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Abstract: Inthis paper, the iteration perturbation method is applied to solve nonlinear oscillations. Two examples are given to illustrate
the effectiveness and convenience of this iteration procedure. Comparison with the numerical solutions is also presented, revealing that
this iteration leads to accurate solutions.
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1 Introduction Eq. (1) can be rewritten as

The most common and most widely studied methods for %+ wx = wx — f(x), (3)

determining analytical approximate solutions of a ) .
nonlinear oscillatory system are the perturbation methods/here the constamb is a priori unknown frequency of the

These methods involve the expansion of a solution to arPeriodic solutionx(t) being sough. The original Mickens
oscillation equation in a series in a small parameterProcedureis givenadj.

Several researchers have studied different nonlinear

problems by means of iteration procedur&g[3,4,5,6, Xt 0= 0(w,X-1), k=1,2,... (4)
7,8]. . _ _ where the input of starting function is

The purpose of this paper is to apply the iteration
procedure to determine analytical approximate solutions Xo(t) = Acoswit. (5)

to the nonlinear oscillation equation. With this procedure,_ = ) )
the analytical approximate period and the corresponding NiS iteration scheme was used to solve many nonlinear
periodic_ solutions, valid for small as well as large oscillating equations410,11.
amplitudes of oscillation, can be obtained. The nonlinear ~ Lim etal. 3] proposed a modified iteration scheme
Duffing and Van der Pol oscillations will be taken as . 5
; e X1+ W01 = 9(W, Xk1)

examples to illustrate the applicability and accuracy of the 6

P pplicability y Tod@xe )04 K1) k=012... @

iteration procedure.
with the imputes of starting functions as

2 Theiteration procedure X-1(t) = Xo(t) = Acoswt (7)

where gy(w,x) = dg(w,X)/dx. The modified procedure
was also applied to solve many nonlinear oscillatdr [
%4 f(x) =0, x(0) = A, X(0) =0, (1) 131419 . o
Chen and Liu §] proposed a new iteration scheme,
wheref (x) in a nonlinear function and has the property  consideringw asw:

Consider a nonlinear conservative oscillator described as

f(—X)) = —f(X) (2) X+ (“f—lxk:g(o‘kflvxkfl)v k= 17 27 (8)
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where the right hand side of E§) can be expanded in the right side can be expanded into the following Fourier

Fourier series

o (k)
g(ak-1,% 1) = Zi A 1i(w_qy) COSTW-1t),  (9)
i=

where the coefficierd_1 j are functions otv_1 and¢ (k)

is a positive integer. Thék — 1) th-order approximation

series:

Xn—1 [g(anll, ).(nf}a)'('nfl') + g'x(xnfla).(nfla)'('nfll) (Xn - anl)
+0x(Xn—1,%n-1,%n—1) (%0 — Xn—1) + Gx(Xn—1,%n—1,%n—1)
X(¥n —Xn-1)] = a1(A, Q, w) cosQt + by (A, Q, w) sinQt
+3N L an(A Q,w)cosn@t + TN, bn(A, Q, w)sinnQt,

(19)

where the coefficientsn (A, Q,w) and by(A Q,w) are

wx_1 IS obtain by eliminating the so-called secular terms, xnown functions ofA and w, and the integeN depends

i.e., letting
- 1i(w-1)=0, k=1,2.. (10)

Eq (10) is always a linear algebraic equationa'.ﬁ_1

J. H. He [7] proposed a new iteration scheme

considering the following nonlinear oscillator

X+x+ef(x,x) =0, x(0)=A, x(0)=0. (11)
We rewrite Eq(11) in the following form
X+ X+ exg(x,x) =0 (12)

whereg(x,x) = f(x,X)/x

J H He has constructed an iteration formula for the

above equation

Kier 1+ X1 + EXe-19(Xie, X ) (13)

Marinca and Herisanu8] proposed a new iteration
method by combining Mickens and He’s iteration

methods, considering the following nonlinear oscillator
%+ w>x=f(x,%X) =0, x(0)=A x(0)=0 (14)

We rewrite Eq(14) in the following form

X+ Q% =x (.QZ— W’ — W) = xg(x,%,X). (15)

where Q is a priori unknown frequency of the periodic

solutionx(t) being sought.
The proposed iteration scheme is

Xnr1+ QZX_n+1 = Xn-1[9(%-1,%-1,%-1)
+0x(Xn—1, %n—1, Xn—1) (Xn — Xn—1)

. N nes 16
+ O (%01, %1, %0-1) (%0 — Xn-1) (16)
+ Ox(Xn-1,%0-1,%n-1) (%0 — ¥n-1)], N=10,1,2, ...
where the imputes of starting functions a8 [
X_1(t) = Xo(t) = AcosQt. a7)

It is further required that for each, the solution to Eq.
(16), is to satisfy initial conditions
*n(0) =A, x(0)=0,n=1,23,.... (18)

Note that, for giverx,_1(t) andxs(t) Eq.(16) is a second
order inhomogeneous differential equationXgrs(t). Its

upon the functiorg(x, x,X) on the right hand side of Eq.
(15). In view of Eq.(19), the solution to Eq(16) is taken
to be

an(A.Q,w)

N
Xn+l == ACOSQt - 22 (n271)92

n=

N
-3 k(’;gAf)gg (sinnQt —sinQt),
n=2\""

(cosnQt — cosQt)

(20)
where A is, tentatively, an arbitrary constant. In Eq.
(20), the particular solution is chosen such that it contains
no secular terms needs

a(AQ,w) =0, by(AQw =0  (21)

Eq. (21) allows the determination of the frequen@yas a
function of A and w. this procedure can be performed to
any desired iteration stap

3 Applications

In order to illustrate the remarkable accuracy of this
iteration, we compare the approximate results with
numerical integration results for the following two
examples.

3.1 Duffing oscillator with high nonlinearity

Consider the following nonlinear Duffing equation with
high nonlinearity, which models many structural systems,
it is regarded as one of the most important differential
equations because it appears in various physical and
engineering problems such that, nonlinear optics and
plasma physicsl[6,17].

4+ X+ @+ B+ yx' =0, x(0) = A, X(0) =0, (22)

wherex is displacement andy, 3 and y are arbitrary
constants.

We rewrite Eq.(12) in the form

$a+ Wi =0 (P —1-a¢—pG—1E), (29)
where g(x,x,X) = (w0’ —1—ax3—Bx;—yx§) and the
inputs of the starting function are
X_1(t) = Xo(t) = Acoswt.

(© 2014 NSP
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The first iteration is given by the equation

L‘\ P ™,
\ / N\
3 5 7 " \ i \ y
S+ WXy = — (64A+480{A +4036/?1 +-35yA 64Aw2) coscot X, / \ ;
S = \
160A3+20BA5+21yA % % / c \
- &4 COS&‘J’: c \\ // -0 \\\
5.4 7yA7 . /
“BA%) cos 5t — ( ) COS 7ot N o -
. . (24) a=10, f=¥ 1‘,,-.-un1 E S g
No secular terms in; requires that
_\\ //" \\ =
3 5 35 s\ / af N y
w=ow =11+ aA+ _BA*+ —yAS.  (25) \ ) \ ;
4 8 64 5 o \ i fo \
\ /J /
This equation is identical to Eq10) in Ref [16] and Eq. : \\ /./ » \ 4
(25) in Ref [17]. Solving Eq.(24) with initial conditions 1 — S —— BT
(18), x1 is obtained as W 2o ey canll o vy
3 5 7 N 4 e £
X1 = Acoswt + W) (cos 3wt — coswt) K %
5\ 3
ABAS+TYAT . ;) ; _
+ ( s3g,z ) (cOs Tt — coswt) : \ _ :
7 N
+ %2) (cos Tt — coswt) , ! N
(26) i 3 ‘ e
for n= 1 into Eq.(16) with the initial functions(18) and B B b ESh B A AR
x1 given by Eq.(26) we obtain the following differential . . . e
equation forxy LY %
L5 \ /3 L 51 \
b 3 4
v N 3aA 5ﬁA5 35yA7 _ a?AS _ 21aBA’ " 2 %
Xo + WX = A4 =2+ + 3202 556002 \ \ y
_7BPA°  183ayA° 185[3yA11 _ 1095/2A A2 s N, \,
1287 20487 15367  163sar 1\ ) COSW g . 7
an® | 5BA° | ZlvA | @25 | TapAT | 7B2A% " 1250yA? . . . ;
] 16 6402 2560)2 76802 | 614402 ; :
lSByA“ 99V2A3 7YA7 UZAS a=0.1, Baysl, A=l ¥=0.1, asfsl, A=l
s — Sl ) cosan— (B + 6402
35aBA7 | 25B2A°% | 299ayA° 42$yA11 599ﬂAl3>
+ + + + Cos St
73;'\‘;’2 Mﬁ?’z 1%62%4‘*’2 SSGV%““‘*’Z%BV:?M*;Z 2013 Fig. 1: Comparison of the approximate periodic solution with the
—\ 6z 2 numerical solution. Numerical; ....xj (t) - - - - ; Xo(t) —
T 76802 T 15362 T 30722 T 122882 | 327680 I'solution. N | t 16]; xo(t
(B~ 19ayA° | 27ByAlt | 225/2A13
XCOS It — | 15567 + G1aar T %0067 T 32767 ) COS
ByAll 5213 _YPAS
o (3072w2 g1027 ) COS1I0t — 55og 7 COS13ut. . . - . .
27) Solving Eq.(27) with the initial condition(18), we obtain
The absence of secular term gives the following equation
_ aA3 | 5BA° | 21yA7 | a2p% | T7aBA?
for w? X = Acosuwt + (32w2 T ezt 51207 T 5128 T 20480
7B2A° | 125ayA° | 15ByAll  99y2Al3
o — (BRI o | ((TBOAIHIL 2064384 0A° +51ax7 + 291524 T Te3sart ~ s6r1aar ) (COSIVN —COSL)
BA 7yA? 275 35aBA7 |, 25B2A9
+137625¢32A8+22487O412y5Afg53;234104(18yA10+168192@'2A12 -0 + (384(02 + 3e T 1‘5’3@4 + 18432u4 184327
) 299ayA° | 4258yAll | 5992A13 _
(28) + 147256 + Tarasar T 3032160 ) (COS WL — CcOSWE)
i ; TaBA’ 19B2A° 53ayA° 4553yAlL
Solving Eq.(28) for w yields + (3072»2 T 3686477 T 737287 T 1474565 | 5898245

644 48a A%+ 40BA% - 35yA8 /A1 + A
W=y = :
128 646
(29)

where
A1 = 6144+ 92160 A%+ 26881 °A%

+768BA*+ 37440 BAS;
A, = 105632A8 + 6720/A5 + 28440 yA8

+124QByA0+ 195/°A12,

845)2A B2A°
+ 157286404> (cOSs Tt — coswt) + (12288mﬂ

19ayA° 27ByAlL 225/2AL3 _
T 2915207 T 3276807 T 26214405 (cos ot — coswt)

+ ( By Syen’ )(Cosl]wt—coswt)

36864007 ' 98304Q0%

+ (cos 13wt — coswt).

_yeAE
550502404
(30)
Fig. 1 shows a comparison between the present
solution obtained from formula€29) and (30) and the
numerical integration results obtained by using the

Runge-Kutta method. From the results presented here and
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the results of Ref.1€], it is shown that the present result
are in a good agreement with those presented in R€F. [

3.2 Autonomous modified Van der Pol oscillatc "

One of the classical equations of non-linear dynami
was formulated by Dutch physicist Van der Po
Originally it was a model for an electrical circuit with &
triode valve, and was later extensively studied as a hos
a rich class of dynamical behavior, including relaxatic
oscillations, quasi periodicity, elementary bifurcation
and chaos18,19. A modified Van der Pol oscillator has
been proposed to describe a self-excited body sliding o
periodic potential. This autonomous modified Van der F
oscillator is described by the following equatidt.

X+x+¢€ (X2 — 1) X+ Psinx=0, x(0) =A, Xx(0) =0. (31)

In this case we have
2 e e

gxx%X) = @? 1 e DoPsing l)xxg Peivo and

x_1(t) = Xo(t) = Acoswt. The first iteration can be

written in the form

2

2 : .
%o+ P — %o (w 1 £ (x§ — 1) %o — Psinxg '
Xo
(32)
The term sixg = sin(Acoswt) can be expanded in the
power series

sin(Acoswt) = Acoswt — A2cogat 33
AScoSwt  Alcos’wt | APco ot (33)
=5 /R ]

We rewrite powers cast in Eq.(33) in terms of the cosine
of multiples ofwt with the aid of the identityZ1].

12 /2n+1
n+1 _
cos™ 1 ot = Ekzo( ok ) cos(2k+1)wt, (34)
where
n n! n
(p) ol p)!' (0> 1; kl=1.23....k keN .

By using Eq.(34), Eq. (33) may be expressed in the form

sin(Acoswt) = Acoswt — ’2*—2 (cos 3wt + 3coswt)
+§ (cos 5wt + 5cos 3ot 4 10 cosot)
— 3 Be50(COS 7wt + 7 cos ot + 21 cos 3ot + 35 cogwt)

+%0(cos Qut 4 9 cos Tt + 36 cos Bt
+84cos3ut + 126 cogut) .
(35)

o

g o

t
() () €=1, A=2, p=2

Fig. 22 Comparison of the approximate periodic solution (—)
with the numerical solution (- - -).

Substituting Eq(35) into Eq. (32), this can be rewritten
as:

" 2 _ Ap  Ap  Alp A% 2
X1+ wxi=-A-P+=5 — 155 t o716~ 737280+ AW
x coswt — (eAw — 2eA3w) sinwt + £ eA3wsin 3wt +

Ap Ap, A'p A%p A°p A’p
74 — 384 T 15360 — T105920) COS Wt — | 1920 — 76080
A9

£ 20 ) cos Bt + (<A — P_ ) cos Tet
2580480, 322560 10321920
9

A’p
— 92897280°0S Wt

(36)
No secular terms iy requires that

A? A4
P~ * 193

Alp Ap AP

192 9216 737280
@37)

A=2, wl:\/1+

Solving Eq. (36) with initial conditions (18), x; is
obtained as

X1 = Acoswt + 25 (3sinwt — sin 3wt)

+ 175%5%&2 (coswt — cos 3ut)
— Toeaz (COSwt — cos ot ) (38)

+ 55765552 (COSWt — COS Twt)
— Ta5T550a2 (COSWt — COSQwt).

Fig. 2 shows a comparison between the analytical
solution obtained from formulaé37) and (38) and the
numerical integration results obtained by using the
Runge-Kutta method. It is seen that the solution obtained
by the iteration procedure is very close to that obtained by
the numerical method. One concludes that adopting
present technique to analyze the solutions of the modified
Van der pol equation, a satisfactory results are obtained
for small values of parameter

(© 2014 NSP
Natural Sciences Publishing Cor.

https://digitalcommons.aaru.edu.jo/isl/vol3/iss3/1



Inf. Sci. Lett.3, No. MoEldageanppdMnlsmaikseviians ebNerlineas @sgllators by Iteration @@h 95

4 Conclusion [16] J. F. Liu, He's variational approach for nonlinear oscillators
with high nonlinearity, Comput & Math Appls58, 2423-

In this paper, the iteration perturbation method has been 2426 (2009).

successfully used to study the nonlinear oscillators. Thd17]D. Younesian., H. Askari, Z. Saadatina., M. Yazdi,

examples of nonlinear oscillations has illustrated that the  Frequency analysis of strongly nonlinear generalized

iteration procedure can give excellent approximate  Duffing oscillators using He's frequency-amplitude

results. The first approximate frequency, given in formulation and He's energy balance meth@hmput &

equation(25) is identical to equatior{10) in Ref [16]. Math Appls 58 3222-3228 (2010). _ _

The examples of nonlinear oscillations has illustrated thaf18] Y- J. Li, Z. L. Wei, T. Li. Xin, Chaos control in the nonlinear

the present method can give excellent approximate Schrodinger equation with Kerr law nonlinearitghin.

results. The second approximate frequengyobtained Phys. B23, 020204 (2014).

. : . : [19] F. M. Atay, Van der Pol’s oscillator under delayed feedback,
by the second iteration gives very accurate solutions: 3. Sound Vibr218 333-339 (1998).

Also, the second apprOXImate perlodlg SOIUt@IS In [20] M. D’Acunto, Determination of limit cycles for a modified

gooq agreeme_nt with the numerical integration results Van der Pol oscillatorsylech Res Commu, 39-98 (2006).

obtained by using a fourth order Runge-Kutta method. [21] I. S. Gradshteyn., I. S. Ryzhik, Table of Integrals, Series and
Products. New York: Academic Press (1980).
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