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Abstract: In this paper, the modified simple equation method is used to construct exact periodic and soliton solutions of some nonlinear
partial differential equations. Exact solutions of the nonlinear Schrödinger equation, the Hamiltonian amplitude equation, Klein-Gordon
equation in 1+2 dimension, the coupled Klein-Gordon equation, the (2 + 1)-dimensional long-wave-short-wave resonance interaction
equation, the modified KdV-KP equation and the modified Benjamin-Bona-Mahony equation are successfully obtained. These solutions
may be important of significance for the explanation of some practical physical problems.
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1 Introduction

Various physical phenomena in physics, engineering,
mechanics, biology and chemistry are modeled by
nonlinear partial differential equations (NPDEs).
Searching for exact soliton solutions of NPDEs has been
played significant role in the study of dynamics of
observed phenomena [1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19]. Many new methods for obtaining
exact solutions to NPDEs have been proposed. Among
these are inverse scattering method [20], Hirota’s direct
method [21], tanh method [22], extended tanh-function
method [23], multiple exp-function method [24],
transformed rational function method [25], first integral
method [26], modified simple equation method [27,28,
29,30,31,32,33], ansatz method [34,35,36,37,38] and so
on. The modified simplest equation method is a very
powerful mathematical technique for finding exact
solutions of nonlinear ordinary differential equations
(ODEs). Recently, this useful method is developed
successfully by Vitanov and the reference therein. The
modified simple equation method [27,28,29] is based on
the assumptions that the exact solutions can be expressed
by a polynomial inΨ ′

Ψ , such thatΨ = Ψ(z) satisfy in an
unknown function to be determined later. The modified
simple equation method [30,31,32,33] is based on the
assumptions that the exact solutions can be expressed by
a polynomial inΨ , such thatΨ = Ψ(z) satisfy in the

equations of Bernoulli and Riccati which are well known
nonlinear ordinary differential equations and their
solutions can be expressed by elementary functions.
Using this method in works [27,28,29] exact solutions of
the nonlinear Fitzhugh-Nagumo equation, the
Sharma-Tasso-Olver equation and the generalization of
the Korteweg-de Vries equation were obtained. Also, in
works [30,31,32,33] exact solutions of a class of
equations that generalize the reaction-diffusion, the
reaction- telegraph equation and the Fisher equation are
discussed. In this paper, we apply the modified simple
equation method [27,28,29] to seek the exact solutions of
the second-order ODEAΦ ′′(z) + BΦ(z) +CΦ3(z) = 0
and then by means of exact solutions this second-order
ODE, we establish the exact solutions of the nonlinear
Schr̈odinger equation, the Hamiltonian amplitude
equation, the Klein-Gordon equation in 1+2 dimension,
the coupled Klein-Gordon equation, the (2 +
1)-dimensional long-wave-short-wave resonance
interaction equation, the modified KdV-KP equation and
the modified Benjamin-Bona-Mahony equation

2 Modified simplest equation method

Step 1.Consider a general nonlinear PDE in the form

P(u,ux,ut ,uxx,uxt ,utt , ...) = 0. (1)
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Using a wave variablez = x− ct, we can write Eq. (1) in
the following nonlinear ODE:

Q(u,u′,u′′,u′′′, ...) = 0, (2)

where the prime denotes the derivation with respect toz.
If all terms contain derivatives, then Eq. (2) is integrated
where integration constants are considered zeros.
Step 2.We suppose that Eq. (2) has the following formal
solution:

u(z) =
N

∑
l=0

Al(
Ψ ′(z)
Ψ(z)

)l
, (3)

where Ai are arbitrary constants to be determined such
that AN 6= 0, while Ψ(z) is an unknown function to be
determined later.
Step 3.We determine the positive integerN in Eq. (3) by
balancing the highest order derivatives and the nonlinear
terms in Eq. (2).
Step 4.We substitute Eq. (3) into Eq. (2), we calculate all
the necessary derivativesu′,u′′, ... and then we account
the functionΨ(z). As a result of this substitution, we get

a polynomial of Ψ ′(z)
Ψ(z) and its derivatives. In this

polynomial, we equate with zero all the coefficients of it.
This operation yields a system of equations which can be
solved to findAl andΨ(z). Consequently, we can get the
exact solution of Eq. (1).

3 Exact solutions of second-order ODE
AΦ ′′(z)+BΦ(z)+CΦ3(z) = 0 :

Let us consider the following ODE

AΦ ′′(z)+BΦ(z)+CΦ3(z) = 0. (4)

BalancingΦ ′′(z) with Φ3(z) givesN = 1.This means that

Φ(z) = A0+A1
Ψ ′(z)
Ψ(z)

, (5)

whereA0 andA1 are constants to be determined such that
A1 6= 0, while Ψ(z) is an unknown function to be
determined.
By substituting Eq. (5) into Eq. (4), we obtain

BA0+CA3
0 +

BA1Ψ ′(z)+AA1Ψ ′′′(z)+3CA2
0A1Ψ ′(z)

Ψ(z)

+
3CA0A2

1(Ψ ′(z))2−3AA1Ψ ′(z)Ψ ′′(z)
Ψ2(z)

+
2AA1(Ψ ′(z))3+CA3

1(Ψ
′(z))3

Ψ3(z)
= 0. (6)

Equating expressions atΨ 0(z), Ψ−1(z), Ψ−2(z) and
Ψ−3(z) to zero, we have the following equations:

BA0+CA3
0 = 0, (7)

BA1Ψ ′(z)+AA1Ψ ′′′(z)+3CA2
0A1Ψ ′(z) = 0, (8)

3CA0A2
1(Ψ ′(z))2−3AA1Ψ ′(z)Ψ ′′(z) = 0, (9)

A1 =±
√

−2A
C

. (10)

Eq. (7) directly implies following solutions

A0 = 0, A0 =±
√

−B
C
. (11)

Case 1.If A0 = 0, then we can obtain the trivial solution,
which is rejected.

Case 2.If A0 =±
√

−B
C , then we can deduce that

AΨ ′′′(z)−2BΨ ′(z) = 0, (12)

−AΨ ′′(z)+
√

2ABΨ ′(z) = 0. (13)

By substituting Eq. (12) into Eq. (13), we get

±
√

A
2B

Ψ ′′′(z)−Ψ ′′(z) = 0. (14)

The general solution of Eq. (14) is

Ψ(z) = a0+a1z+a2e±
√

2B
A z
, (15)

whereal(l = 0,1,2) are arbitrary constants.
Thus, we obtain the new exact solution of the ODE (4) in
the following form

Φ(z) =±
√

−B
C






1+

√

2A
B

a1±a2

√

2B
A e±

√

2B
A z

a0+a1z+a2e±
√

2B
A z






.

(16)
Theorem 3.1.The second-order ODE (4) has solutions
described as follows.

1)- The new exact solution

Φ(z) =±
√

−B
C






1+

√

2A
B

a1±a2

√

2B
A e±

√

2B
A z

a0+a1z+a2e±
√

2B
A z






,

(17)
wherea0 6= 0, a1 6= 0 anda2 6= 0.

2)- The rational solution

Φ(z) =±
√

−B
C

(

1+

√

2A
B

a1

a0+a1z

)

, (18)
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wherea0 6= 0, a1 6= 0.

3)- The periodic solutions

Φ(z) =±
√

B
C

tan

(

√

− B
2A

z

)

, (19)

and

Φ(z) =∓
√

B
C

cot

(

√

− B
2A

z

)

, (20)

whereB
A < 0.

4)- The exact soliton solutions

Φ(z) =±
√

−B
C

tanh

(

√

B
2A

z

)

, (21)

and

Φ(z) =±
√

−B
C

coth

(

√

B
2A

z

)

, (22)

whereB
A > 0.

4 Applications

Example 4.1. The nonlinear Schr̈odinger (NLS)
equation
Let us first consider the nonlinear Schrödinger equation
[39,40]

iut + puxx +q|u|2u = 0. (23)

We introduce the transformation

u(x, t) = eiθU(z), θ = αx+β t, z = x−2pαt, (24)

whereα andβ are constants andU(z) is real function.
Substituting Eq. (24) into Eq. (23), we obtain ordinary
differential equation:

−
(

β + pα2)U(z)+ p
d2U(z)

dz2 +qU3(z) = 0. (25)

By using theorem 3.1, we obtain the exact solutions of
ODE. (25) in the following forms:

U1(z) = ±
√

β + pα2

q
(1+

√

− 2p
β + pα2

×
a1±a2

√

−2(β+pα2)
p e

±
√

− 2(β+pα2)
p z

a0+a1z+a2e
±
√

− 2(β+pα2)
p z

), (26)

U2(z) =±
√

β + pα2

q

(

1+

√

− 2p
β + pα2

a1

a0+a1z

)

,

(27)

U3(z) =±
√

−β + pα2

q
tan





√

β + pα2

2p
z



 , (28)

U4(z) =∓
√

−β + pα2

q
cot





√

β + pα2

2p
z



 , (29)

U5(z) =±
√

β + pα2

q
tanh





√

−β + pα2

2p
z



 , (30)

U6(z) =±
√

β + pα2

q
coth





√

−β + pα2

2p
z



 . (31)

In (x, t)-variables we have the following exact solutions of
the nonlinear Schrödinger equation:
The new exact solution of Eq. (23):

u1(x, t) = ±
√

β + pα2

q
(1+

√

− 2p
β + pα2

×
a1±a2

√

−2(β+pα2)
p e

±
√

− 2(β+pα2)
p (x−2pαt)

a0+a1(x−2pαt)+a2e
±
√

− 2(β+pα2)
p (x−2pαt)

)

× ei(αx+β t)
. (32)

The rational solution of Eq. (23):

u2(x, t) = ±
√

β + pα2

q
(1+

√

− 2p
β + pα2

× a1

a0+a1(x−2pαt)
)ei(αx+β t)

. (33)

The periodic solutions of Eq. (23) for p(β + pα2)> 0 :

u3(x, t) = ±
√

−β + pα2

q
tan





√

β + pα2

2p
(x−2pαt)





× ei(αx+β t)
, (34)

and

u4(x, t) = ∓
√

−β + pα2

q
cot





√

β + pα2

2p
(x−2pαt)





× ei(αx+β t)
. (35)

The exact soliton solutions of Eq. (23) for−p(β + pα2)>
0 :

u5(x, t) = ±
√

β + pα2

q
tanh





√

−β + pα2

2p
(x−2pαt)





× ei(αx+β t)
, (36)
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and

u6(x, t) = ±
√

β + pα2

q
coth





√

−β + pα2

2p
(x−2pαt)





× ei(αx+β t)
. (37)

Example 4.2. New Hamiltonian amplitude equation
A new Hamiltonian amplitude equation [41]:

iux +utt +2σ |u|2u− εuxt = 0, (38)

where σ = ±1, ε << 1, was recently introduced by
Wadati et al., [42]. This is an equation which governs
certain instabilities of modulated wave trains, with the
additional term−εuxt overcoming the ill-posedness of the
unstable nonlinear Schrödinger equation. It is a
Hamiltonian analogue of the Kuramoto-Sivashinski
equation which arises in dissipative systems and is
apparently not integrable.
By making the transformation

u(x, t) = eiθU(z), θ = αx−β t, z = k(x−λ t), (39)

the Eq. (38) becomes

k2(λ 2+ ελ )U ′′(z) + ik (1+2βλ + εαλ + εβ )U ′(z)

−
(

α +β 2+ εαβ
)

U(z)

+ 2σU3(z) = 0. (40)

If we take

λ =− 1+ εβ
2β + εα

(41)

Eq. (40) is transformed into

k2(λ 2+ ελ )U ′′(z) −
(

α +β 2+ εαβ
)

U(z)

+ 2σU3(z) = 0. (42)

By using theorem 3.1, we get the exact solutions of ODE.
(42) in the following forms:

U1(z) = ±
√

α +β 2+ εαβ
2σ

(1+

√

− 2k2(λ 2+ ελ )
α +β 2+ εαβ

×
a1±a2

√

−2(α+β 2+εαβ )
k2(λ 2+ελ ) e

±
√

− 2(β+pα2)
k2(λ2+ελ )

z

a0+a1z+a2e
±
√

− 2(α+β2+εαβ )
k2(λ2+ελ )

z

), (43)

U2(z) = ±
√

α +β 2+ εαβ
2σ

(1+

√

− 2k2(λ 2+ ελ )
α +β 2+ εαβ

× a1

a0+a1z
), (44)

U3(z) = ±
√

−α +β 2+ εαβ
2σ

× tan

(
√

α +β 2+ εαβ
2k2(λ 2+ ελ )

z

)

, (45)

U4(z) = ∓
√

−α +β 2+ εαβ
2σ

× cot

(
√

α +β 2+ εαβ
2k2(λ 2+ ελ )

z

)

, (46)

U5(z) = ±
√

α +β 2+ εαβ
2σ

× tanh

(
√

−α +β 2+ εαβ
2k2(λ 2+ ελ )

z

)

, (47)

U6(z) = ±
√

α +β 2+ εαβ
2σ

× coth

(
√

−α +β 2+ εαβ
2k2(λ 2+ ελ )

z

)

. (48)

Combining (43)-(48) with (39), we obtain the exact
solutions to Eq. (38) can be written as
The new exact solution of Eq. (38):

u1(x, t) = ±
√

α +β 2+ εαβ
2σ

(1+

√

− 2k2(λ 2+ ελ )
α +β 2+ εαβ

×
a1±a2

√

− 2(α+β 2+εαβ )
k2(λ 2+ελ ) e

±
√

− 2(β+pα2)
k2(λ2+ελ )

(k(x+ 1+εβ
2β+εα t))

a0+a1z+a2e
±
√

− 2(α+β2+εαβ )
k2(λ2+ελ )

(k(x+ 1+εβ
2β+εα t))

)

× ei(αx−β t)
. (49)

The rational solution of Eq. (38):

u2(x, t) = ±
√

α +β 2+ εαβ
2σ

(1+

√

− 2k2 (λ 2+ ελ )
α +β 2+ εαβ

× a1

a0+a1

(

k(x+ 1+εβ
2β+εα t)

) )

× ei(αx−β t)
. (50)

The periodic solutions of Eq. (38) for α+β 2+εαβ
2k2(λ 2+ελ ) > 0 :

u3(x, t) = ±
√

−α +β 2+ εαβ
2σ

× tan

(
√

α +β 2+ εαβ
2k2(λ 2+ ελ )

(

k(x+
1+ εβ

2β + εα
t)

)

)

× ei(αx−β t)
, (51)

u4(x, t) = ∓
√

−α +β 2+ εαβ
2σ

× cot

(
√

α +β 2+ εαβ
2k2(λ 2+ ελ )

(

k(x+
1+ εβ

2β + εα
t)

)

)

× ei(αx−β t)
. (52)
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The exact soliton solutions of Eq. (38) for−α+β 2+εαβ
2k2(λ 2+ελ ) >

0 :

u5(x, t) = ±
√

α +β 2+ εαβ
2σ

× tanh

(
√

−α +β 2+ εαβ
2k2(λ 2+ ελ )

(

k(x+
1+ εβ

2β + εα
t)

)

)

× ei(αx−β t)
, (53)

u6(x, t) = ±
√

α +β 2+ εαβ
2σ

× coth

(
√

−α +β 2+ εαβ
2k2(λ 2+ ελ )

(

k(x+
1+ εβ

2β + εα
t)

)

)

× ei(αx−β t)
. (54)

Example 4.3. Klein-Gordon equation in 1+2 dimension
Let us now consider the Klein-Gordon equation in 1+2
dimension [43]

qtt − k2(qxx +qyy)+aq−bq3 = 0, (55)

wherek, a andb are real constants.
Using the transformation

q(x,y, t) =U(z), z = B1x+B2y− vt, (56)

and substituting Eq. (56) into Eq. (57) yields

(v2− k2(B2
1+B2

2))U
′′(z)+aU(z)−bU3(z) = 0 (57)

whereB1, B2 andv are constants and the prime denotes
the derivation with respect toz.
By using theorem 3.1 and similar to the previous
examples, we can find the following exact solutions for
Eq. (55):
The new exact solution of Eq. (55):

q1 = ±
√

a
b
(1+

√

2(v2− k2(B2
1+B2

2))

a

×
a1±a2

√

2a
v2−k2(B2

1+B2
2)

e
±
√

2a
v2−k2(B2

1+B2
2)

z

a0+a1z+a2e
±
√

2a
v2−k2(B2

1+B2
2)

z
), (58)

wherez = B1x+B2y− vt.
The rational solution of Eq. (55):

q2 = ±
√

a
b
(1+

√

2(v2− k2(B2
1+B2

2))

a

× a1

a0+a1(B1x+B2y− vt)
). (59)

The periodic solutions of Eq. (55) for
a(k2(B2

1+B2
2)− v2)> 0 :

q3 = ±
√

−a
b

× tan

(
√

a

2(k2(B2
1+B2

2)− v2)
(B1x+B2y− vt)

)

, (60)

q4 = ∓
√

−a
b

× cot

(
√

a

2(k2(B2
1+B2

2)− v2)
(B1x+B2y− vt)

)

. (61)

The exact soliton solutions of Eq. (55) for a(v2− k2(B2
1+

B2
2))> 0 :

q5 = ±
√

a
b

× tanh

(
√

a

2(v2− k2(B2
1+B2

2))
(B1x+B2y− vt)

)

,(62)

q6 = ±
√

a
b

× coth

(
√

a

2(v2− k2(B2
1+B2

2))
(B1x+B2y− vt)

)

.(63)

Example 4.4. Coupled Klein-Gordon equation
In this section, we study the coupled Klein-Gordon
equation [44]

uxx −utt −u+2u3+2uv= 0,

vx − vt −4uut = 0. (64)

The nonlinear coupled Klein-Gordon equation is very
important equation in the area of Theoretical Physics. The
nonlinear coupled Klein-Gordon equation was first
studied in [45], and then Shang [46] and Yusufoglu and
Bekir [47] gave further result by using the ideas of the
tanh method and the general integral method. They also
obtained the solutions and periodic solutions. In paper
Sassaman and Biswas [48], the quasilinear coupled
Klein-Gordon, which have several forms of power law
nonlinearity, are well studied by using soliton
perturbation theory.
We use the wave transformations

u(x, t) = u(z), v(x, t) = v(z), z = x− ct. (65)

Substituting Eq. (65) into Eqs. (64), we have the ordinary
differential equations (ODEs) foru(z) andv(z)

(1− c2)u′′(z)−u(z)+2u3(z)+2u(z)v(z) =0,

(1+ c)v′(z)+4cu(z)u′(z) = 0. (66)

By integrating the second equation with respect toz, and
neglecting the constant of integration we obtain

v(z) =− 2c
1+ c

u2(z). (67)

Substituting Eq. (67) into the first equation of Eqs. (66),
we find

(1− c2)u′′(z)−u(z)+
2(1− c)

1+ c
u3(z) = 0. (68)
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By using theorem 3.1, we obtain the exact solutions of
ODE. (68) in the following forms:

u1(z) = ±
√

1+ c
2(1− c)

(1+
√

2(c2−1)

×
a1±a2

√

2
c2−1

e
±
√

2
c2−1

z

a0+a1z+a2e
±
√

2
c2−1

z
), (69)

u2(z) =±
√

1+ c
2(1− c)

(

1+
√

2(c2−1)
a1

a0+a1z

)

, (70)

u3(z) =±
√

1+ c
2(c−1)

tan

(

z
√

2(1− c2)

)

, (71)

u4(z) =∓
√

1+ c
2(c−1)

cot

(

z
√

2(1− c2)

)

, (72)

u5(z) =±
√

1+ c
2(1− c)

tanh

(

z
√

2(c2−1)

)

, (73)

u6(z) =±
√

1+ c
2(1− c)

coth

(

z
√

2(c2−1)

)

. (74)

Combining (69)- (74) with Eq. (67), we obtain the exact
solutions to Eqs. (64) can be written as
The new exact solution of Eqs. (64):

u1(x, t) = ±
√

1+ c
2(1− c)

(1+
√

2(c2−1)

×
a1±a2

√

2
c2−1

e
±
√

2
c2−1

(x−ct)

a0+a1z+a2e
±
√

2
c2−1

(x−ct)
), (75)

v1(x, t) =
c

c−1
(1+

√

2(c2−1)

×
a1±a2

√

2
c2−1

e
±
√

2
c2−1

(x−ct)

a0+a1z+a2e
±
√

2
c2−1

(x−ct)
)2
.

The rational solution of Eqs. (64):

u2(x, t) = ±
√

1+ c
2(1− c)

(1+
√

2(c2−1)

× a1

a0+a1(x− ct)
), (76)

v2(x, t) =
c

c−1
(1+

√

2(c2−1)
a1

a0+a1(x− ct)
)2
.

The periodic solutions of Eqs. (64) for 1− c2 > 0 :

u3(x, t) =±
√

1+ c
2(c−1)

tan

(

x− ct
√

2(1− c2)

)

, (77)

v3(x, t) =
c

1− c
tan2

(

x− ct
√

2(1− c2)

)

.

u4(x, t) =∓
√

1+ c
2(c−1)

cot

(

x− ct
√

2(1− c2)

)

, (78)

v4(x, t) =
c

1− c
cot2(

x− ct
√

2(1− c2)
).

The exact soliton solutions of Eqs. (64) for c2−1> 0 :

u5(x, t) =±
√

1+ c
2(1− c)

tanh

(

x− ct
√

2(c2−1)

)

, (79)

v5(x, t) =
c

c−1
tanh2

(

x− ct
√

2(c2−1)

)

.

u6(x, t) =±
√

1+ c
2(1− c)

coth

(

x− ct
√

2(c2−1)

)

, (80)

v6(x, t) =
c

c−1
coth2

(

x− ct
√

2(c2−1)

)

.

Example 4.5. (2 + 1)- dimensional long- wave-
short- wave resonance interaction equation
Next, we consider the (2 + 1)-dimensional
long-wave-short-wave resonance interaction equation [49,
50]

i(ut +uy)−uxx +uv = 0, (a) (81)

vt −2(|u|2)x = 0. (b)

whereu andv denote the the short surface wave packets
and long interfacial wave respectively. Eqs. (81) describe
the long and short waves propagating at an angle of each
other in a two-layer fluid. This system has been
demonstrated to have both bright and dark two-soliton
solutions.
Using the wave transformations

u(x,y, t) = ei(px+qy+kt)U(z), v(x,y, t) =V (z),

z = x+(a−2p)y+at, (82)

wherep,q,k anda are real constant.
Substituting (82) into (81), we have

U ′′(z)+(q+ k− p2)U(z)−U(z)V (z) = 0, (a) (83)

aV ′(z)−2(U2(z))′ = 0, (b)

Integrating Eq. (83b) with respect toz and taking the
integration constant as zero yields

V =
2
a

U2
. (84)

Substituting Eq. (84) into Eq. (83a) yields

U ′′+(q+ k− p2)U − 2
a

U3 = 0. (85)
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By using theorem 3.1, and similar to the previous
examples, we can find the following exact solutions for
Eqs. (81):
The new exact solution of Eqs. (81):

u1 = ±
√

a
2
(q+ k− p2)(1+

√

2
q+ k− p2

× a1±a2
√

2(q+ k− p2)e±
√

2(q+k−p2)z

a0+a1z+a2e±
√

2(q+k−p2)z
)

× ei(px+qy+kt)
, (86)

v1 = (q+ k− p2)(1+

√

2
q+ k− p2

× a1±a2
√

2(q+ k− p2)e±
√

2(q+k−p2)z

a0+a1z+a2e±
√

2(q+k−p2)z
)2
,

wherez = x+(a−2p)y+at.
The rational solution of Eqs. (81):

u2 = ±
√

a
2
(q+ k− p2)(1+

√

2
q+ k− p2

× a1

a0+a1(x+(a−2p)y+at)
)

× ei(px+qy+kt)
, (87)

v2 = (q+ k− p2)(1+

√

2
q+ k− p2

× a1

a0+a1(x+(a−2p)y+at)
)2
.

The periodic solutions of Eqs. (81) for p2 > q+ k :

u3 = ±
√

a
2
(p2−q− k)

× tan

(
√

p2−q− k
2

(x+(a−2p)y+at)

)

× ei(px+qy+kt)
, (88)

v3=(p2−q−k) tan2

(
√

p2−q− k
2

(x+(a−2p)y+at)

)

.

u4 = ∓
√

a
2
(p2−q− k)

× cot

(
√

p2−q− k
2

(x+(a−2p)y+at)

)

× ei(px+qy+kt)
, (89)

v4=(p2−q−k)cot2
(
√

p2−q− k
2

(x+(a−2p)y+at)

)

.

The exact soliton solutions of Eqs. (81) for q+ k > p2 :

u5 = ±
√

a
2
(q+ k− p2)

× tanh

(
√

q+ k− p2

2
(x+(a−2p)y+at)

)

× ei(px+qy+kt)
, (90)

v5=(q+k− p2) tanh2

(
√

q+ k− p2

2
(x+(a−2p)y+at)

)

.

u6 = ±
√

a
2
(q+ k− p2)

× coth

(
√

q+ k− p2

2
(x+(a−2p)y+at)

)

× ei(px+qy+kt)
, (91)

v6=(q+k− p2)coth2

(
√

q+ k− p2

2
(x+(a−2p)y+at)

)

.

Example 4.6. Modified KdV-KP equation
Using the idea of Kadomtsev and Petviashvili, who
relaxed the restriction that the waves be strictly
one-dimensional in the KdV equation, leads to the
(2+1)-dimensional modified KdV-KP equation [51]:

(ut −
3
2

ux +6u2ux +uxxx)x +uyy = 0. (92)

This equation was investigated in the literature because it
is used tomodel a variety of nonlinear phenomena.
Functional variable methods was used to construct
traveling wave solutions of this equation in [51].
We use the wave transformation

u(x,y, t) =U(z), z = k(x+ ly−λ t), (93)

wherek, l andλ are constants.
Substituting (93) into (92), we obtain the following ODE:

(−(λ +
3
2
)U ′(z)+6U2(z)U ′(z)+k2U ′′′(z))′+ l2U ′′(z)= 0.

(94)
Integrating Eq. (??) twice with respect toz and neglecting
constants of integration, we find
(

l2− (2λ +3)
2

)

U(z)+2U3(z)+ k2U ′′(z) = 0. (95)

Using theorem 3.1 and proceeding as before we find the
following exact solutions for the modified KdV-KP
equation:
The new exact solution of Eq. (92):

u1 = ±
√

2λ +3−2l2

2
(1+

2k√
2l2−2λ −3

×
a1±a2

√

2l2−2λ−3
k2 e

±
√

2l2−2λ−3
k2 z

a0+a1z+a2e
±
√

2l2−2λ−3
k2 z

), (96)
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wherez = k(x+ ly−λ t).
The rational solution of Eq. (92):

u2 = ±
√

2λ +3−2l2

2
(1+

2k√
2l2−2λ −3

× a1

a0+a1k(x+ ly−λ t)
). (97)

The periodic solutions of Eq. (92) for 2λ +3> 2l2 :

u3 = ±
√

2l2−2λ −3
2

× tan

[√
2λ +3−2l2

2k
(k(x+ ly−λ t))

]

, (98)

u4 = ∓
√

2l2−2λ −3
2

× cot

[√
2λ +3−2l2

2k
(k(x+ ly−λ t))

]

. (99)

The exact soliton solutions of Eq. (92) for 2l2 > 2λ +3 :

u5 = ±
√

2λ +3−2l2

2

× tanh

[√
2l2−2λ −3

2k
(k(x+ ly−λ t))

]

, (100)

u6 = ±
√

2λ +3−2l2

2

× coth

[√
2l2−2λ −3

2k
(k(x+ ly−λ t))

]

. (101)

Example 4.7. Modified Benjamin-Bona-Mahony
equation
Consider the modified Benjamin-Bona-Mahony equation
(mBBM) [52]

ut +ux +u2ux +uxxt = 0. (102)

This equation models long waves in a nonlinear
dispersive system. The existence of the solutions of initial
value problems for the mBBM equation has been
considered in [52,53]. Yusufoglu and Bekir [54] used the
tanh and the sine-cosine methods to obtain exact solutions
of the mBBM equation. By the exp-function method,
Yusufoglu [55] obtained new solitary solutions for the
mBBM equations. Layeni and Akinola [56] used the
hyperbolic auxiliary function method and reported some
new exact solutions of the mBBM equation. Abbasbandy
and Shirzadi used the first integral method in this
equation [57].
We use the wave transformation

u(x, t) =U(z), z = x− ct, (103)

wherec is constant.
Substituting (103) into (102), we obtain ordinary
differential equation:

(1− c)U ′(z)+U2(z)U(z)− cU ′′′(z) = 0. (104)

Integrating Eq. (104) with respect toz and considering the
zero constants for integration, we obtain

(1− c)U(z)+
1
3

U3(z)− cU ′′(z) = 0. (105)

Using theorem 3.1, and proceeding as before we find the
following exact solutions for the modified KdV-KP
equation:
The new exact solution of Eq. (102):

u1(x, t) = ±
√

3(c−1)(1+

√

2c
c−1

×
a1±a2

√

2(c−1)
c e±

√

2(c−1)
c (x−ct)

a0+a1(x− ct)+a2e±
√

2(c−1)
c (x−ct)

). (106)

The rational solution of Eq. (102):

u2 = ±
√

3(c−1)(1+

√

2c
c−1

× a1

a0+a1(x− ct)
). (107)

The periodic solutions of Eq. (102) forc(1− c)> 0 :

u3 =±
√

3(1− c) tan

(

√

1− c
2c

(x− ct)

)

, (108)

u4(x, t) =∓
√

3(1− c)cot

(

√

1− c
2c

(x− ct)

)

. (109)

The exact soliton solutions of Eq. (102) forc(1− c)< 0 :

u5 =±
√

3(c−1)tanh

(

√

c−1
2c

(x− ct)

)

, (110)

u6 =±
√

3(c−1)coth

(

√

c−1
2c

(x− ct)

)

. (111)
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