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Abstract: The paper proposes a constrained feedback control that guarantee weak and strong stabilizability for distributed semilinear
systems of the form :

dy(t

U ay(t) + piomyte),
whereA is the infinitesimal generator of a line@y—semigroup of contractions on a Hilbert spat@ndN is a (nonlinear) operator
from H into its self. A decay rate of the state is estimated. Also the robustness of the considered control is discussed. Applications and
simulations are provided.

Keywords: Distributed semilinear systems, constrained, stabilization, decay estimate, robustness.

1 Introduction from H to H such thaiN(0) = 0. While the scalar valued
function p(.) is a control. The conventional control for

Semilinear systems can be used to represent a wide rangstabilization problem ofX) is given by

of physical, chemical, biological and social systems as

well as manufacturing processes. Semilinear structures p(t) = —(Ny(t),y(t)) 2)

are derived in a natural manner to approximate the

description of nuclear fission and heat transfer. The(see [45,6,7]). The problem of stabilizing the system (1)

semilinear nature of nuclear fission follows from the fact was considered ird], whereN is sequentially continuous

that the state (neutron level or power) is multiplied by the from H,, (H endowed with the weak topology) k. Then

control function (reactivity or neutron). A multiplication it has been shown that under the condition :

of coolant flow rate (a control variable) and temperature

(a state variable) is produced in heat transfer between a (NSt)y, St)y) =0,vt>0=y=0, ©)

solid wall, such as a reactor core, and moving coolant ) -

fluid. Even the generation of poison products in nuclearthe quadratic feedback’ weakly stabilizes the system

reactors may be described by a bilinear model with(1)- _

thermal neutron flux (the control) multiplying xenon Under the assumption

concentration (see 1[2,3]). Here we consider

infinite-dimensional semilinear systems of the form / |(NS(t)y, S(t)y)|dt > 3]ly[|, Yy e H, (T,5>0), (4)
0 py ) ) b )
dy(t)
g = YO+ pONyD), y(0) =Yo, (1) a strong stabilization result has been obtained using the

control (2) (see [5{]). However, in this way the
on a Hilbert spaceH with inner product(.,-) and  convergence of the resulting closed loop state is not better
corresponding nornjj.||, whereA generates a semigroup 1
of contractionsS(t) on H andN is a nonlinear operator than|y(t)[| = O(ﬁ)'
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Control systems are often subject to constraints on

In the sequel the following result will be needed for

their manipulated inputs. Input constraints arise as aour stabilization problem and constitutes an extension of

manifestation of the physical limitations inherent in the

the one given in9].

capacity of control actuators. Stabilization question of| emma 2.1. Let u be a positive and increasing function
constrained bilinear and semilinear systems have beegych thatu(0) = 0, and letv(x) = x — (I + u)~1(yx).

considered in many works (se,6,9,10,11,12]). In this
paper, we study weak and strong stabilizability of the
system {) using a control constraint of the form
(eventually, after re-escaling)|p(t)] < 1. Among
saturating feedbacks, the following law

< Ny(t),y(t) >

{ Iy
0,

has been considered iti],12]. In [13] the rational decay
rates are established i.e.,

Iyl = O(t=r),

using the following feedback control

,y(t) #0
y(t) =0,

p(t) (5)

~ <Ny(t),y(t) >
Iyl

Here, we consider the following continuous control
LNy
1+ [(Ny(t), y(t))]

This type of feedback has been treatedah Wwhere it has
been shown that if the resolvent 8fis compactN is a

pr(t) = re(—c,?2). (6)

p(t) = (7

bounded linear self-adjoint and monotone operator then

under the assumption3), the feedback (7) strongly

stabilizes (), but no estimate has been given. Here, we

will establish an explicit decay estimate of the stabilized

state for a large class of semilinear systems. The paper is
organized as follows : In the second section, we establish
an existence and uniqueness result for the mild solution

and we show that the feedback) (guarantees the weak
and strong stability of 1) with a decay estimate. Also we

analyze the robustness of the stabilizing control. In the

third section, we give some applications.

2 Stabilization results

Let us recall the following definition concerning the
asymptotic behavior of the systerh)(

Definition 2.1. The system (1) is weakly (resp. strongly)
stabilizable if there exists a feedback control
p(t) f(yt)), f : H - K := R,C such that the
corresponding mild solution satisfies the properties :

1. for eachy, there exists a unique mild solutioft),
defined for alt € R* of (1),

2. {0} is a an equilibrium of (1),
3. y(t) — 0, weakly (resp. strongly), as— -+ for all
Y, € H.

Consider a sequenday)k=o Of positive numbers which
satisfies

Skr1+U(Ser1) < ysk, Wherevk > 0, (8)
for somey > 0. Thens, < X(k), whereX(t) is a solution
of the differential equation

dX(t)

VX)) =0, X(0) =so.

©)

Proof. The proof uses similar techniques as #j.[It is
done by induction ofk. Assume thas, < X(k) (this is the
induction hypothesis) and prove thgt,1 < X(k+1).
Since (I + u)~! is monotone increasing, then the
inequality (8) is equivalent to

S < (1+U) 7 (ys) = s—V(Se)- (10)

Integrating the equation (9) frokto k+ 1; yields
k+1
X(k+ 1)~ X(K) +/ v(X(1))dT = 0.
k

On the other hand, sinoeis an increasing function, the
solutionX(t) of (9) is such that

X(t) < X(1), vt > 1 >0. (11)

Using (11), the induction assumption and the fact that
vand (I +u)~ are increasing, we obtain

X(k+1) > (14w~ (yX (k) > (1 +u) " (yso)

=S V() = ki1 (12)

This yields the desired resusit
Remark. For y = 1, we retrieve the result of [9].

2.1 Decay estimate

We begin with the following result concerning the
existence of the mild solution and giving a useful estimate
for our stabilization problem.

Theorem 2.1. Let A generate a semigrouf(t) of
contractions o and letN be locally Lipschitz. Then the
system 1) controlled with (7) possesses a unique mild
solutiony(t) which verifies

2

</OT|(NS(s)y(t),s(3)y(t)>|dS)

T [(Ny(s),¥(9))|?
°<[) T+ [(Ny(S).y(9)°

(13)

S) , ast — 4-o0.
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Proof. Let us consider the closed loop-system : which holds by density, for a§p € H, and hence(t) is
a global solution i.émax = +. Now, let us establish the
di;i” = Ay(t) + F(y(t)), Y(0) =Yo, (14) estimate {3). From (16) and Schwartz’s inequality, we get
2
where Ny V)~ SO0l < Ly ol (7 [ {20 HIL )’
1+[(Ny,y)l € [ (19})

To establish the existence and uniqueness of the solutio
of (14), let us show that the functidnis locally Lipschitz.
For ally,z<€ H, we have

|(NS(s)yo, S(S)Yo)| < 2Ly, [IY(S) — S(S)Yoll[|Yoll+
Ny~ 2Ny, (Ny($)y(9) (20)

DJsmg (18) and the fact tha§(t) is a semigroup of
contractions, we deduce that

If(y) =@ <l

1+|<Ny, z)|
4 (Ny, 2Ny (Nz,Z)Nz I Replacingyo by y(t) in (19) and (20) and using the
1+[(Ny,y)|  1+[(Nz2)| semigroup property of the solutioyit), we obtain

SinceN is locally Lipschitz, then for eacR > 0 there 2
exists a positive constahk such that [(INS(s)y(t), S(s)y(t))| < 2"HyoH ol

T |(y(s),Ny(s))|? 2
[Nz—Ny|| < Lg[jz—Y|l, Y(zy) € H2: lzl <R [l <R (T /t 1+(y(s), Ny(S)>|dS)
(15) +/(NY(t+89),y(t+9))], ¥t,5> 0.

Using (15), we deduce that

I1f(y)— f(@)| <Cully—2zl|+ Integrating this last inequality over the intervlT] and
ﬁ (Ny,2)Ny (Nz,2)Nz I Cy—RRLA using Schwartz's inequality, it follows that
1= R

— s T

Ll itz | 1iNs(s)y(0), Sy ds <
Sclﬂy—ZH‘f‘HmH 5 e 5
| (NvaNz - (Ny2Ny 2085 IYoll*T2 +T (24 Ly lIyol ))X

1+|(Nz2z)| 1+[(N 1
§C+2|‘\§/—Z7Zﬁ>—‘i- +(Ny,y)| </t+T |<y(s),Ny(s)>\2 ds)z.

(Ny.2Ny — (Ny.aNz o t  14+](y(s),Ny(s))|
T Ny 1+|<Nz 2l ©2=2 Which gives the estimate.)m -

Ny — N2) The following result concerns the strong stabilization

<Cly-2z+ HW”+ of (1) by the control (7).

I (Ny,ZNy — (Ny, )Ny I Theorem 2.2. Let A generate a semigrouf(t) of
1+[(Ny,y)| 1+](Nz z)\ contractions orH and letN be locally Lipschitz such
<Cally—12|+ [|(Ny, )Ny o that @) holds. Then the feedback (7) strongly stabilizes

- (14 [Ny y)[)(1+[(Nz2)]) (1) with the following decay estimate

‘<Ny,y>*<NZ,Z>|, C3:3C1

<Gslly—12|+ 1

Ca(|(Ny,y—2)| + [(Ny—Nz2)|), C4=RC, Iyl :O(ﬁ% ast — oo (21)

<GCslly—12||, Cs =C3+2RGiLr-

Henceg is locally Lipschitz. Then (see Theorem 1.2, p Proof. Using (17), we obtain
184 in [15]), the system (14) admits a unique mild solution (ke1)T (
defined on a maximal intervé,tmax/, by the variation of Ily(KT) |12 = [ly((k+1)T)||2 > 2/ [(Ny(®), y(1)) ? dt
constant formula : 1+ |<NY(t)7y( )l

keN,
t
y(t) = S(t)y0+/0 St —s)g(y(s))ds. (16)  and using4), we deduce that
Furthermore, using approximation techniques (k)| Iy(KT) |2 = [ly((k+1)T)[|2> M [ly(kT) |4, (22)
we get
52
tNY(T).y(0) whereM, = 2
12— lye)?+2 [ =L _dr <0,vt,s>0.
W= IVEI2 | Ty v @ = . 2( 218, ol 4T (14 Ly 3ol) )
It follows from (17) that Since||y(kT)|| is a decreasing function, it follows that
YOI < lIYoll, ¥t € [0, tmax; (18) (T = Iy((k+ DT = Ma[y(k+ )T (23)
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Settingsq = |ly(KT)||? andu(s) = M;$%, we getu(sc,1) + Furthermore, we have
Skr1 < S Applying Lemma2 with y = 1, we deduce that

s < X (k), whereX(t) is the solution o’ (t) + v(X(t)) = 2 2 /‘ [{y(T),Ny(T)[*
0, X(0) = so. Furthermore, it is easy to see thas) = ||yt(t)|| ISl +2 s 1+ |<y(r),Ny(r)>|dT 2x
M2+ 0(s?). It follows that / Re((£ (y(1)),y(1)))dt < 0, ¥t,5> 0.
JS
X' (t) ~ —MX2(t)- (24) (29)
Remarking thatZ6) implies that :
Integrating 24)and using the fact tha < X(k) we get
s« = O(k™1). Sincel|y(t)|| is decreasing in times, then the ¢ |y, Ny) |2
last discrete estimate implies the continuous &g @ €Wy < 1+ [(y,Ny)|’
Remark . Note that for all initial stategp € H, we have ) e ) )
Ip(t)| < 1, for allt > 0, and if the systemi( is subject to it follows from similar techniques as in the proof of the

the control constrainp(t)| < M, then one may consider 1 heoremz.1that

the pondered contrdfi p(t).

/OT [(NS(s)y(t), S(s)y(t))|ds <

y(t)
BT Jly(8).Ny(9)) 2
Cl(/t T+ | {y(®).Ny(®))]

and using 29), we deduce that

(DT |{y(1), Ny(T))[?

2.2 Robustness i

s)" =Gyl > 0.
In this part, we exhibit a class of allowed perturbations
under which, the stability of the closed lood4) is
preserved. We consider the perturbed system

dy(t) _ oo (), Ny(t) s—serz2(  JWODIVOIE 40 5,
o YO Iy Ny YO V), @9 - <k+/E>TT L+, y(m)
where & mapsH to it self. A common question in /kT Re((E (1) ¥(T)))dr,

application is: how large can the perturbatiérbe that ) ,

leaves the strong stability of the dynamicas)? This  Wheresq = [[y(KT||%, vk > 0. Using @), (13) and the fact
analysis is called the robustness analysis in controlthaté is locally Lipschitz we obtain

systems literaturels,17,18]. In this context, we establish

the following result. S—Se1 > Co(S¢— ), C2=C(|lyol)-

Theorem 2.3. Let assumptions of Theorer@.1 hold.  \vjitch may be written as:
Then the estimate2(l) is preserved under the perturbation
& provided tha€ is locally Lipschitz and Yk > U(Scr1) + Sk, k>0,

[{y, Ny)[?

I < VI (2+ [y Ny) ) proceeding as in the proof of Theorel, we obtain the
estimate of the perturbed system.

Proof. First let us note that 0 remains an equilibrium of the Remark .

perturbed systen®f), which can be written in the form

wherey = 1+C, > 0, u(t) = Ct2. Applying Lemma2 and

1€(y) (26)

1. The robustness of the contrd) o the perturbatiod

dy(t) can be regarded as a robustness to the perturbation of
. = AO+a(), ¥(0) =yo, @7) Abyé.
2. The problem of robustness of the control (2) and (5)
whereg= f +¢& and has been studied irip] and [11], respectively.
(v, Ny)
——————Ny, 0 S
f(y)={01+|<y,NY> yy;éo 2.3 Weak stabilization
) y=>.

) ) ) ) ) Our result concerning the weak stabilization is stated as
Sincef andé are locally Lipschitz, then so 3 Alsogis follow:

dissipative:(g(y),y) <0, ¥y € H- Then from the proof of
TheorenR.1the system (25) admits a unique mild solution
such that

Theorem 2.1. Let A generate a semigrou(t) of
contractions onH and letN be locally Lipschitz and
sequentially continuous fron,, to H, such that 3)

t holds.
) = Sityo+ | Sit-9g(y(8)ds =0 (28)  Then
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s
1. The feedback (7) weakly stabilizes (1). and hence/ |(S(t)y, NS(t)y)|dt = 2|ly||?, ¥t > 0, so @)
2. The system (25) remains weakly stable under anyyg|ds. 0

rturbationé, which i ntiall ntin n . .
perturbationé, cf is sequentially continuous and Example 3.2.In this section,Q C R" denotes a bounded

2
satisfies :—M < (&(y),y) <0 open domain witlC® boundary and) = Q x]0,+oo[. Let
1+ [y, Ny)| us consider the following system
Proof. Let f and g be defined as in the proof of &2
Theorem2.1 Z();,t) :AZ(X,t)+ p(t)Z(X,t)7 in Q
1. From Theoren®.1, there is a unique mild solution Z(E,t) =0, on dQ x]0,+ool.
for the systemX). Since the functiomN : Hy, — H is (31)
sequentially continuous, then so fs Moreover we  Here A andH are defined as in the above example, while
have (f(y),y) <0, Vy € H. Then the weak stability ) ] 00 ]
of (1) follows from Theorem 2.4 of Ball [4]. N is defined byN = (, O> . The operatoN is compact
2. ' Rer;1|grking that the assumption (see f]). Then the feedback given by
y, Ny .
——=—_ < (£(y),y) < 0 together with (3
T+ .Ny)| (€(y).y) 9 @)

/ 2(x.) dzgx,t) dx
p(t) = 2 d;(x t) ’

(9(S(H)Y). S(O)Y) =0 =y =0, 1+ [ 2ty 2 ox
the conclusion follows from the same arguments as in

the above point ensures the weak stabilization &fl().
Remark .

guarantees the following implication

1. In [4], a weak stabilization result of (31) has been
given using the quadratic contr@);
2. Note that in the above example, the oper?as not

1IE_;1<ampIe23.11t.ln tr;.is.texglmple, we ?I\tﬁ an applict:ation O:; self-adjoint, so the results of [16] are not applicable
eoremc. 110 a finite dimensional bilin€ar system, an to obtain the feedback stabilization &1().

concerns the stabilization of a single oscillatory motion by

means of suitable damping. Such motion is described b3ExampIe 3.3.In this sectionQ c R" denotes a bounded
two dimensional system of ordinary differential equations open domain witlC® boundary and) = Q x]0,+|. Let
of Lienard's type like: us consider the system

3 Applications

0-1 00
vo=(27 Jwo+e0 (53)v0 @ { P20 — aafut) + pityat) 22 inQ
In [20], the quadratic feedbaclp(t) = —y3 where 28, =0, 0N 9Q x]0, +oo.

(32)
wherea € L*(Q) is such thata(x) > 0, a.e onQ and
a(x) > ¢ > 0 on a non-empty open subsetof Q. This
system has the fornd] if we set

y(t) = (yi(t),y2(t)) has been used to obtain the
estimate 21). However this feedback law is not bounded
with respect to initial states. Applying Theore?nl, we

deduce that the bounded contyuft) = — —2 5 strongly
- 1+y; z 1 2 01
stabilizes the system3(). Here p(t)Ny(t) models a y=[(35)eH=Ha(Q)xLY(Q), A= 5 o

damping device of structure described by the matrix
N = (8 2) with gain p(t) = p(ya(t).y2(t)). The matrix ~ With

A admits the two eigenvaluely = —i and A, = A1 (the D(A) = [H3(Q)(HA(Q)] x H(Q), N = (0 0)
conjugate of A;), associated with the eigenvectors 0G
= (i and respectively. Settin
2 i ) 2 _ P Y g wherel is the identity operatofl is the Laplacian operator
y= (y2> € H :=R? we obtain andG is defined for alu € L2(Q) by
Sty =e ! (y.¢1) b1+ € (v.91)91 Gue) =alxux) a.e on.
Then With the inner product

(SY:NS)Y) =€ 2 (y1—iy2)” =205 +Y5) +€" (yi+iy2)?,  ((V1.2), (Y2, 22)) = ((V1.Y2) () + (21, 22))12(0)
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the operatorA generates a semigroup of contractions
(see f]) and (4) holds (see [19]).

Applying Theorem 2.1, we obtain the strong
stabilizability of the system32) by the control

[ a7
1+|/ az“ )\2ax

and we have the estimate

5 8 8 & 8

pAa)

o & @B

p(t) =

/(Dz(xt 2dx+/ 02Xt))zdx:0(t}), ast — +oo.

Let us now see the simulations of the above example
ay(x,0
for Q =(0,1), a(x) =x+1 andy,(x) =x—1, yx.0) _ 3
in Q. Then we obtain the results shown in Figures 1-6.

Fig. 4: Second component of the stabilized state

Fig. 1: First component of the free state "

3

Fig. 5: The energy of the stabilized state

Fig. 2: First component of the stabilized state /

3

Fig. 6: The stabilized control
4 Conclusion

Under observation-like assumptions, weak and strong

stabilization of constrained distributed semilinear systemscontroller has been studied. The paper leaves the open
have been studied. A decay estimate for the stabilizedjuestion of whether the established estim&tE) can be
state is given. Also, the robustness of the constrainedmproved.
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