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Abstract: Inthis paper, we consider inverse problem arising in calibration of time-dependent volatility function from the Black-Scholes
model and analyze its ill-posedness phenomena. The forward operator of the inverse problem under some consideration decomposes into
an inner linear convolution operator and an outer nonlinear Nemytskii operator given by a Black-Scholes function. Using Chebyshev
collocation method, we transfer the inner linear operator to a linear system. Since the resulting matrix equation is badly ill-conditioned,

a regularized solution is obtained by employing the Tikhonov regularization method, while the choice of the regularization parameter
are based on generalized cross-validation(GCV) and L-curve criterions. Numerical case studies illustrate the efficiency and accuracy of
the presented method.

Keywords: Option pricing , Implied volatility, Chebyshev collocation method, Inverse problem, Tikhonov regularization

1 Introduction formula to determine the volatility (Called the implied
volatility) from the market option price. The implied

volatility of an option pricing model that depends on its

In recent years several models have been created to priqﬁe and defines as function of time to maturity is called
financial security products. Financial securities (options, o y i
\f0|atl|lty of term-structure. Often traders use this

futures and forward contracts) have become essentia latilitv (f detail 45
tools for corporations and investors over the past fewvoa"y(Or more details see3j4,5]).
decades. Options can be used, for example, to hedge The mathematical problem that arises here consists in
assets and portfolios in order to control the risk due to thefinding (calibrating) a time-dependent volatility function
movement in stock prices. European options anddefined on a finite time interval:= [0,T] from the term
American options are the two major types of options. Anstructure onl of observed prices of vanilla Call options
European Call(Put) option is a financial derivative thatwith a fixed strikeK > 0. In the fact, we want to convert
certifies the holder’s right but not obligation to buy (for a observed measurements (option prices) into information
Call option) or sell (for a put option) a specific amount of about volatility function that we are interested in and it
an underlying security, for a fixed prick (exercise isn't observable. It has been observed to be an ill-posed
price), at a fixed future tim& (maturity or expiry). Since  problem in the sense that reconstruction of volatility is
an option scrutinizes a right it has a certain option valueunstable with respect to errors in the data. Therefore the
or option price. Classical option pricing theory was calibration of volatility function is an inverse problem.
suggested by Black and Scholek] [and extended by Existence and uniqueness and some properties of the
Merton P]. solution to this problem were established irG].[

In the Black-Scholes world there is the important Researchers in literature have used different methods for
quantity of volatility. Volatility is a measure of the approximating volatility function. For example, /][
amount of fluctuation in the asset price, i.e., a measure oéuthors used maximum entropy regularization (MER) to
the randomness. It has a major impact on the optiorfind an estimation of volatility function and i8] authors
value. Knowing the volatility function allows for a better explore the theoretical and numerical application of local
understanding of underlying stochastic process of optiorregularization methods for identifying volatility function.
price. Most option traders invert the Black-Scholes In this work, we use Tikhonov regularization method with
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general cross validation (GCV) and L-curve criterions to We consider in this paper a different kind of the

resolve ill-posedness of the problem. Black-Scholes model, which is more realistic and focused
This paper is organized as follows. In Secfiowe on time-dependent functions over the interval [0, T] using

first discuss the original Black-Scholes model and expose& generalized geometric Brownian motion as stochastic

the mathematical model for pricing European option process for the pricg(t) of an asset, on which options are

when the model has time-dependent parameters. Then waritten. With constant driftp > 0, time-dependent

state the calibration of time dependent volatility function volatilities o(t), a dividend yieldsqdt in a time stepdt

from the option pricing model as an inverse problem andand a standard Wiener procesgt), the stochastic

investigate ill-posedness phenomena. Discretization of thelifferential equation becomes

problem obtained from previous section in the form linear

system using Chebyshev collocation method will done in (1 _

Sectior8. In  Section4 we describe Tikhonov dS(t) = (- @SHdt+oSHA), 0<t<T. (3)

regularization method for resolving the ill-posed problem L

of option pricing and introduce GCV and L-curve When the pa_rame_tensandq also become_ determlnlstu_:

ceriterions for determining regularization parameter. wefunctions of time, it follows from stochastic and analytic

illustrate in SectioB the accuracy and efficiency of the Cconsiderations on arbitrage-free markets has to be

method with numerical examples. Finally Secton Mmodified as follows:(sees])

concludes. 2 2
P U Sa oc
T = o S e T —also—rt)c, - (4)
2 Mathematical formulate 0<ser t50,

whereC is the price of the derivative security. When we

The price of the asset or underlying derivatieg) apply the following transformations:

follows a Geometric Brownian motion(t), meaning that
s satisfies the following stochastic differential equation

(SDE): t

y=1Ins, u:C.exp(/O r(t)dr), (5)
ds(t) = ps(t)dt + os(t)dw(t), Q)

) then becomes
the trend or drifty (measures the average rate of growth

of the asset price), the volatility (measures the standard o2(t) 02u o2(t), du

deviation of the returns), and no dividends are paid in that—_ = o Hr(t)—alt) - J=c (6)
time period. ot 2 oy 2 "oy

Assume thatC is the Call option valuek exercise price —o<y<oo, t>0.

and letr denote the risk-free interest rate (constant for

0 <t <T). If the market is complete (there are no Given the initial conditioru(y,0), the solution to§) can
transaction costs (fees or taxes), the interest rates fobe expressed as

borrowing and lending money are equal, all parties have

immediate access to any information, all securities and ®

credits are available at any time and any size, all variables u(y,t) = [m u(&,0)e(y—¢&,t)dé, )
are perfectly divisible and may take any real number,

individual trading will not influence the price and there
are no arbitrage opportunities), which means that an
asset can be replicated with a portfolio of other assets in

)}Nhere

the market (see9]), we can find the Call value of the t B B o%(1) 2
European option. Under the above assumptions and using exp(— y+ Jolr (r) —a(r) 2 ldr) )
Ito's lemma, the Call option value obtains as the 2f5 o?(1)dt
following boundary value problem of the Black-Scholes Py.t) = ) - (8)
equation [1] 21 fpo*(T)dt
oC 1 ,,0°C dC _ For an asset with current asset priée= X(0) > 0 at
ot 29 s 0s? +rs ds r€=00<s<x0st<T, timet = 0 we consider a family of European vanilla Call
C(sT) = (s—K)" =max(s—k,0), 0<s< x, options with a fixed strikeK > 0, a time dependent
C(0,t) =0 0<t<T risk-free interest rate(t) > 0, dividend yieldg(t) > 0 and

’ ’ - maturitiest varying through the whole interval Then it
C(st) =s— Ke 'Y, S— co. follows from stochastic considerations (for details S&¢ [

(2)  that the associated fair pric&{t)(0 <t < T) of these
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options satisfy on an arbitrage-free market the equation concisely as the following

Inéﬂg[r(r)—q(r) B OZZ(T)]dT C(t) = Cas(X,K,r(t),q(t),t,b(t)), tel. (15)

C(t):)(e—.léq(r)drd,( ) The option price obtained from the Black-Scholes
Jea?(t)dt pricing framework is function of parameters: asset psice
) strike pricek, riskless interest rate, dividend yieldq,
|n§+ft rm) —q(n)— 2 (T)]dr time to expiryt and volatility o. Except for the volatility
_ ke~ Jor(ndr o kK 0 2 parameter, t_he other parameters are obseryable qua_ntities.
ft o2(1)dt The difficulties of setting volatility value in the price
0 formulas lie in the fact that the input value should be the
t forecast volatility value over the remaining life of the
- ./o o?(1)dt), option rather than an estimated volatility value (historical

9) volatility) from the past market data of the asset price.
Since o(t) cannot be solved explicitly in terms of

where X,s,r,q,t and option priceC from the pricing formulas,
the determination of the implied volatility has been
1 z R L .. A
b(2) = 7/ e 2 dx (10) devoted a lot of attention of mathematicians in recent
2T o ' years. In what follows, we try to state the inverse problem

) ., __arising in option pricing model.
moreover, the payoff of a European Call at expiry providesyq considerC(t) is the exact value of European Cal
_ - option andC?(t) noisy data option pricing of equation
C(0) =max(X —k,0). (11) (15) such that,
The Black-Scholes-type formul@)and (11) is originally

1
derived for positive continuous volatility functions, but it HCE(t) —C(t)| 2y = (/.(C‘S(T) —C(r))zdr) 2 <3,
also yields well-defined value€(t) > O(t € 1) if the A/ =

. 2 .
functionso=(t),r(t) andq(t) are Lebesgue-integrable and we want to find appropriate  approximations
almost everywhere finite and positive. Therefore the 5 . . 2 . ) D)
direct problem of option pricing model with U (b= 0d5(t) from exact functionu(t) := o(t) by the

time-dependent parameters can be expressed as tlj;%”OWing accuracy
following: :
W0 = u) gy = [P0 —u(r)dr<3.

Direct Problem. The European Call price formula for ) . . )
Black-Scholes option pricing model, with parameters/According to the notations used irY][ we write the
X > 0,r(t) > 0,g(t) > 0,T > 0,s > 0 and time nonlinear forward operator equatié¢i{u(t)) = C(t) such

dependent volatility functiow (1) > 0 is the following: that
F:D(F)c L) — L2(1),

{ Xe I8 AUt (dy) — ke ST (dy), 50, F = NoJ
Ces= B ,

max(X —ke™ o rWd g), s=0, where D(F) = {u(t) € L10,T);u(t) > 0 ae in[0,T]},
(12)  with the inner linear convolution operator

whereCgs := Cps(X, k,r(1),q(1),T,5) and J: L) — L2(1),
t
|n§+j;§[r(u)_q(u)_ ozz(u)]du IN() =: /0 v(1)dr,
= fé o2(u)du ’ and the outer nonlinear Nemytskii operator
- N:D,NL%(1) c L2(1) — L2(1),
dp=dy — /O o2(u)du. (13) IN(B)](t) = Cas(X,K,r,t, bt)),

where D, is the set of nonnegative functions over the

The European put price formula can be deduced in dntervall. _ . . s
similar manner. Also we can reformulate above solutionFor identifying u(t), first we can find uniquelyb®(t)

in terms of the auxiliary function based on previous theorem corresponding4¢) by the
. following nonlinear Nemytskii operator
. 2
o) i= [ o?(r)dr a4 NB)I(D) = Cg(X,K.ntb),  (16)
@© 2013 NSP
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and then, determine® (t) by the following linear Volterra
integral operator

I (t) = /:u(r)dr —Bo(1), 17)

such that

Iu®(t) = u(t)lly) < .

Now for simplifying, we write above linear \olterra
integral equation in the formu = b, where the operator
A'is defined foru by

A[u(r)]:/otu(r)drzb(t), te[0,T],  (18)

where u(t) := g?(t). Then A € L(U), the space of
continuous linear operators frobh = L,[0,T| to U. We
will assume throughout that the dakt) is such that
there exists a unique solutiance U of equation (19) and,
in particular, we require that0) = 0.

The equation I8) is ill-posed, which has serious

possible to get a finite dimensional approximatioru(f
in C[0,T] by using the least square method [11] as

N

A(t) = _;Ci Yi(t)

u(t) = (19)

where ¢,i = 0,1,2,...,N are real constants for
N =1,2,... and ¢i(t)s are a set of orthogonal
functions[11].

The error made by using a polynomial of orddrto

approximate the function giveru(t), can be easily
calculated as:

u(t) — Au(t) ) Mgt — ).

ON+1
this error of the approximation (19) may be further
reduced by adding more functiongi1(t),... to the
pervious set [11]. Coefficients,i = 0,1,2,...,N in the
(19) are unknown and if these coefficients are determined,
then we get an estimation fai(t). Our approach can be
justified by appealing to Rivlin’s theorem, stating that
Chebyshev node polynomial interpolants are nearly

implications in the usual case where we only haveoptimal polynomial approximants and has been shown to

available an approximationb® € U of U. The
ill-posedness means that the solutiof of Au = b®

(when such a solution exists) may be arbitrarily far from
the solutiont of the unperturbed problem. Therefore,
some kind of regularization procedure will be needed to

solve the problem in the case of perturbed dafta(for
more details seelB]). Then the inverse problem of
calibrating the volatility term structure (t) from noisy
dataC?(t) can be expressed as follows:

Inverse Problem. Determining of the time-dependent
volatility function o(t),(0 < t < T), under the

assumptions stated above from noisy observations

Co(t),(0 <t < T) of the maturity-dependent fair price
functionC(t), (0 <t < T) in nonlinear forward operator
F(u(t)) =C(t), whereu(t) := g?(t).

3 Numerical Approach

perform well empirically 12]. Chebyshev nodes over
[0,T] are as the following

2i—-1)m

1
ti = =T(1+ coy on

i=0,1,2,...,N
2 )) b At ) )

as important as the choice of the nodes interpolants is that
of a family of functions from which the approximapt
will be drawn. We suggest using a Chebyshev
polynomial. The Chebyshev polynomials of the first kind
are as the following
Wi (1) i=0,1,2,...,N.
(20)

=Ti(1) = cogi.arccosf)),

For determining coefficients;,i = 0,1,...,N, we use
Collocation method base on Chebyshev polynomials and
Chebyshev nodes, namely Chebyshev collocation
method.

The Chebyshev collocation method is one of the most
efficient tools for the numerical solution of intertemporal
optimizing. The principle of these methods is that the

In this section we describe in greater details thegqtion is represented by a finite Chebyshev series with

approximation algorithm adopted in this paper. First using

Newton’s method 10], we find b%(t) from C(t) in
equation (16) and then we try to obtaim®(t)
corresponding te€(t) from b’(t) with noise leveld in

unknown coefficients. This expression is substituted into
the equation and the coefficients are determined so that
the equation is satisfied at certain points within the range
under consideration. The number of points is chosen so

equation 17). In order to solve the equation (17) by that, along with the conditions of equation, there are

approximation we need to define:

enough equations to find the unknown coefficients. The

i. The family of basis functions to approximate the positions of the points in the range are chosen to make

functionu(t).
ii. The interpolation nodes;,

small the residual obtained when the approximate
solution is substituted into the equation. This residual is

According to the assumptions on the volatility function minimized if collocation point were roots of Chebyshev

(bounded over

its domain and uniformly Holder polynomial. Lanczos in]1] calls this choice of points the

continuous on each compact subset of its domain), it's’selected points” principle or the method of collocation.

© 2013 NSP
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By substituting (19) in the (17), fob%(t), we have the
following equation

t N
(0= [[ (5 aTD)ar 1)

Based on Chebyshev collocation method, with considerin
Chebyshev nodes ovéd, T| as selected points, we derive

the following linear system
N

bo(t) — /0ti (3 eT()dr, 12012

(22)

The above mentioned systemMf+ 1 equations withN +
1 unknown coefficients;,i = 0,1,2,...,N will be in the
form

Au=h. (23)
where the matrixA and the vectorsi and b are as the
following

f(EOTo(T)dT JRTy(T)dr ... f(EOTN(T)dr
o- To(T)dT [ot Ta(T)dT ... [ot Tn(T)dT

8 To(n)dT [ Ta(r)dr . 3 T (r)dr
G b (to)
a C.l b bo(ty)
N b3 (t)

Since the original the first kind Volterra is ill-posed, the

ill-conditioning of the matrixA in equation 23) still
persists. In other words, the condition number of ma#ix

increases dramatically with respect to the total number of "
collocation points and therefore most standard numerica
methods cannot achieve good accuracy in solving the
matrix equation 23) due to the bad condition number of

the matrix A. For this purpose, the Tikhonov

regularization method is applied.

4 Tikhonov Regularization M ethod

In Sectior?, we showed calibration of the volatility

defined as the solution of the following least squares
problem:
minueu {[|Au—b°(|? + a?|lu]|?}, (24)
where||.|| denotes the Euclidean norm aads called the
egularization parameter, which controls the trade-of
etween fidelity to the data and smoothness of the
solution. Equivalently, the solution is defined as the
solution of the normal equations @h
(AA+al)u=b°, (25)
where A* € L(U) is the (Hilbert) adjoint operator
associated withA. Standard Tikhonov regularization
theory (which is applicable to first-kind V\olterra
problems) gives well-known conditions on the selection
of a = a(8) so thatu 5 — UinU asd — 0.
The determination of a suitable value for the
regularization parametenr is crucial and is still under
intensive researches. We apply L-curve and GCV
criterions to choose the regularization parameteand
compare them.
I. L-curve method. The L-curve is a plot of the squared
estimate norm of the regularized solutipn|| against the
squared norm of the regularized resid{jau — b|| for a
range of values of regularization parameters. Hangén [
15,16,19] proposes to choose the value of the
regularization parameter that corresponds to the point at
the corner of the curve. The corner is defined to be the
point on the L-curve with curvature of largest magnitude.
The name "L-curve” implies that the shape of the curve
should resemble L letter closely.
Il. GCV method. Generalized cross-validation (GCV)
criterion is to choose the regularization parametemhe
GCV criterion is a very popular and successful method
for choosing the regularization paramet&®]. The GCV
ethod determines the optimal regularization parameter
py minimizing the following function:

|Aug —b°?

Gla) = (trace(l —AA"))2

(26)
whereAl = (A"A+ a?l)~1A" is a matrix which produces
the regularized solutiond when multiplied with the right
hand sideb’, i.e.,u = A'b°.

In our computation, we used the MATLAB code
developed by HansenlB] for solving the discrete

function in option pricing model is an ill-posed problem. ll-conditioned system of equatio23)

Therefore the condition number of matxin equation

(23) is large compared with the number of collocation

points. Several regularization methods have beerb Experimental Results

developed for solving an ill-conditional problerhd,14,
15,16,17]. In this work we adapt the Tikhonov
regularization method18] to solve the resulting matrix
equation @3).

In this section we report numerical results to demonstrate
the accuracy of presented algorithm for calibrating time
dependent volatility function from Call option pricing

The Tikhonov regularized solution for equation (23) is model. Since in the real market, we observe only noisy

Published by Arab Journals Platform, 2013
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option pricesC?(t) for t € | = [0,T] instead of fair option - L-curve, Tikh. comer at 0.107

pricesCexact (1), We find an approximation function® (t) 0946-007

of function ueact(t) corresponding to the noisy data 10° |

C5(t). In all of studied case a randomly distributed 27056-007
perturbation & x randn(N) is added to the 0

C(t),i = 0,1,2,...N to generating the noisy data in the , 2501e-006
form 10 1841e-005

.00011224

solution norm || u ||2

Co(t) =C(t) + o xrandn(N); i =0,1,2,...,N  (27)

.00057679

where § dictates the level of noise andhndn(.) is a 002964

normal distribution function with zero mean and unit 107}

standard deviation and it is realized using the MATLAB

function rand. Our algorithm is implemented using 10’120,3 = i
MATLAB for testing purpose. residual norm | Au - b ||

To test the accuracy of the approximate solution, we use
the root mean square error (RMSE) using a weightedrig. 1: The L-curve plot of Examplel for data with noise level
12 — norm as the following: 5=10"3

lu>(t) —ut) ]2
N+1

NI -

'lo(\u‘s(ti)*u(ti)l)z)

N + 1 E —  Unregularized Volatilit
= Actuall Volatility

= —(2

whereN + 1 is the total number of test points distributed osl
in the domain0,T] and 0<t; <T. '
Example 1. Consider an 1 year European Call option oo _/\_
with the parameters, risk-free rate= 0.05 per annum, '
exercise pricek = 0.5, initial stock priceX = 0.6, the
5r

level of noised = 0.001 and the following volatility
function

ut) = ((t—0.5%+0.12 L R

0.0 0.2 0.4 0.6 0.8 1.0

The L-curve plot is shown in Figute Figure2is the
approximation volatility function(without reqularization) Fig. 2: The representation of volatility function in Examplel
computed using noisy data option pricing compared to thevithout regularization.

actually volatility function withN = 10. Figure displays
regularized volatility function using Tikhonov
regularization and L-curve criterion compared to actually o2y
volatility function. The RMSE values of volatility T\ 2 Aoy ot ]
function and condition number of resulting matrix in  o.o- 1
different numbers of collocation points can be found in 7
the Tablel. 0.081

0.06

N Cond(A) RMSE —Tikh  RMSE —Unreg

5  14053x 103 0.0413345 0.358242 0.04r ]

10  11835x 107 0.0060692 1.70217 r

15 41355x 10t 0.004197 2.374658 002 ]

30 18506x 10  0.00506602 4.41602 [ ]
Ooodo T dz T 64 T 05 T ds T 15

Table 1: Accuracy of solutions in Examplell.indicates number ) ) ) . .
of collocation pointsCond(A) condition number of resulting Fig. 3: The representation of Tikhonov regularized volatility

matrix, RMSE — Tikh the root mean square error of regularized function with L-curve criterion in Examplel.
solution andRMSE — U nreg the root mean square error without
regularization.
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Example 2. Consider an 1 year European Call option
with the parametersy = 0.05, k = 0.5, X = 0.6, 10
0 = 0.001 and the following volatility function

GCV function, minimum at a = 1.3153e—-005
T T T T

0.9

u(t)=0.1+ 15100 12"
The GCV plot is shown in Figuke Figure5is the
volatility function computed using noisy data option
pricing without regularization compared to the exact
volatility function with N = 10. Figuré displays
regularized volatility function using  Tikhonov
regularization and GCV criterion compared to actually
volatility function. The RMSE values of volatility
function and condition number of resulting matrix in 107k - — —
different numbers of collocation points can be found in 10 10 oo 10
the Table2.

10

G(a)

10

Fig. 4. The GCV plot of Example2 for data with noise level
5=103.

N Cond(A) RMSE —Tikh  RMSE —Unreg

5  14053x10° 0.033377 0.768957
10 11835x 10’ 0.00725633 1.741534

15 41355x 101 0.0092312 45.6294 | | = Unveguarzsavomu
30 18506x 10  0.0817829 16868.6 i = ActallVolatity

1.0 q
Table 2: Accuracy of solutions in ExampleR!.indicates number I \ ]
of collocation pointsCond(A) condition number of resulting s ]
matrix, RMSE — Tikh the root mean square error of regularized i 1
solution andRMSE — Unreg the root mean square error without i = - ]
regularization. oo T Ny — M

The comparison regularization parameters using L-curve -0‘5:*
and GCV method for Examplel with the values of RMSE —
can be found in Table3. The results shows that all the two

m_ethod_s (L-curve and GCV) can achieve good solutionsrig. 5: The representation of volatility function in Example2
with noise leveld and RMSE for both examples are very without regularization.

0.2 0.4 0.6 0.8 1.0

ol
)

close.
Method Reg — parameter RMSE 10 . ——
- nregularize: olatility
Tikh-L-curve a=110613x 10 *  0.004562 wal = Actual Voalty 1
Tikh-GCV a=119110x 10714 0.009193 ~L

0.6
Table 3: The comparison of regularization parameters. Tikh-L- [
curve indicates Tikhonov regularization with parameter selection .4
L-curve and Tikh-GCV indicates Tikhonov regularization with [
parameter selection GCV. 02

0.0

0.0 0.2 0.4 0.6 0.8 1.0

6 Conclusion
Fig. 6: The representation of Tikhonov regularized Volatility

In this study, we considered the inverse problem offunction with GCV criterion in Example2.

determining the unknown time dependent function in

option pricing model. The forward operator of the inverse

problem under consideration was decomposed into an
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inner linear convolution operator and an outer nonlinear[17] Hanke M, Hansen PC. Regularization methods for large-
Nemytskii operator given by a Black-Scholes function.  scale problems. Surv Math Irg8j 253-315, (1993).

The inversion of the outer operator led to an ill-posed[18] Engl HW, Hanke M, Neubauer A. Regularization of inverse
problem. Using by Chebyshev collocation method, we problems. Mathematics and its applicatioBS7. Dordrecht:
discrete outer operator in the form an ill-posed linear  Kluwer Academic Publishers, (1996).

system. The Tikhonov regularization method used forl[19] Hgnsen RC. Rank-deficient and discrete ill-posed problems.
resolving ill-posedness of system. We checked the ability ~Philadelphia: SIAM, (1998).

of two different methods, GCV and L-curve for

determining the regularization parameter to estimate a

stable solution. Meanwhile, the numerical results showed

that the algorithm designed in this paper is stable and the

coefficient "volatility function” was recovered very well.
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