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Abstract: The fixed point theorems of contraction mappings#mormed spaces was studied. [ M. Kir and H. Kiziltunc, On Fixed
Point Theorems For Contraction MappingsniNormed Spaces, (AMISL) ]. By the same motivation, we will derive some fixed point
theorems for nonself contraction mappingsiBanach spaces which we stated in the present paper.
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1 Introduction and Preliminaries (ig) ¢ is monotone increasing, i.g;,> t, implies
¢ (t1) > ¢ (t2);
In 1963, S.Gahler introduced the concept of 2-normed iig) ¢ (t) <tforallt>0;
space. Since 1963, S. Gahler, Y. J. Cho, R. W. Frees, C. iiig) ¢(0) =0;
¢) ¢ is continuous;

others have studied on both 2-normed spaces and 2-metric Vg) {¢"(t)} converges to O for ati > 0;

spaces. Also, H. Gunawan and M. Mashagli defined Vig) Yo 9" (t) converges for all > 0;
n-normed space. Viig) t— ¢ (t) — 0 ast — oo;

It is well known that Banach’s contraction mapping (viiig) ¢ is subaddive.
theorem is one of the most important cornerstones of ~Berinde gave some important relationships between
functional analysis. Due to the importance, many above conditions.
celabrated mathematicians, as Rhoades and Berinde, have 1) (ig) and(iig ) imply (iii ¢ );
investigated generalizations of Banach fixed point  2) (iig) and (ive) imply (iii ¢ );
theorem. 3) (ig) and(vy ) imply (iig).

A mapping T: X — X where(X,d) is a metric space,
is said to be a contraction if there exist&K0, 1) such that
forall x,y € X,

(
(i
R. Diminnie, R. E. Ehret, K. Iséki, A. White and many E'V )
(
(

Definition 2. [9] A function ¢ satisfying (i) and (vy) is
said to be a comparison function.

d(TxTy) < kd(xy). (1) Also, Berinde gave following results:
Lemma 1.[9]

1) Any comparison function satisfiéi ¢ );

2) Any comparison function satisfyingiii ) satisfies
(ivg), too;

3) If ¢ is a comparison function, then, for any=kN*,
¢K is a comparison function, too;

4) If ¢ is a comparison function, then the function s

If the metric spacéX, d) is complete then the mapping
satisfying () has a unique fixed point. Also, Inequalith) (
implies continuity ofT.

Berinde P] unify many fixed point theorems of
contraction mappings in one theorem by using a function
¢ defined as following:

- . R+ — R+
Definition 1. [9] Let ¢ : Ry — R, be a function. In o
connection with the functiog we consider the following s(t) = z )
properties: k=0
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satisfies(iy) and(iii ¢ ). Definition 9. [7] Let E be a linear n-normed space then

We can give some examples of functigras follows; the mapping T: E — E is called contractive if

1.¢:R: - Ry, ¢(t) =kt ke [0,1), satisfies all the
conditions(iy) - (viiig). [TX=Ty Xz, Xall < [[X=Y. X2, Xall

2.¢:Ry - Ry, ¢(t) = o, satisfies(iy), (v4) and , forallx,y,ze E. )
(Vii¢). .

In fixed point theory there are many interation schema,Theorem 1.Let (E,ll.,---,.]|) be alinear n-Banach space

In this paper we will use Picard iteration schema defined®"d K be a nonempty closed and bounded subset of E. A
as following: selfmap T: K — K be contraction then T has a unique

fixed point in K

Definition 3.Let E be any setand TE — E a selfmap. For o )

any given xc E, we define T(x) inductively by P(x)=x  Definition 10.[7] Let (E,||-,--- ,-||) be alinear n-normed
and T (x) = T (T"(x)); we recall T(x) the i iterative ~ Space. Amapping TE — E is said to be @ —contraction

of x under T. For any xe X, the sequencén},-o C X if there exists a comparison functign: R, — R, such

given by - that

Xn=T%_1=T"Xg, N= 12,.. HTX—TvaZV" ,XnH <¢ (||x—y,x2,--- 7Xn||)

. ) L . , forall x,y,x2,...,X, € E. 4
is called the sequence of successive approximations with % 5 @)

the initial value . Itis also known as the Picard iteration Remarkin Definition 10, if we take ¢ (t) = kt with k e

starting at x [0,1), we obtain definition of contraction mappings to n-
Now, we will give some definitions and results in norme'd.sfpaces. Itis clear that Definitibdis an extension
normed spaces. of Definition 8.
Definition 4. [3] Let n € N and E be a real vector space Theorem 2.Let(E,||.,---,.[[) be a linear n-Banach space
of dimension d> n. A real valued functiof-,--- .-/ on E" and K be a nonempty closed and bounded subset of E. A
satisfying the following s_elfmap.T: K — K be¢—contraction then T has a unique
Ny [[X1, -+ ,%|| = Oif and only if x, ..., x, are linearly ~ fixed pointin K
dependent; — .
pnz) %1, -- - , %] is invariant under permutation: Definition 11.[7] Let (E, |-,---,-||) be a linear n-normed
ns) Xt Xa1,C%l| = || [Xe, -+  Xn_1,%n] foOr all space, C be a subset of E then the closure of C is
CER, {x € E; there is a sequenceyof C such that x— x }. We

N Ixe o Xeny+zl < X syl say, C is sequentially closed if€C.

Hxlal"' 7anlazH1 .
is called an n— norm on E and the pai(E, ||-,--- ,-||)
is called n— normed space.

Definition 12.[7] Let (E, ||-,---,-||) be a linear n-normed
space, B be a nonempty subset of E amdRthen B is
said to be e-bounded if there exist some>M0 such that

Definition 5. [3] A sequence{x,} in a n-normed space [|&X2,-- X[ <M forall xz,--- ., € B. If for all e € B,
(E,||-,---,-||) is said to be a Cauchy sequence if Bise-bounded then Bis called a bounded set.
m!mexn Xm Xy Xl = Oforall xz, ... x € E. From Theoreml and Theoren®, it is clear that the
authors [7/] showed a contraction mapping and a
¢-contraction mapping have a unique fixed point in
n-Banach spaces.

In this study, we’'ll discuss similar theorems for nonself
E. if {xa} converges to x then, we writg x> X as n— co. contraction mapping and nonsglfcontraction mapping.
As a result, we will obtain the fixed point theorems for
Iqonseh‘ mappings in n-Banach spaces.

Definition 6. [3] A sequence{x,} in a n-normed space

(E,||,---,-||) is said to be convegent if there is a point x in

E such thatrlim X — X, X2, -+, Xn|| = O for all Xa, ..., X, in
—00

Definition 7. [3] A linear n-normed space is said to be
complete if every Cauchy sequence is convergent to a
element of E. A complete n-normed space E is called n-
Banach space. .

2 The Concept of Retraction For

First time, the authors] introduced the some concept Nonself-Mappings in n-Normed Space

of fixed point theory fon—normed spaces as following:

Definition 8. [7] Let E be a linear n-normed space then Iterative techniques for nonexpansive and asymptotically
the mapping T: E — E is said to be a contraction if there nonexpansive mappings in Banach space including Mann
exist some ke [0,1) such that type and Ishikawa type iteration processes have been
studied extensively by various authofs[19.
However, if the domain oT, D(T), is a proper subset of

, for allx,y, %z, ..., % € E. (2)  E (and this is the case in several applications) &ndaps

HTX_TvaZa"' ,XHH S k”X_anZv"' 7Xn||
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D(T) into E, then the iteration processes of Mann type

and Ishikawa type have been studied by the authors
mentioned above, their modifications introduced may fail [|an —am, X2, -+, %nl| = [[@n —anip,%2,- -, Xnl|

to be well defined (for more detaB[[19] ).
A subseK of E is said to be a retract & if there exists
a continuous map: E — K such thaPx=x, forall x € K.

Every closed convex subset of a uniformly convex Banach
spaceis aretract. Amdp: E — K is said to be a retraction
if P2 = P. It follows that if a mapP is a retraction, then

Py=yforally € R(P), the range oP.

The concept of retraction for nonself-mappings was
firstly introduced by Chidumelf] as the generalization

of nonexpansive self-mappings.

In this section, we established fixed point theorems for
non-self mappings applying the definition of retraction to

n-Banach spaces.

Lemma 2. Let E be a real n-normed space and K be a
nonempty subset of E. Let:lE — K be a nonexpansive

retraction of E onto K and T: E — K be a nonself
contraction mapping with k [0,1). Then PT: K — K is
a contraction mapping with & [0,1).

Proof.For all xy € K, and for all fixed %,--- ,x, € K , we
have

[(PT)X—(PT)y, Xz, - ,¥a|| < [ITX=Ty, Xz, , Xl
S k||X_an27"' 7Xn||-

Thus, the mapping PT is a contraction witle K0, 1), too.

Theorem 3. Let K be a closed and bounded subset of
n-Banach space E, PE — K be a nonexpansive

retraction of E onto K . Let a nonself-map:E — K be a
nonself contraction mapping. If a sequen@g},,_; C K
be defined as follow;

an=(PT)"a , a0 €K. (5)
Then, the sequenden },_, has a unique fixed pointin K

Proof.Let @ € K and {a,} be a sequence defined ) (
in K. Note that T is a contraction then there existse k
[0,1) such thal| Tx—Ty,Xo, - -+ , Xn|| < K[[X—Y, X2, ,Xnl|
forall x,y, %2, -, %, € K.

From Lemm&2, we have

[(PT)"ag — (PT)"ag, Xz, . Xal| < K||(PT)" *ao— (PT)"*

ag, X2, Xnl|
< K[|(PT)" 2ag — (PT)"2
ag, Xg,- -+ 7XI"IH

< anXO—X17X27"'7XnH (6)

Now, we show thafan} is a Cauchy sequence in. ikor all
n,m> 0 with m> n, taking m=n-+ p forall xp,--- ,xn € K, we
have

= [l(an —an41) + (@nt1 — @nt2) +
ot (Bnip-1—antp), X, Xl
< llan —ani1, %2, Xl
+llans1 —ani2,%2, -+, Xnll
+..+llanip-1—anip. X2, - Xl
= [|[(PT)"a0 — (PT)"aq, Xz, , xn
+(PT)™ a0 — (PT)™ay.xp, -+ x|
..+ [|(PT)™ P2y — (PT) P
an, X2, Xnl|
< K'lag—ag, %z, xnl|
+K" g — a1, X, - X
+...+kn+p71HaO—al,X2,-~- JXn|

Xl (7)

<
~1-k

Ha()—aLXZ,"'

Note that E is bounded then there existsS\M) such that

HaO—a17X27"'7XnH SM for all X27"'7Xn€E. (8)

Substituting 8) into (7) we obtain that

kn
— s Xn]) < —M. 9
Han am7X2, /XnH = 1_k ( )
In equation Q) if we take mn — oo , we have

nmmuan—amXZXHH =0. (10)
The equation0) implies that{an }_; is a Cauchy sequence in
K . Note that K closed and bounded & },,_; converges to any
ac K. Also, PT is continuous, we have

(PT)a= lim (PT)ay = lim an.1 =2 (1)

Thus, ac K is a fixed point of PT
Now, we have to prove that the fixed point is unique. Let a
K with & # a assume thatPT)a = a then, we obtain

Ha_a,7X27"' 7XnH = H(PT)a_ (PT)a,7X27"' , Xn

SkHa_a,7X27"'7an~ (12)
The @2) implies k> 1 but this case is a contradition for& [0, 1).

This implies that a= a . Hence, the fixed point is unique. This
completes the proof.

Our next theorem is an extension of Theorg&m

Lemma 3.Let E be a real n-normed space and K be a
nonempty subset of E. Let:lE — K be a nonexpansive
retraction of E onto K and T. E — K be a nonseli-
contraction mapping. Then, PTK — K is a¢-contraction

mapping.
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Proof.For all xy e K, and for all fixed %,---,x, € K
,using definition ofp function, we have

H(PT)X_ (PT)y7X27"' 7XnH S HTX—Ty7X27"' 7XnH
S ¢(HX-y,X2,"' 7Xn||) (13)

This implies that the mapping PT ig-contraction
mapping.

Substituting 18) into (17) we obtain that

[an—am X2, Xal| < " (M) + ™M)+ (19)
In (19) if we take mn — co,we have
lim Han—am7X277XnH:O (20)

n,m-—oco

The inequality 20) implies that{an},_; is a Cauchy sequence
in K . Note that K closed and bounded &an},,_; converges to

Theorem 4. Let K be a closed and bounded subset ofany ac K. Also, PT is continuous, we have

n-Banach space E, PE — K be a nonexpansive
retraction of E onto K . Let a nonself-map:E — K be a
¢-contraction mapping. Let a sequenfa,},_, C K be
defined as follows;

an=(PT)"o ,a € K. (14)

Then,{an},_; has a unique fixed pointin K

Proof.Let g € K and {an} be a sequence defined )
in K. Note that T is ap-contraction then there exists a
comparison functiop such that

HTX_Ty7X27"' ,XnH < ¢(HX—y,X2,--- 7XHH)

forall x,y,%2,--- , X, € K. (15)
Also, we have

I(PT)"a0 — (PT)"ag, Xz, - . Xall < ¢([|(PT)" *ao — (PT)"*

al7X27“' 7Xn D
< $2(|(PT)" 28— (PT)"2
ag, X2, - 7XnH)

< ¢n(Ha0_al7X27"' 7Xn|‘016)

Now, we show thafa,} is a Cauchy sequence in. [kor all
n,m> 0with m> n, taking m=n+ pforall xo,--- ,xy € K then,
we have

l[an —am, X2, -+, Xal| = [|an —antp, X2, , Xl

= [[(@—an+1) + (@11 —ans2) + ..
+(@nep-1—ansp) X2 Xl

< llan —ani1,%, Xl
+llant1 —ant2, X2, Xl
o4 [Xantp-1—antps X2, Xl

= ||(PT)"a0— (PT)"a1, X, -, Xa
+(PT)™ag — (PT)" tag, X, , X
+. H[|(PT)MP1gg — (PT)MHP-L
an, X2, Xl

< ¢"(llag —ag, Xz, Xl + ¢™
(llao— a1, X2, -~ Xa[)
+o 9" P (Jag—ag, %, ll17)

Note that E is bounded then there existss>\N0 such that

HaO—al7X27"'7XnH§M foral|X27"'7Xn€E. (18)

(PT)a= lim (PT)an = lim an,1 =a. (21)

Novy, we have to prove that/ the /fixed point is unique. Let a
K with a # a assume thatPT)a = a then, we obtain

!
Ha_av)(27"' » Xn

— H(PT)a—(PT)a/,sz" an

< kHa—af7xz7-~- ol (22)
The @2) implies k> 1 but this case is a contradition for& [0, 1).
This implies that a= a. Hence, the fixed point is unique. This
completes the proof.

Corollary 1.1t is clear that if we takep (t) = kt where
k € [0,1) then we obtain Theore®
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