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Abstract: The purpose of this work is to extend the concept of regional controllability to the case where the desired state is between
two prescribed profiles, only on a boundary subredioof the system evolution domai2 . We'll characterize the minimum energy
control that satisfied the out put constraints and which is limited mainly to systems described by hyperbolic partial differential equations.
This problem is solved using Lagrangian approach and the obtained results are illustrated numerically.
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1 Introduction For these reasons we are here interested in introducing the

concept of controllability with constraints, which the aim

Solving problems related to real applications in is to steer a system from an |n|t|all state to a final one
between two prescribed functions given only on a part of

biological, economical or mechanical fields, need X :
methods developed rigorously and with precision.the boundary subregloﬂg of the geometric ared2
where the system is considered.

Applied mathematics and control theory formulate theseTh. K tribution to th | t of th
phenomena in a distributed system using PDEs which IS work 1S a contribution 1o the eniargement of the
keep for each parameter its true physical meaning. Hencéeg.'onaI controllability with gonstralntsl[z, 13, I[mlted .

in the field of analysis and control of these systems mainly to systems described by hyperbolic partial

several studies have been developed particularly O'rgifferential equations and .focussing'only ona boundary
notions of controllability, stability by duality part O.f the system eyoluthn doma@. This paper IS
observability and detectability, etc. These Variousorganlzed as follows, in section 2, we introduce the notion

concepts have been widely studied and leads to a vast arﬁ{/ pg(r)glc)slti::ag]yes?e rr?:u\r/]vdeagro{/?c?éoreaguItcsor(])trqo'!ﬁglIlgpeogf

disparate literatureg], [4]. rollabilit d ) definiti q
For distributed parameter systems, the controllabilityCon roflabiity and we give some definiions - an
roperties related to this notion. Then in section 3, we

concept consists in steering a system from a initial state td

a prescribed one defined on a spatial donfair_ater the solve thﬁ grob{erc? tOf trrr]unlmum etntergy ?O?;rOI u?mgl
term of regional controllability has been used to refer to@Pproacnh devoted lo he computation of the optima

control problems in which the target of our interest is not control problem for the hyperbolic equatipns _excited by a
fully specified as a state, but refers only to a Smallerboundary zone actuator. The last section illustrate the

region of the system domain. This concept has beerﬁ-"bta“ned result numerically

developed and interesting results have been obtained, in

particular, the possibility to reach a state only on an

internal subregiond] or on a part of the boundar]. 2 Constrained boundary controllability

There are many reasons for studying this kind of problem,

one of them is the mathematical model of a real system

which is obtained from measures or from approximationLet Q be an open bounded and regular subs@&th > 1)
techniques and is very often affected by disturbances, andith a boundary Q. ForT >0, letQ = Q x]0,T[andX =
the solution of such a system is approximately known.dQ x]0, T[, we consider the following hyperbolic system
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5 In the case of a pointwise actuator (internal or boundary)
0%y _ D= {b} andf = d(b—.), whered is the Dirac mass
W(X’t)_Ay(X(;t) = Bu(®) Q concentrated irb, and the actuator is then denoted by
_ y _ (b, ). For definitions and the properties of strategic
7 0) = Q y
y( 0) =o(x), 0t (0) =y1(x) actuators we refer to [4,6].
0VA(E 1= & Definition 1.
(1)  Wesay thatthe system (1) is [a1(.), Ba(.)] x [a2(.), Ba(.)]-

Where A is a second-order elliptic linear symmetric
operator,

semi-group (S(t))z0 (10, (&)
Va

co-normal with respect toA, B € .Z(IRP,H(Q)),
ucU =L?0,T,IRP) (p depends on the number of the
considered actuators) an@o,yl) in the state space
Z H2(Q)xH(Q). We design by
Zu(T) = (yu(T), ?{”( ))e 2 the solution of(1) [7].

ForI" C 0Q let consider

denotes the

X, H2(0Q)xH2(0Q) — H3(I') x H
(zZ)= X (22)=

N\l—l

(r)
(XrzX:2)

HZ(0Q)— H2(I)
z— Xr2=12,

with Xr
X, 1H2(0Q) = H3 (M)
2 X 7= z’
While x* (resp. X: andx;) is the adjoint operator o,
(resp.X, andx,) which is the restriction operator.
Let's consider the trace operator

vy H2(Q) x HY{(Q) = H2(0Q) x HZ(Q)
(71,2) = Y(71,22) = (Y21, Yy 22)

with y, : H™(Q) — Hm*%(dQ) (m=1,2) denotes the

trace operator of order zero which is linear, continuous,

and surjective, whilg/* (resp.y;) is the adjoint operator
of y (resp.y,). Let ay(.) andB1(.)(resp.az(.) andBo(.) )
two given functions fronH%(ﬁfz) (resp.H%(z?Q)) such
thataa(.) < Ba(.) (resp.az(.) < B2(.)) a.eonl.

Controllableon I" if

(mx - yH) N ([aa

Remark.

The above definition is equivalent to say that:

The system 1) is [oa(.).Ba(.)] x [a2(.),Ba( )l
Controllable on™ at the timeT if there existau € U such
that:

which generates a strongly continuous

(.),Be()] x [az(.), B2(.)]) # O

a1(.) < )?r VOYU(T) <Bal(.)
and

@2() < %1 v6 22 (T) < o) ace 0N
Definition 2.
The actuator (D, f) is [ai(.),B1(.)] x [az2(.),B2(.)]-
strategic on [, if the excited system (1) is

[a1(.),B1(.)] x [a

Remark. 1.The above definition means that we are
interested only in the transfer of systerf) (to a
position (resp. speed) between(.) and B1(.) (resp.
az(.) andBa(.)) onrl

2.A system which is controllable o™ [14] is
[o1(.), Ba(.)] x [a2(.), B2(.)]—controllable on™

3.A system () which is [a1(.), B1(.)] x [a2(.), B2(.)]-
Controllable onfy is [a1(.),B1(.)] x [az2(.),B2(.)]-
Controllable for any> C 7.

4. The controu depends on the time variable, but it also
implicitly depends o™

The[o(.),B1(.)] x [a2(.), B2(.)]-controllability on may
be characterized by the following result:

2(.), B2(.)]- Controllableon " .

Proposition 1.

Throughout the paper we set Egitroﬁ/i?;non I('l)if ari]z ontlglhg')aﬁl(')] x [o2(.), B2(.)]-

I:=[aa(.), Ba ()] x [ara(.), Ba(-)] = {(¥(), gy( ) €HE(M)x  (Kerx, +1myH) N ([aa(), Br()] x [aa(.), Ba()]) # ©

HE(T) | () <Y() < Bu(.) andaz() < 2X(.) < o(.) Proof |
a.eon} We suppose  that the system 1)( is
[o1(.),B1(.)] x [02(.), B2(.)]- Controllable on~ which is

LetH be the operator frotd — H?(Q) x H(Q), for  equivalentto
u e U, defined by:
(rmx - yH) N ([aa (), Bo()] x [o2(.), Ba()]) # @

T

Hu:/ S(T —s)Bu(s)ds so there existz € ([ai(.),B1(.)] x [az2(.),B2(.)]), and
0 u e U such that x,yHu = X,z which gives

We recall that an actuator is conventionally defined by ax,(z— yHu) = 0. Let’s considerz; = z— yHu and

couple D,f), WhereD C Q is the geometric support of 2, = yHu, then z = z + z with z € ker(x,.) and

the actuator and is the spatial distribution of the action z € ImyH which prove that

on the supporD (see p]). ze (Kerx, +ImyH).

(© 2015 NSP
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Conversely, we suppose
(Kerx, + ImyH) N ([aa(.), Ba(.)] x [a2(.),B2(.)]) # O
then there existz € ([a1(.),B(.)] x [a2(.),B2(.)]) such
thatz € (Kerx, + ImyH), soz=z+2, with x,z1 =0
and 3 u € U | z = yHu. It follows that
Xrz = Xra + Xr2 = X2 = X/yHu and
Xrz€ (Imx,yH) which prove

(Imx - yH) N ([aa(.), Ba()] x [a2(.), B2(.)]) # @
[a1(.), B()] x [az(.),Ba(.)]-

then system 1) is
Controllable on™

3 Minimum energy control

The purpose of this section is to explore the Lagrangiang : H3/2(I") x HY/2(r)
approach devoted to the computation of the optimaldenotes

We consider the problem2), when the system is
excited by one zone actuatdb, f). The following result
gives a useful characterisation of proble® (

Proposition 3.

If the actuator (D, f) is [aa(.),B1(.)] x [02(.),B2(.)]-
strategic on I” then the solution of (2) isgiven by :

ut = _(XFVH)*(Af7A;) )
Where (Af,A5) isthe solution of:
(P V)4 R-(AL,A3) = X, vS(T) (Yo, y1)
While
(F) — [oa(.), B ()] x [a2(.), Ba(.)]
the projection operator, p > 0 and

control problem for the hyperbolic equation excited by aR_ = (x.yH)(x,yH)*.

boundary zone actuator which steers the syst&nfr¢m
(Yo,y1) € H?(Q) x HY(Q) to a final state(p?,\¥) such
thatay(.) < X, y,p? < Bi(.) andaa(.) < %, oW < Ba(.)
on a subregiolf .

Proof.
If the actuator (D, f) is [o1(.),B1(.)] x [02(.),B2(.)]-
strategic o™ thenUard # 0 and @) has a unique solution.

More precisely we are interested to the following The problem 2) is equivalent to the following saddle

minimization problem

{ inf 7 (u) = fg [|u(t)] et

ueuly

(2)

where
Ua"_d:{u cuU | al(.) < )?,— Yoyu(T) < Bl() and
ax(.) sxrvo%(T) <B()}

is the set of admissible controls.

point problem:
inf_7(u)
{ (u,pd, V) eV (5)

Where )

V={(u, P V) € Ut | X, vl(T), S T) = (p°)

To study this constraints, we’ll use a Lagrangian
functional and steers the problerd) (to a saddle point

problem.
We associate to the probleis) the Lagrangian functional

The following result ensure the existence and thedefined by:

uniqueness of the solution of proble@) (

Proposition 2.

If the system (1) is [a1(.).Ba()] x [a2(). ()]
Controllable on I then the problem (2) has a unique
solution u*.

Proof.

If the system 0) is [a1(.),B1(.)] x [@2().B2()]-
Controllable onl” thenUgq is a non-empty subset of the
o)) is
linear, soU/; is convex, and to prove that!, is closed,
we consider a sequenc@in)n in Ul such thatu,
converge strongly ta in U. Sincex, yH is continuous,
then x.yHu, converges strongly to x, yHu in

HE (M) x HZ(r), and
X Y0n(T), 228(T)) € fas(),Bel)] % [aa(),Bal)
which is closed stJ!; is closed.

Furthermore Iim #(u) = +eo and the mapping
fJuf|—-+e

reflexive U, then the mappingi — (yu(T)

1 . . .
u 5 | u||?is continue and strictly convex the®) (has a
unique solution.

V(u, pd, v A1, A0) € U x | x H3/2(M) x HY2(IM),

1 —
L(u, PV A A) = 5 U2+, X YoYulT) = p°)

- Odyy
02X VoG (T V)

Let recall that(u*, p% ,v¥" A, A) is a saddle point of
if:

* * * *

max L(u*, p? v A1, A2) = L(u*, pd v A5, A5)
Mel2(w)

Mel?(w)

= min L(u, p", v, A1,A3)

(pd,vd)el

the proof is presented in three steps.

e Step 1

U x | is non-empty, closed and convex subset. The
FunctionalL satisfies conditions

—(u,p?, v — L(u,p?, v, A1,A2) is convex and lower
semi-continuous for all
(A1,A2) € H3/2(M) x HY2(IM).

Published by Arab Journals Platform, 2015
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—(A1,A2) — L(u,p9,v4,A1,A2) is concave and upper (u, p%" v A5, A5) is a saddle point ot then the

semi-continuous for aflu, p?,v!) € U x | following assumptions hold:
Moreover there existe\ %, A9) € H3/2(") x HY2(I") such (U u—Uu") +((Af,23), X, YH(U—Uu*)) =0 yueU  (8)
that
lim  L(up® v A2 A9) = 4o ©) (A1), (P v = (p¥ V) <0 v(pt v el (9)
Il (u, p9 M) || —+e

* oy % dyu* d* *
ALAD) — (AF ), (T - (p¥ v )y =0
And there exist€uo, &, v8) € U x | such that ((A1,A2) = (A1, A2), X V(Y (T), ot (T))—(p" ,v")) =0,
V(A1,A2) € H¥2(M) x HY/2(IM)
(10)

(Details on the sadlle point theory and its applications

. . . can be found for instance i6[11]).
ggteari]l’st\t]vg Igpecrt'tg%al‘ admits a saddle point. For more From (8) we deduce that3) and (0) is equivalent to

o Step 2 (P V) = X VvS(T)(Yo.y1) + X, YH(u"), and with @)
Let (u*, p@" @, A7, A$) be a saddle point df and prove the secqnd part o#j is obtained. From the inequalit@)
thatu* is the solution of ). We have we obtain

<(p*()\f,*)\5) + (pd*7vd*)) - (pd*’vd*)’(pd’\,d) _
L(u*, p@ v A, A) < L, pd v A7 A8) < L(u, p? v A7, 4)  (p97,v87)) <0, for all (pd,v9) e I, which is equivalent to

lim Lu’d’vd7/\,)\ e
[(Az,A2)||—+oo (Uo, Po Vo: A1, A2) Ko

For all (u, p%, v, A1, Ap) € U x | x HY2(I') x HY/2(T") the first part of 4).
From the first inequality Corollary 1.
L L If the system (1) is exactly controllable on I", and p
L(u*, p% v A Ag) < L(ut, p? VAL AS) convenably chosen, then the system (4) has only one
solution (Af, A, p?", ve).
it follows that : Proof.
B ) e . The regiona.I. comrollab.ility ori*' implies thqt(xryH)*
AL, X YoYur (T) = P4 + (AKX, vy —2 T —v) < andR_ are bijective, so ifu*, pd",v¥* A/, A5) is a saddle
t&ym i point of L then the systen¥j is equivalent to

A Xe ¥oYor (T) = pT) + A3, % vo - (T) =) . oy
. o . (A£,43) = RE(X- yS(T) (Yo, y1) + (P V)
which implies that x-yyw(T)= p* and  (p )= RA(—pR1(p?" V) +pR-x, yS(T) (Yo, y1)

0 * _ * *
T 2 (T) = ¥, hence, yowr (T) € [aa(), )] + (7)) a
OYu- It follows that (p?",v@") € [a1(.), Ba(.)] x [a2(.), B2(.)] is
dy ) . P, 1(-), Pl 2(-), pa(.
aneXrYo =5 (T)e ] [GZ()’,BZ(_ ) a fixed point of the function
From the second inequality if follows that :
1 9 Foil =1
5 0 12 00 X vy (T) = B+ O3 %y 52 () =) (Z1.22) = (A(-pR-1(Z1,22) (12)
1 . = ; d + PR_ Xr YS(T)(Yo, Y1) + (41,2
< S IUl? + 8 X ) = ) (A3 5y (1) ) VS0 + (22.20)
and(p9,v9) € [a1(.), Bo()] x [a2(.), Bz(-)]- sucmﬁa?peratORFl is coercive, then there exists > 0
L= vy .
Sincex, y,yu: (T)= p? and)(ryo ot ( ):vd we have, <R;1(Zl,22),(zl,22)>2m|| (21,2) ||?
YV (Z1,Z2) € H3/2(M) x HY2(I)
S 2 < 3 Ul 05 X yoyalT) — o) itfollows that
+<)\5‘,X,%dd)iu( ) —v) | Fp(zlagz)—ﬁp(zYlez) 12 )
< (@+p% | R1Z=20m) || (Z1,Z2) — (W1, Y2) |
taking ~ p* o Xe¥oYu(T) € [oa(),B()]  and  forall (23,2;) and(Ys, Y) in [as(.), Ba()] % [ar2(.), Ba(.)],
Vd _ X['yo a)::u( ) c [02(~);BZ(~)]a we obtain then we deduce that if
2m
1 | u |\2§ = || u||?> which implies thatu* is the 0<p<iymay2
2 2 Rl
minimum energy. . I .
e Step 3 ThenF, is contractant, which implies the uniqueness of
pd" VA AF andA;.
(© 2015 NSP
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X b 3
Remark. x:(X;>,b_<b1) andé& = <E;)

1.If a, = By anday = B we find the notion of exact We takeT=1, (by,bz) = (0.15,0.85) (location of the
regional controllability and the solution o)is given ~ pointwise actuator),
by (X)) = Oa(xa,X) = X+x5(1-x)* and
Br(x1,%2) = Ba(X1,X2) = X1 + 5X5(1—x2)°.
u(t) = (X, YH)"R-H((aw, a2) — X YS(T) (Yo. Y1) Applying the previous algorithm for the global case

o i i o wherel” =]0,1[x{0}, we obtain the following results:
2.Similar results can be obtained in pointwise actuator

case.

4 Numerical approach

4.1 Algorithm - i
From proposition (3) the solution of the problef) arises ]
to compute the saddle points bf which is equivalent to -
solving the problem o
0,104
it ( sup L(u PV, M, o)) o=
(Pt V) eUxT N (3 A eH3/2(m)xHY/2(r) o
(13) % oz o4 s o8
To achieve this we shall use the following algorithm which
is based on Uzawa one Fig. 1: Reached position between (.) andB1(.) onl™
1.Choose:
.The subregiorf, the actuatofD, f) and a precision
thresholds small enough
Functions(p§,v§) € [a1(.), Bu(.)] x [ar2(.), B2(.)] and
(AD.A2) € H¥2(M) x HY(r)
2.Repeat
(XrVH)*(A{‘,/\”)
P[al ).Ba( ) + pn 1) 046 :‘;28
"d = Play(), <>]( Vi) o
')‘1 _)\n 1 ()?r VoyUn 1( ) pn—l) 030 ]
-1 dyun 1 y:
A2 =23+ (K o (T)— n_l)
Until || pf — pf1 I\Ha/z + VR = V-1 vz < €
4.2 Example

Here we give a numerical example that test the efficiency Fig. 2: Reached speed between(.) andfz(.) on "

of the previous algorithm. For this, let us consider a two-
dimensional system defined on
=]0,1[x]0, 1], described by the hyperbolic equation and

excited by a pointwise actuator: . N
From figure 1 and 2, we note that the reached position

2%y (resp. speed) is between (.) and B1(.) (resp.az(.) and
ﬁ(xvt) —Ay(xt) = d(x.bju(t) Qx]0,T] B2(.)) in the subregior, the location of the actuator is
40y B [aa(.),B2(.)] x [a2(.),B2(.)]-strategic and the reached

y(x,0)=0, E(X’O)_O &2 (14) position (resp. speed) is obtained with reconstruction
ﬂ(f =0 90 %10.T| errore ~ 1.26 x 10~*and cost| u* ||°~ 1.69
av ) - )

A For the regional case whefe =]0.3,0.75[x {0} we

Where obtain:

(© 2015 NSP
Natural Sciences Publishing Cor.
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90 NS 2
——-a1()
0351 8,0
0,30 / - \\ Pd
7/ \
025 / .
/ \
020 / \
015 / \\
/ \
010 / \‘
/ = . \
/ [ N \
005 VA ~ ~L N
0,004 L N

Fig. 3: Reached position between (.) andB1(.) on I

Fig. 4: Reached speed betweean(.) andf,(.) onIl”

Also figure 3 and 4 show clearly that in this regional
case the position (resp. speed) is betwegn) andfi(.)
(resp. az(.) and f»(.)) which means that the
[o1(.),B1(.)] x [a2(.),B2(.)]- Controllability is satisfied
with reconstruction errore ~ 3.21 x 107° and cost
| u* [|2~2.37x 1071,

Fig. 5: Evolution of the control function

Figure 5 shows the evolution of the optimal contdl
which steers the system from the initial position (resp.
speed) to the desired one betweeri.) and 31(.) (resp.

az(.) andfy(.))

5 Conclusion

We have developed an extension of the notion of
controllability for hyperbolic systems with constraints in
the boundary case, we characterized the optimal control
using Lagrangian approach and interesting results are
obtained and illustrated with numerical example and
simulations. Future works aim to extend this notion of
regional controllability with constrained to the case of the
gradient.
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