on the 

deposition methods. Thin films can be synthesized by varieties of physical and chemical deposition techniques. Among 

these techniques chemical bath deposition (CBD) is one of the most suitable routes to get uniform, well adherent and good 

reproducibility thin films. Moreover, currently it attracts considerable attention due to its low temperature compatibility, 

large area deposition with better homogeneity and cost effectiveness.  But there are lots of factors affecting the deposition 

mechanism and the quality of the thin films. Hence, it is very helpful to know about these different factors which influence 

CBD method. The intention of this review paper is to present a screening of different works carried out so far to achieve a 

better understanding of the major factors affecting chemical bath deposition method in order to get the best out of this 

deposition technique. 

Keywords: Chemical bath deposition, Metal chalcognide thin films, Solubility Product, Semiconductor. 

 

 

1 Introduction 

Chemical bath deposition (CBD) has been used as synthesis 
method for over 140 years  [1] and in the recent two 

decades it has been widely applied successfully for the 

synthesis of  different types of chalcogenide (CdS, SnS2, 

CdSe, PbS), chalcopyrite (CuInS2, CuInSe2), and oxide 

(ZnO, CdO, TiO2) thin film materials for different 

optoelectronics  and solar cell devices.  Thin film is a 

traditional well established material technology. However, 

thin film technology is still being developed on a daily 

basis since it is a key in the twenty first century 

development of new materials such as nanometer materials 

and/or a man-made super lattices [2]. 
Thin film studies have directly or indirectly advanced many 

new areas of research in solid state physics and chemistry 

which are based on phenomena uniquely characteristic of 

the thickness, geometry, and structure of the film [3]. Thin 

films have very interesting properties that are quite 

different from those of the bulk materials which they are 

made of. As the film becomes thinner, the surface 

properties become more important than the bulk. The other  

Cause of interest is the miniaturization of elements such as 

 

 

Electronic resistors, thin film transistors and capacitors.   

The thin films are characterized by a number of interrelated 

parameters like the thickness, crystalline orientation and 

multilayer aspects. These film natures highly influenced by 

the deposition technique. Chemical bath deposition method 

(CBD) is one of the well-established thin film deposition 

techniques so far. In CBD, deposition of thin films takes 

place from aqueous solutions at low temperatures  (Room 
temperature to 90 0C) by a chemical reaction between 

dissolved precursors, with the help of a complexing agent 

(or ligand) [4]. Amongst the various methods available for 

the synthesis of thin films, the chemical bath deposition 

method have a several advantages and widely used for thin 

film deposition because it is relatively inexpensive, 

convenient for large area deposition and ability of tuning 

thin film properties by adjusting and controlling the 

deposition parameters [5]. The starting chemicals are 

commonly available and cheap. It gives pin-hole free and 

uniform deposits of films since solution and substrate are in 

contact during deposition process. With CBD method, a 
large number of substrates can be also coated in a single 

run with a proper chemical bath design. Electrical 

conductivity of the substrate is not the necessary 

requirement. The low temperature deposition avoids 
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oxidation and corrosion of metallic substrates [6]. It is also 

a method free of the many inherent problems associated 

with high temperature techniques such as MOCVD [7]. 

Another attractive feature of the CBD method is that, 

ternary and quaternary compounds can be easily 

synthesized without the use of any sophisticated 
instrumentation and process control [8]. However CBD 

have a lot of advantages there are several factors affect thin 

film deposition process which should need serious 

attention.  For instant the rate of deposition and terminal 

thickness depend upon the number of nucleation centers, 

supersaturation of the solution and rate of stirring. The 

growth kinetics depends on the concentration of ions, their 

velocities and nucleation and growth processes on 

immersed substrates. In CBD deposition, the key is to 

control the reaction rate so that they occur slowly enough to 

allow progressive deposition on the substrates. Hence, it is 

really important to know how we control the deposition rate 
by considering different factors which influence it. 

Therefore, in this review paper attempt has been made to 

point out the major factors which affect the chemical bath 

deposition method which may alter the final chemical and 

physical properties of the deposited thin films.  

 

2 Basic principles of CBD and Concept of 

Solubility Product 

 
The basic working principle behind the CBD process is 

similar to those for all precipitation reactions and it is based 

on relative solubility of the product. At a given temperature 

when the ionic product (IP) of reactants exceeds the 

solubility product (KSP), precipitation occurs. Whereas if 

the ionic product is less than the solubility product, then the 

solid phase produced will dissolve back to the solution 

resulting in no net precipitation [9]. A central concept 

necessary to understanding the mechanisms of CBD is that 

of the solubility product (Ksp). The solubility product gives 

the solubility of a sparingly soluble ionic salt (this includes 
salts normally termed “insoluble”). Sparingly soluble salt, 

𝐴𝐵(𝑆), when placed in water, a saturated solution 

containing A+ and B– ions in contact with undissolved solid 

AB is obtained and equilibrium is established between the 

solid phase and ions in the solution as: 

 

 

                 𝐴𝐵(𝑆) ⇄   𝐴+ +  𝐵−               (1.1) 
 

 

Applying the law of mass action, 

 

                    𝐾 =  
[𝐴+][𝐵−]

[𝐴𝐵]
                          (1.2) 

 

 

where K is stability constant, [𝐴+], [B]and [𝐴𝐵] are 

concentrations of A+, B– and AB in the solution, 

respectively. The concentration of pure solid is a constant 

number, i.e.  

                𝐶𝐴𝐵 (𝑆) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝐾∗             (1.3)                  

                

                                  

                      𝐾 =  
[𝐴+][𝐵−]

𝐾∗                                     (1.4)                                  

                            

                      KK* = [A+][B-]           (1.5)                                                  

                

Since K and K* are constants, the product of 𝐾𝐾∗ is also a 

constant, say KsP, [6]. Therefore equation (1.5), becomes 

         

                         Ksp = [A+][B-]       (1.6)                                                           

                
The constant, KsP, is called solubility product (SP) and 

[𝐴+][B ̄] is called the ionic product (IP). When the solution 

is saturated, the ionic product is equal to the solubility 

product. But when the ionic product exceeds the solubility 

product (𝐼𝑃 𝑆𝑃 =  𝑆 > 1⁄ ), the solution is supersaturated 

(where S is degree of supersaturation), precipitation occurs 

and ions combine on the substrate and in the solution to 

form nuclei.  

There are three main factors which affect the solubility 

product these are temperature, solvent and particle size 

[10].  The equilibrium between a precipitate and its ions in 
solution will shift according to whether the heat of solution 

is endothermic or exothermic [11]. Using a solvent of lower 

dielectric constant, the solubility of moderately insoluble 

substance in water is reduced by the addition of alcohol or 

some other water miscible solvent. As particle size 

decreases, solubility appears to increase.  

Solubility constants have been reported by using different 

methods which includes calorimetric, cation exchange, 

conductivity, ion exchange, polarography, thermodynamic 

data, rate of reaction etc. The solubility constants are found 

to be dependent on temperature, medium and method of 
measurements and therefore a difference of several orders 

of magnitudes in solubility constants of a material has been 

reported in the literature [6].   

A complexing agent acting as a catalyst is usually 

employed in a bath to control the reaction otherwise 

spontaneous reaction and sedimentation of materials will be 

obtained [9]. The more soluble the salt is, the greater the 

ion product and the greater the Ksp. However, Ksp also 

depends on the number of ions involved, for any formation 

of thin film there is some minimum number of ions or 

molecules, which produce a static phase in contact with 

solution, called nucleus. Nucleation on the substrate of 
surface starts at local homogeneity. The rate at which nuclei 

forms on the surface of the substrate, depends on the degree 

of  supersaturation [12]. Ksp can be derived theoretically 

from the free energies of formation of the species involved 

in the dissolution equilibrium. Thus, for the equilibrium  

          𝑁𝑎 𝑃𝑏 (𝑠) ⇄ 𝑎𝑁𝐶+(𝑎𝑞) +  𝑏𝑃𝑑−(𝑎𝑞)            (1.8)                               

where  𝑁𝑎   and  𝑃𝑏 are sources of cations and anions. The 

free energy of the dissolution is given by 
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                 ∆𝐺0 = 𝑎∆𝐺0(𝑎𝑁𝐶+(𝑎𝑞)) +  𝑏∆𝐺0(𝑃𝑑−(𝑎𝑞)) −

∆𝐺0(𝑁𝑎 𝑃𝑏 (𝑠))                                                         (1.9) 
 

Since  

                         ∆𝐺0 =  −𝑅𝑇𝑙𝑛𝐾                             (1.10)                                                                           

Then 

                      𝑙𝑛𝐾𝑆𝑃 =  −
∆𝐺0

𝑅𝑇
                                   (1.11)                                                                     

Since Ksp is a thermodynamic quantity, the ionic product 
that should result in precipitation may not necessarily do so 

for kinetic reasons (hence the term used earlier to qualify 

precipitation: “in principle”. This would be a case of 

supersaturation. In practice, however, the solubility product 

does give a fairly good idea of when precipitation will 

occur in most cases [13]. The preparation of metal 

sulphides by introducing 𝑆2− ions into aqueous solution of 

metal salt to effect chemical precipitation is well 

established. In actual fact, in all but highly alkaline 

solutions most of the sulphur ion will be in the form of 𝐻𝑆− 

rather than 𝑆2−. This is due to the equilibrium between the 

two species: 

 

             𝐻𝑆−  ⇄  𝑆2− + 𝐻+                 𝐾𝑎 =
 10−17.3                (1.12)                                 

 

or alternatively, in terms of hydroxide concentration which 

is related to the hydrogen ion concentration through the ion 
product of water:  

 

   𝐻𝑆− + 𝑂𝐻−   ⇄  𝑆2− +  𝐻2𝑂       𝐾𝑎 =  10−3.3   (1.13)                   

 

 

Thus at a pH of 11, a common value in chemical deposition 

(CD), which gives a value for [𝑂𝐻−] at room temperature 

of 10-3 M, the 𝑆2−concentration will be 

[𝑆2−] =  10−3.3 [𝐻𝑆−][𝑂𝐻−] =  10−6.3[𝐻𝑆−]     (1.14)                                              

Therefore the main sulphur ion in solution will be 𝐻𝑆− . 

Similarly, selenium ions are generated by dissolving 

inorganic sodium selenosulphate in an alkaline solution as 

given by the reaction [14].   

 

𝑁𝑎2𝑆𝑒𝑆𝑂3 +  𝑂𝐻−  →  𝑁𝑎2𝑆𝑂4 + 𝐻2𝑂 + 𝑆𝑒2−        (1.15) 

 

If high concentration of 𝑆2− or 𝑆𝑒2− ions exists locally 

such that the solubility product is exceeded, localized 

spontaneous precipitation of a sulphide or selenide may 

occur as the case may be. This situation can be avoided by 

generating chalcogen ions slowly and uniformly throughout 

the volume of the solution. In general the principle of CBD 

technique is to control the chemical reaction so as to effect 

the deposition of a thin film by precipitation [13]. 

Chemical deposition reactions sometimes proceed via a 

metal hydroxide intermediate; the concentration of 𝑂𝐻− 

ions in the solution is particularly important in such cases. 

Since almost all CD reactions are carried out in aqueous 

solutions, the pH of the deposition solution will give this 

concentration. The 𝑂𝐻− concentration increases 

(decreases) by one order of magnitude for every unit 
increase (decrease) in pH [13]. This means that the 

formation of a metal hydroxide (whether as a colloid or as a 

precipitate) in aqueous solution will be strongly dependent 

on temperature when the product of the free metal ions and 

𝑂𝐻− ions is close to the hydroxide solubility product, 

although increase in Ksp with temperature may partially 

offset this effect [15]. 

 

3 Factors Which Will Affect Chemical Bath 

Deposition Method 

3.1 Effect of Chemical Bath Solution pH  
 

The reaction rate as well as rate of deposition depends on 

the supersaturation condition and rate of the formation of 

MX (where M and X is the number of metals and O-/𝑂𝐻− 

ions respectively). If the concentration of 𝑂𝐻− ions in the 

solution is higher, the M ions concentration will lower and 

the reaction rate will be slow [16]. At a certain pH, the 

concentration of M ion decreases to a level such that the 

ionic product of M and X becomes less than the solubility 

of MX and a film will not be formed. For the growth of 
good quality thin films, the hydroxy ions in precursor 

solution are necessary. The thin film formation depends on 

the pH of the reaction mixture and pH depends on 𝑂𝐻− 

ions. The decrease in pH results in porous, non-reflecting, 

powdery and weakly adhered thin films on the substrates. 

At higher pH metal ion concentration will be lower and the 

reaction rate will be slow. When an increase in pH make 

the metal ion concentration decreased, as a result the rate of 

film formation will be decreased [16, 17].  Films of the 

same material but deposited at acidic and basic medium 

may have different properties. The other aspect in which 
pH influences is that of the equilibrium between the 

complexing agents and water. The equilibrium in the 

aqueous solution gives rise to 𝑂𝐻− ions, if 𝑂𝐻− ions are 

part of the complex, (as with the intermediate of ZnO) an 

increase in pH increases 𝑂𝐻− ion concentrations hence 

making the complex more stable thus reducing the 

concentration of free metal ions. T. Ben Nasr et al [20] 

deposited ZnS thin films using CBD method by changing 

the pH of the bath solution fixing the other deposition 

parameters constant. Their results suggested that the pH 
contributes had noticeably effects on the growth and crystal 

structure of deposited ZnS thin films. It was particularly 

observed that the best crystallinity of the ZnS thin films 

was obtained at pH of 10. The decreasing of the pH value 

from 10.99 to 10 is related with the increasing of the (111) 

diffraction peak intensity. The optical transmission 

coefficient was found to increase when the pH increased 

from 10 to 11.5. This may be interpreted by the decrease of 
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the film thickness. ZnS film prepared at pH 11.5 shows a 

high transmission coefficient (70%) and a wide band gap of 

3.67 eV. The influence of pH (9, 10.5, 11 and 12.5) on an 

aqueous alkaline chemical bath deposition of PbS thin films 

were  studied by A.N. Chattarki, et al [19]. They reported 

that the film growth is found to be dependent on the pH of 
the reaction bath. The EDX results revealed that the PbS 

samples were less stoichiometric for a low pH value (< 

10.5) and slants in the direction of stoichiometry as the pH 

value increased (> 10.5). The observed average ratio of 

Pb/S was 1.05 for pH=10.5, which indicated that the 

product composition of Pb2+ and S2− is at approximate ratio 

of 1:1. The SEM study verified that at low pH values, 

growth of the crystallites is not clear compared to the 

growth at higher pH values. The densely packed embedded 

crystallites appear to be randomly oriented with irregular 

and spherical shapes of similar sizes. 

In most examples of CBD from alkaline solution, the 
deposition rate increases with increase in pH. This is due to 

both the greater rate of decomposition of the chalcogenide 

precursor at higher pH (this decomposition usually involves 

hydroxide ions) and, in many cases, the greater probability 

of solid hydroxide formation (as long as this is not 

excessive). The hydrated metal hydroxy complex is a 

soluble species. However, if the pH is sufficiently high, the 

metal hydroxide, which is relatively insoluble for most 

metals (apart from the alkali group metals) will precipitate. 

[13]. 

 

3.2 Effect of Complexing Agent 
 

Complexing agents, also known as ligands, are typically 
added to the chemical bath to control the availability of the 

free cation through thermodynamic equilibrium. The 

concentration of the complexing agent is typically tuned 

together with that of the metal salt to achieve desired film 

properties such as deposition rate, adhesion, and roughness 

[20]. It is also greatly influences the structural, electrical, 

morphological and optical properties of the thin films [21, 

22]. In CBD technique the process depends on the slow 

release of chalcogenide ions into an alkaline/acidic solution 

in which the free metal ion is buffered at a low 

concentration [7]. The free metal ion concentration is 
controlled by the formation of complex species according 

to the general reaction: 

 

                          𝑀(𝐴)+2     ↔ 𝑀+2 +  𝐴               (2.20)                                                     

 

Where M is the metallic ion sources and A is the 

complexing agent; here concentration of the free metal ions 

at a particular temperature is represented by the relation:  

                       𝐾 =  
[𝑀+2][𝐴]

[𝑀(𝐴)+2]
                                     (2.21)                                                                 

Where K being the instability constant of the complex ion. 

The instability constant is different for different 

complexing agents. As the instability constant increases, 

more number of ions will be released. The stability of the 

complex also depends on temperature and pH of the 

reaction bath. Increase in temperature of the solution will 

make the complex less stable; whereas an increase in pH 

generally makes it more stable [13]. Film formation occurs 

by combination of released metal ions from complex metal 
ion source and chalcogen source. It helps to limit the 

hydrolysis of the metal ion and impart some stability to 

bath otherwise it undergoes rapid hydrolysis and 

precipitation [17]. In general complexing agents usually 

form complexes with metal ions used to increase the bath 

stability, control deposition rate and good quality films, it 

also greatly influence the structural and electro-optical 

properties of the thin film [13, 23]. Nature of complexing 

agents may influence the final products. For example, when 

ammonia was used as a complexing agent for the 

preparation of ZnS thin film, it was found to result in 

ZnO/Zn(OH)2 phase rather than ZnS. However when two 
complexants ammonia and hydrazine were  used, the oxide 

and hydroxide phases could be avoided to a great extent 

[7].  In a recent studies, Carrillo-Castillo et al. [21] have 

investigated the effect of hydrazine and hydrazine-ammonia 

complexing agents on PbS thin film growth. They 

suggested that complexing agent reduces the deposition rate 

due to the higher complexation and the slow release of Pb2+ 

ions. K.C. Preetha et al. [24 deposited PbS thin films from 

three different complexing agents i.e triethanolamine, 

diethanolamine and hexamine.  They found the best 

crystallinity and high adhesion PbS thin film from 
hexamine complexing agent. Moreover, they recommended 

this thin film for solar control coating. Jun Liu, et al [22] 

were deposited ZnS thin films on glass substrates via the 

CBD technique using tri-sodium citrate or hydrazine 

hydrate as the complexing agent. The effects of the 

different complexing agents and their concentrations on the 

structure, composition, morphology, optical properties and 

growth mechanism of the ZnS thin films were investigated. 

The ZnS thin films prepared using tri-sodium citrate were 

composed of a large number of uniform but not very dense 

particles with diameters of approximately 100–200 nm. 
However, the ZnS thin films prepared using hydrazine 

hydrate were composed of very uniform and dense fine 

particles with diameters of 20 to 30 nm. The optical band 

gap increased from 3.72 eV to 3.87 eV with an increase in 

the tri-sodium citrate concentration from 0.2 M to 0.8 M 

and from 3.74 eV to 3.88 eV with an increase in the 

hydrazine hydrate concentration from 0.16 M to 0.82 M. 

The nucleation density of Zn(OH)2 nuclei on a substrate 

plays an important role in the growth of high-quality ZnS 

thin films. If a compound containing more than one cation 

is to be deposited, complexation could be used to offset the 

difference in Ksp between the individual metal compounds.  
S.B. Patil and A.K. Singh  [25] were deposited CdS thin 

films from two complexing agents i.e. ammonia and 

triethanolamine and they compared their 

photoelectrochemical (PEC) performance. They found that 

triethanolamine complex led to better crystallinity and 
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marigold flower-like morphology. The improved 

crystallinity, as well as, surface area led to enhanced optical 

absorption. Due to increased surface area and optical 

absorption, in case of triethanolamine complex, the short 

circuit current density, as well as, open circuit voltage were 

increased which in turn increased overall conversion 
efficiency. In our recent work [26] we also observed that 

the concentration of ethanolamine (ETA) complexing 

significantly affects the structural, optical, morphological  

and electrical properties of PbS thin films deposited by 

CBD method. It is observed from the fig.1 that the 

resistivity decreased as ETA molar concentration increased. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

3.3 Effect of Bath Temperature   

 
The rate of chemical reaction in the bath can also be 

influenced by the bath temperature. As temperature 

increases dissociation of the complex increases hence the 

kinetic energy of the molecules also increases leading to 

greater interaction between ions and subsequent deposition 

at volume nucleation centers of the substrate [27]. This will 

result in increase or decrease of terminal thickness, 

depending on the extent of super saturation of the solution 

of the bath. Stirring basically brings fresh parts of the 

solvent into contact with the solute and particles are forced 
to connect and the presence of temperature assists the entire 

process for effective desired results [28]. 

This behavior may be attributed to an increase in mobility 

due to increasing crystallite size with ETA molar 

concentration . 

The experimental data also verified that a better 

conductivity (≈1.58×10−4) was observed for PbS thin film 

deposited from 1.64M molar concentration. The variations 

of conductivity and resistivity with crystalline size was also 

investigated and it was observed that conductivity has a 

direct relation with crystalline size while inverse relation 

with resistivity. Relatively high resistivity value founds at 
0.41M molar concentration may be due to its poor 

crystallinity which indicates the presence of few atomic 

layers of disordered atoms. Improvement in crystallinity 

reduces the resistivity of PbS thin films due to reduced 

grain boundary scattering. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Bath temperature has an important effect on crystal size. In 
most cases higher temperatures allow more grain growth 

whereas, lower temperatures gives very small nuclei in 

solution that are thermodynamically unstable. However, if 

the cluster is smaller than the critical nucleus size, then 

there is the possibility that the nucleus will redissolve. 

[Srinivasan and Rajesh [29]], studied the effect of 

temperature on the structural and optical properties of PbS 

thin films. Their result revealed that the crystallinity of 

films were improved when the temperature was increased 

from 30 OC to 60 OC with the preferred orientation growth 

along the (200) plane and the band gap energy decreases 

linearly from 1.2 eV to 0.9 eV. Effect of deposition 
temperature on the structural, morphological and optical 

band gap of chemically deposited PbSe thin films were 

studied by F. G. Hone and F. K. Ampong [30].  The 

samples were deposited at the bath temperatures of 60, 75 

and 90 0C respectively and characterized. The XRD results 
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Fig.1: Relation between ln ρ and the reciprocal of the absolute temperature (1000/T) of PbS thin films for various ETA 

molar concentration [26]. 

 

http://www.naturalspublishing.com/Journals.asp


48                                                                                       F.G. Hone and T.Abza..: Short Review of Factors Affecting … 
 

 

 
© 2019 NSP 

Natural Sciences Publishing Cor. 
 

revealed that the PbSe thin film deposited at 60 0C was 

amorphous in nature. Films deposited at higher 

temperatures exhibited sharp and intense diffraction peaks, 

indicating an improvement in crystallinety. The deposition 

temperature also had a strong influence on the preferred 

orientation of the crystallites as well as other structural 
parameters such as microstrain and dislocation density. 

From the SEM study it was observed that film deposited at 

90 0C had well defined crystallites, uniformly distributed 

over the entire surface of the substrate. The EDAX anlyese 

confirmed that the samples deposited at the higher 

temperature had a better stoichiometric ratio. The optical 

study revealed that the optical band gap decreased from 

2.26 eV to 1.13 eV as the bath temperature varied from 60 
0C to 90 0C. 

 

In most cases chemical bath deposition can be used to 

carefully control the crystallinity of the thin film 
semiconductors by adjusting the deposition temperature.  

The lifetime of the nucleus will then depend on its size and 

also on the temperature; lower temperatures will slow the 

redissolution step. Thus lower temperature increases the 

chance that a subcritical nucleus will eventually grow to a 

stable size rather than redissolve. In PbS thin film the band 

gap increases with increasing temperature, in contrast to the  

normal semiconductor band gap dependence on 

temperature [1, 31]. 

3.4 Effect of Deposition Time 
 

Deposition time is one of the parameter which affects thin 

film deposition in CBD method.  In most cases it has a 

great influence on structural, morphological and optical 
properties of thin films. F. G Hone et al [32], showed that 

deposition time strongly influenced the preferred 

orientations of the crystallites as well as structural 

parameters such as average crystallite size, strain and 

dislocation density for PbS thin films. In this study the 

optical band gap of PbS thin films also decreased from 1.32 

eV to 1.10 eV with increasing deposition time. O’Brien and 

Saeed, used ethylenediamine as complexing agent, higher 

deposition temperatures and glass as a substrate and found 

that the thickness of the CdS thin film increased linearly 

with deposition time [13]. In general, the growth of good 
quality semiconductor thin films by the chemical bath 

deposition technique proceeds at a slow pace. Higher 

deposition rates and higher films thicknesses are usually 

accompanied by powdery deposits and a lack of specular 

reflection. Nair et al [33] has studied intensively the effect 

of deposition period on film thickness by fixing all the 

other parameters for different semiconductor thin films and 

for most cases (not always) the film thickness increase with 

deposition time see Figure 2.  

 

F.Göde et al  [34] were studied the structural, optical, 

electrical and TSL properties of the PbS thin films prepared 
by CBD with different deposition times of 100, 115, 130 

and145 min. The optical band gap of the films decreased 

from 2.65 eV to 2.50 eV with increasing deposition time. 

The electrical conductivity of the PbS films increased from 

1.791 x 10-6 (Ωcm)-1 to 1.655 x 10-3 (Ωcm)-1 with 

increasing deposition time. The TSL study of PbS films 

with different deposition times were indicated that for all 
films, three main deconvoluted peaks (P1, P2 and P3) were 

obtained using the CGCD method. The trap energy levels 

for the main glow peak (P3) decreased from 0.50 eV to 0.45 

eV with increasing deposition time. Trapping centers in 

grown PbS thin films with activation energies of 0.50, 0.48, 

0.46 and 0.45 eV were detected by the TSL technique. 

These levels can be attributed to defects created during the 

crystals growth and/or unintentional impurities.  

In our recent work on PbSe thin films, [35] we noticed that 

the film thickness which was controlled by varying the 

deposition time had a strong influence on the structural, 

chemical composition, optical, and surface morphology of 
the PbSe thin films synthesized by CBD method. The XRD 

results demonstrated that film thickness had a strong 

influence on the average crystalline size, texture of 

coefficients and dislocation density of PbSe thin films see 

Fig.3. 

 

The EDAX analyses confirmed that varying the film 

thickness had a significant effect on the stoichiometric ratio 

of PbSe thin films. The atomic ratio of Se/Pb improved 

from 0.55 to 0.81 as the film thickness increased from 198 

to 451 nm (deposition time increased from 40 to 80 min). 
The optical absorption spectroscopy study revealed that the 

optical band gap of the PbSe thin films tuned over a wide 

spectral range by simple and cost effective route from 1.07 

eV to 1.50 eV. The photoluminescence study verified that 

increasing the film thickness enhances the emission 

intensity and broadens of the emission rang. 

3.5 Effect of Concentration of Cation and Anion 

Sources  
 

Chemical bath composition is critical for synthesis of good 

quality of thin films. The nature of the reactants influences 

the whole physical and chemical properties of the deposited 

thin film. By changing the composition of the reactive 

solution, competition between the processes of 
homogeneous and heterogeneous nucleation could be 

altered to favor thin film growth [13]. Nature of the 

reactants influences the composition of the products. 

The deposition of good quality, adherent, specular and 

crystalline CdSe has usually been associated with 

supersaturated bath with respect to the precipitation of 

cadmium hydroxide species, irrespective of the substrate. 

According to P. P. Hankare et al.[16] the growth under 

These circumstances give Se-2 ions into an alkaline 

solution, where the free metal ions are buffered. 

Thus, low concentration of bath ingredients usually favors 

the nucleation in the first stage. Indeed, the bath 
concentration plays an important role in the substrate 
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interaction with growing particles. For high concentrations, 

the films formed were thicker, indicating stronger 

interaction. Under these circumstances, the growth process 

becomes cluster-by-cluster rather than ion-by-ion 

nucleation. On the other hand, at low concentration, the 
films formed were too thin and nonuniform. This may be  

attributed to the fact that the required number of ionic 

species is not available in the solution to get better quality 

film. In the preparation of lead sulphide thin films by [36], 

using different cationic precursors; it was observed that 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

lead sulphide thin film prepared with lead acetate as 

cationic precursor was found with very good structural, 

morphological and optical properties compared to lead 

sulphide thin films deposited from lead chloride, lead 

nitrate, and lead sulphate cationic precursors.  Liua et al  
[37], showed the effect of different thiourea concentrations 

in bath for ZnS thin film. In this study the surface 

morphologies of ZnS thin films prepared in baths with a 

concentration ratio of ZnSO4/SC(NH2)2 of 1:1, 1:2, and 1:3 

were quite smooth and compact. When the concentration 

 
Fig. 2: Dependency of film thickness on deposition time for some selected semiconductor thin films [33]. 
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Fig. 3: Dependence of microstrain and texture coefficient on the thickness of PbSe thin films. 
              (Inset: Variation of deposition time with film thickness) [35]. 
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ratio of ZnSO4/SC(NH2)2  were 1:4 and 1:5, cracks 

appeared on the surface of ZnS thin films. [Mousa and Ali 

[38]] also studied the effect of concentration of lead acetate 

for PbS thin films. Their result showed that the film 

thickness goes on decreasing as the concentration of lead 

acetate increases because this parameter attained a state of 
higher super saturation earlier, generating precipitate 

instead of thin film. V. Nirmal Kumar et al [39] deposited 

ternary Cu1-XCdXS2 thin films on glass substrates from 

precursor solution that had various concentrations of cation 

and anion sources. The XRD analyses revealed the 

hexagonal structure of deposited films and change of lattice 

parameters upon varying the composition. The SEM image 

showed continuous coating of thin films with morphology 

changed from spherical to sheet like structure owing to 

cluster growth process of Cd rich films. EPMA 

measurement showed the composition of S remains same 

and cation compositions change. Increase in binding 
energies of Cu 2p, Cd 3d and S 2p levels were observed as 

the composition of cadmium increases owing to shift in 

valance band structure from CuXS to CdS. Band gap of Cu1-

X CdXS2 thin film increases from 1.46 eV to 1.85 eV for Cu 

to Cd rich composition. Raman peaks were observed at 

298.9, 601.8 and 473.3 cm-1 owing to vibration modes of its 

binary phases CdS and CuXS, respectively. The carrier 

concentration of CuCdS2 thin films decreased as the 

composition of Cd increased in deposited thin films. The 

same material, CuCdS2 thin films exhibited two different 

type conductivities, p and n-type owing to composition of 
cations. Cu rich film showed p-type conductivity, whereas 

Cd rich samples showed n-type conductivity.  

 

3.6 Effect of Types of Precursor Sources 
 

Varies studies verified that using different types of cation 

and anion precursor sources during film deposition play a 
vital role on the final physical and chemical properties of 

the thin films. In the preparation of cadmium sulphide, 

[40]investigated the effect of different cadmium salts. The 

results have shown tangible difference in growth 

kinematics and properties of the thin films. Hani Khallaf et 

al [42] studied the effect of four differ cadmium sources on 

physical properties of CdS thin films deposited by chemical 

bath deposition method. The result revealed that film 

thickness was found to decrease in the order CdSO4, 

Cd(CH3COO)2, CdCl2, CdI2. However, the band gap was 

found to decrease in the order CdSO4, Cd(CH3COO)2/CdI2, 
CdCl2. All films were found to be cubic, regardless of the 

Cd salt used. The grain size decreases in the order CdSO4, 

CdCl2, Cd(CH3COO)2, CdI2. The RBS data showed that 

usage of CdCl2 and CdI2 results in highly stoichiometirc 

films (S:Cd ratio = 1:1). More Cd was detected when 

CdSO4 and Cd(CH3COO)2 were used. The S:Cd ratio and 

carrier concentration were found to decrease in the order 

CdSO4, Cd(CH3COO)2, CdI2/CdCl2. CdCl2-based films 

were found to have a better transmission and much 

smoother surfaces than other films. Using CdSO4 as Cd 

source leads to the highest growth rate, band gap, carrier 

concentration, and mobility. The effect of using different 

anion  Zn sources for chemically deposited  ZnS(O,OH) 

films were studied by K. Ernits et al [42]. The study 

revealed that the growth rate and composition of 

ZnS(O,OH) layer depend on the instability constant value 
of Zn complex in chemical bath solution. The ZnS(O,OH) 

film’s growth rate and ZnS concentration in films increased 

with the increasing value of Zn precursor’s instability 

constant up to the Zn[NH3]2+ complex but decreased after 

that. The analogous effect of chemical nature of anion was 

detected for solar cell current densities and efficiencies. 

The highest solar cell current densities and efficiencies 

were achieved with ZnS(O,OH) buffer layers with the 

highest growth rate and ZnS content, deposited from 

Zn(Ac)2. The only exception was solar cell with 

ZnS(O,OH) deposited from Zn(NO3)2 containing bath, 

which results in ZnS(O,OH) with the widest band gap (3.8 
eV) and the highest transmission. Films from ZnI2 with 

relatively high resistivity and high impurity content in the 

films have the lowest current densities.  L. Beddek et al. 

[43] were investigated the effect of the lead source and the 

thiourea concentration on structural and optical properties 

of PbS thin films synthesized by CBD method.   They 

reported that films were formed through the ion by ion 

process when using the acetate lead source and through the 

complex-decomposition process when using nitrate source. 

Furthermore, lead acetate yields dense films with larger 

crystallite size (from 4 to 16 nm), however lead nitrate 
produces rough films with smaller crystallite size (from1 to 

4 nm). Increasing the thiourea concentration causes the 

crystallinity improvement when using lead acetate and, 

oppositely, its degradation when using lead nitrate. 

 

3.7 Ageing of the Stock Solution   
 

Ageing of the stock solution is one of the overlooked 

factors which affect the reproducibility of the CBD method 

and quality of the deposited thin films. Sarkar et al. [44] 

were reported that the age of the selenosulphate solution is 

often important in PbSe deposition. This solution is 

relatively unstable and fresh selenosulphate often results in 
rapid precipitation of PbSe when the selenosulphate 

solution is added. They found it more reproducible and 

controllable to use a selenosulphate solution which has 

been aged for about 2 days. Similar observation has been 

reported by [45] for the deposition of CdSe thin films.  
 

3.8 Nature of Substrates and Their Separation  
 

The nature of the substrate is another important factor that 

plays a major role in the reaction kinetics. Moreover, 
nucleation and crystal growth also takes place on it during 

thin film deposition [46]. Substrate should be cleaned 

properly with a standard procedure before being immersed 

in the reactant mixture. One of the advantages of CBD is 

that thin films can be deposited on any surface. Moreover, 

shape and electrical conductivity of the substrates are 
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usually not important very irregularly shaped substrates can 

be used. However, the nature of the substrate is usually 

important in order to obtain an adherent film [6, 47] . Glass 

is one of the most commonly used substrates with different 

adhesion in CBD, however, metals make good substrates in 

general, either because chalcogenides tend to adsorb 
strongly on many metals, or the non-noble metals are 

covered with a (hydroxylated in the deposition solution) 

oxide layer. If the metal in the deposition solution has a 

sufficiently negative potential, an internal electrochemical 

reduction may occur [13]. A large variety of CBD thin 

films have been also deposited on different polymer 

surfaces. Deposition sometimes is satisfactory on the clean 

polymer with various activation treatments, such as 

treatment with permanganate, have been used to improve 

the adhesion and homogeneity [48]. Apart from adhesion, 

the crystallographic properties of chemically deposited 
films are sometimes dependent on the nature of the 

substrate. One example is epitaxial deposition on a 

crystallographically-ordered substrate [49]. The kinetics of 

growth has also been observed to depend sensitively on the  

nature of the substrate surface. Higher deposition rates and 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

4 Conclusions 

In the present review paper, attempt has been made to 

highlight the basic principle of chemical bath deposition 

method and major factors which influence the final physical 

and chemical prosperities of the synthesized metal 

chalcogenide thin films. The reviewed results also 

suggested that this method is relatively inexpensive and 

very suitable to synthesize quality thin films for various  

Terminal thickness are observed for those substrates whose 

lattices and lattice parameters match well with those of the 

deposited material. During deposition of PbSe thin films 

under similar conditions, higher rates and thickness have 

been observed on Ge substrate rather than on glass 

substrate because of better matching of the lattice 

parameters of PbSe with those of Ge because no incubation 

period for nucleation is required compeering to the glass 

In addition of substrate cleanness and types, its separation 
during deposition has significant effect on film thickness. 

Readigos et al [51] explained this phenomenon by 

considering film thickness as a function of separation 

between substrates in batch production. They observed that, 

film thicknesses reach an asymptotic maximum with 

increase in substrate separation. This behavior is explained 

on the basis of the existence of a critical layer of solution 

near the substrate, within which the relevant ionic species 

have a higher probability of interacting with the thin film 

layer that contribute to precipitate formation. Actually, the 

critical layer depends on the solution composition, the 
temperature of the bath, as well as the duration of 

deposition. For instant in the case of CdS thin film, this 

critical layer was found to extend from 0.5 mm to 2.5 mm 

from the substrate surface depending to deposition [9] 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

optoelectronic and solar cell devices.  Moreover, the 

semiconductor properties of the thin films deposited by this 

technique are highly comparable with other semiconductor 

materials deposited by sophisticated deposition techniques 
like MBE, thermal evaporation, PLD etc as long as the 

deposition parameters are controlled systematically.   
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