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ABSTRACT- One of the major challenges in modeling a real-world domain is how to effectively 

represent uncertain and incomplete knowledge of that domain. Several techniques for representing 

uncertainty in ontologies have been proposed with some of the techniques lacking provision for vague 

inference. The classical tableaux-based algorithm does not provide the flexibility for reasoning over 

such vague ontologies. However, several extensions of the tableaux-based algorithm have been 

proposed to cope with fuzzy reasoning. Similarly, several alternative reasoning methods for incomplete, 

inconsistent, and uncertain ontologies have been proposed. One of the major limitations of most of 

those techniques is that they require reengineering existing ontologies to cope with uncertainty. This 

paper proposes a satisfiability algorithm for vague ontologies that uses a rough set to approximate the 

concepts and roles. The proposed technique takes advantage of the existing ontology knowledge base 

to achieve vague reasoning without the need of reengineering the ontology. The results show that the 

proposed technique conforms to the tableaux-based algorithm while providing a way of reasoning over 

the uncertain aspects of ontologies. 
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1. Introduction  

 

One of the key features of ontologies especially 

the Description Logics(DLs) ontologies is their 

inference capability.  The inference is important 

to derive implicit knowledge from explicitly 

represented knowledge. This is essential to 

determine the consistency of the ontology as 

well as determining the satisfiability of defined 

concepts and roles. Classical reasoning 

algorithms assume that ontologies are built for 

a crisp domain using a crisp logic. As a result, 

the resulting ontology gives an a priori model of 

the domain, which must accept as true by all 

users thereby neglecting or wrongly capturing 

the vague aspects of the domain. There are 

several situations where it is preferable to store 

a piece of information in an uncertain form as it 

appears rather than approximating it. Several 

techniques for modeling the uncertain aspects 

of the world have been proposed. They include 

the Dempster-Shafer theory[1], Human-

Inspired Model[2], fuzzy logic[3], 

probabilistic[4][5], rough set[6, 7].  Most of 

these proposed methods led to the extension of 

the language to support the representation of 
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uncertainty. Fuzzy ontology is widely seen as a 

solution to the problem of uncertainty in the 

ontology. In fuzzy ontologies, the uncertain 

aspects of an application domain are 

represented by using fuzzy concepts, fuzzy 

relationships, fuzzy datatypes, and axioms that 

only hold to some degree of truth[3]. A  survey 

of Fuzzy logic extension of DLs was presented 

in [8]. The state of the art of fuzzy extensions to 

allow fuzziness in ontologies, web languages, 

and tools as well as several very current 

examples of fuzzy ontologies in real-world 

applications is also presented in[9]. A review of 

type-2 fuzzy Ontology was presented in[10]. 

Some of these techniques are domain or 

application-specific[11,12,13]. 

Despite the merit of these approaches, most of 

them do not provide a clear way on how 

inference on vague knowledge should be 

performed or do require reengineering existing 

ontology. This paper presents a rough 

satisfiability algorithm for ALC based on rough 

membership approximation using a rough set. 

The main advantage over existing techniques is 

that vagueness can be handled without the need 

of reengineering existing ontology. The 

proposed approach takes advantage of existing 

knowledge of ontology to achieve vague 

reasoning. The paper is organized as follows:  

Related works are reviewed in section 2, 

Section 3 reviews the description logic and 

rough set. Section 4 presents the technique for 

reasoning Over vague ontologies using rough 

set and section 6 experiments it through 

examples. Finally, section 6 concludes the 

paper. 

2. Related work 

Several techniques aiming at dealing with 

uncertainty in ontologies have been proposed in 

recent years. The major differences between 

them are on the selected ontological language, 

the fuzzy knowledge supported, and the fuzzy 

reasoning approach. A survey of automata-

based techniques for uncertain reasoning in 

fuzzy DLs  that emphasizes on the main 

constructors used was performed in [14]. A 

logical entailment between the domain-specific 

ontology and entities using fuzzy rule was 

proposed in[13] to give a better retrieval rate in 

fuzzy ontology for images. A minimalistic 

reasoning algorithm to solve imprecise instance 

retrieval in fuzzy ontologies with application to 

querying Building Information Models was 

proposed in[15]. The author proposed a novel 

lossless reduction of fuzzy to crisp reasoning 

tasks, which can be processed by any 

Description Logics reasoner. A fuzzy logic 

reasoner fuzzyDL was proposed in[16] to 

support fuzzy reasoning in an expressive is a 

DL reasoner using a combination of a tableaux 

algorithm and Mixed-integer linear 

programming (MILP). A tableau algorithm for 

computing the inconsistency degree of a 

knowledge-base in possibilistic DL was 

proposed in [17]. the proposed procedure was 

designed for ALC extended with inverse roles 

and transitive roles.  A  non-monotonic 

probabilistic reasoner named  Pronto[5] was 

developed to reason about uncertainty in OWL 

ontologies.  Pronto is built on top of OWL 

reasoner to provide routines for higher-level 

probabilistic reasoning procedures while 

maintaining existing OWL reasoning services. 

A probabilistic inference named BUNDLE was 

proposed in [4]. Bundle is able to exploit pellet 

as well as other non probabilistic OWL 

reasoners perform probabilistic reasoning. 

 

3. Preliminaries 

 

3.1 Description logics 

Description logics[18] are knowledge 

representation formalisms used to model an 

application domain in a structured and formally 

well-understood way.  

Elementary descriptions are atomic concepts 

and atomic roles from which, complex 

descriptions can be built from them 

inductively with concept constructors and role 

constructors. most recent DLs Concept 

descriptions in ALC are formed according to 

the following syntax rule: 
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C,D →A |   (atomic concept) 

 ⊤ | (universal concept) 

   | (bottom concept) 

￢A |(atomic negation) 

C ⊓ D  |(intersection) 

R. ⊤ |(value restriction) 

R.⊤ |(limited existential 

quantification). 

 
ALC  knowledge base consists of a set of 

terminological axioms (TBox) and a set of 

assertional axioms ( ABox).  Expressive DLs 

also allow role axioms (RBox). 

- TBox axioms capture relationships 

between concepts. Figure1 shows a 

snippet of a Tbox of a family domain . 

 

 

Woman ≡ Person ⊓ Female 

Man ≡ Person ⊓ ￢Woman 

Father ≡ Man ⊓ hasChild.Person 

Mother ≡ Woman ⊓ hasChild.Person 

Parent ≡ Father ⊔ Mother 

MotherWithoutDaughter ≡ Mother ⊓ hasChild.￢Woman 

HappyFather ≡ Man ⊓hasChild.Person ⊓careFor.Healthy 

HealthyPerson ≡ Person ⊓ Healthy 

Healthy ≡ MentallyStable ⊓ EmotionallyStable ⊓ MedicallySound 

Husband≡ Man⨅ isMalePartnerIn. (Marriage⨅ hasFemalePartner. Woman) 

Figure 1 TBox 

 

- ABox axioms capture knowledge about 

named individuals. 

For example, the concept assertion 

Father(edmund_bright_1813) asserts that 

edmund_bright_1813 is an instance Father. 

The role assertion isFatherOf 

(edmund_bright_1813,  john_ bright 

_1842 )asserts that edmund_bright_1813 is the 

father  of john_ bright _1842. Figure 2 shows a 

sample Abox. 

- RBox axioms capture 

interdependencies between the roles. 

For example, the role inclusion 

isFatherOf ⊑ isParentOf 

One of the key operation of ontology is 

instantiation. That is the act of deciding if an 

arbitrarily chosen individual x is an instance of 

a concept C denoted by C(x) or if a given pair 

of individuals x and y are instances of a binary 

relation R denoted by R(x, y). Instantiation is 

used in the process of populating the ontology’s 

knowledge base and queries answering.  

Through their inference capability,  DLs can 

infer additional knowledge from the knowledge 

explicitly stated in an ontology. 

An ontology is said to be satisfiable if an 

interpretation exists that satisfies all its axioms. 

otherwise, it is said to be unsatisfiable. An 

interpretation I = (∆I , .I) consists of a set ∆I  

called the domain of I, and an interpretation 

function .I that maps each atomic concept A to 

a set A I ⊆ ∆I , every role R to a binary relation 

RI ,  subset of  I × I  and each individual name 

a to an element   aI  ∆I. 
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isFatherOf (edmund_bright_1813,  john_ bright _1842 ) isFatherOf (edmund_bright_1813,   

mary_ bright _1845) 

hasSister (edmund_bright_1813,  caroline_bright_1822 ) hasSister (edmund_bright_1813, 

eliza_bright_1825  ) hasBrother (edmund_bright_1813,  james_bright_1809 ) hasBrother 

(edmund_bright_1813, william_bright_1827  ) isMotherOf (sarah_webb, william_bright_1827 ) 

 isMotherOf (sarah_webb, james_bright_1809) 

CareFor(edmund_bright_1813, john_bright_1842)  CareFor(edmund_bright_1813, 

mary_bright_1845) 

CareFor(edmund_bright_1813,caroline_bright_1822) 

 CareFor(edmund_bright_1813,james_bright_1809) 

Healthy(john_ bright _1842) EmotionallyStable (edmund_bright_1813)

 MentallyStable(edmund_bright_1813) 

Healthy(mary_bright_1845) EmotionallyStable (caroline_bright_1822)  

MentallyStable(eliza_bright_1825) 

Healthy(caroline_bright_1822) EmotionallyStable (william_bright_1827) MentallyStable(john_ 

bright _1842) 

Healthy(william_bright_1827) EmotionallyStable (james_bright_1809) 

MentallyStable(william_bright_1827) 

MedicallySound (james_bright_1809) EmotionallyStable (eliza_bright_1825) MedicallySound 

(sarah_webb) 

MentallyStable(mary_bright_1845)   EmotionallyStable(sarah_webb)  MedicallySound 

(caroline_bright_1822) 

MedicallySound (mary_bright_1845) MedicallySound (john_ bright _1842)   

Figure 2 ABox about family relationships 

 

 

3.2  Rough set   

Rough set[19] is based on the assumption that 

the attributes of an object can be used to 

describe the information associated with the 

object. Objects that cannot be distinguished 

based on the selected set of attributes are called 

indiscernible. The indiscernibility relation 

expresses the inability to distinguish some 

objects based on available knowledge about 

them. Therefore, by dealing with objects as 

clusters, meaningful knowledge about them can 

be obtained than dealing with a single object. 

A rough set is defined by two sets, the lower 

approximation and the upper approximation. 

Given a set X and an indiscernibility relation R 

which is assumed to be an equivalence relation, 

the lower approximation  of X with respect to R 

is the set of all objects that can be for sure 

classified as X. The upper approximation  of X 

with respect to R is the set of all objects which 

can be possibly classified as X. Formally, rough 

set is defined as follow:  

Definition 1: Suppose we are given a set of 

objects U called the universe and an 

indiscernibility relation  𝑅 ⊆ 𝑈𝑈. Let X be a 

subset of U.  

- R-lower approximation of X is defined 

by          
Ux

XxRxRxR


 :*              

                                    (1) 

- R-upper approximation of X is defined 

by       
Ux

XxRxRxR


 :*  

                                                (2) 

- R-boundary region of X  is defined by 

𝑅𝑁𝑅(𝑋) = 𝑅
∗(𝑋) − 𝑅∗(𝑋)  

                                     (3) 

A Set is crip or precise if it has an empty 

boundary region otherwise, the set is rough. 
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 4. Rough reasoning Over vague ontologies 
An ontology is made up of the set of concepts  

𝐶 = { 𝑐1,𝑐2, 𝑐3,… , 𝑐𝑚}  where 𝑐𝑖  is an atomic or 

complex concept defined in the Tbox, the set of 

roles  𝑅 = { 𝑟1,𝑟2,, 𝑟3,. . . , 𝑟𝑛} ,    and a set of 

individuals  𝐼 = { 𝑖1,𝑖2,, 𝑖3,. . . , 𝑖𝑝}  as defined in 

the Abox. [6] showed that membership of vague 

concepts and roles over the set of individuals I 

can be approximated.   The authors viewed a 

concept as attributed valued and constructed a 

decision table based on concepts’ attributes to 

approximate their rough membership using the 

indiscernibility relation.  

Definition 2: Let c ∈  C be a concept of an 

ontology O and let B be the sets of attributes and 

concepts appearing on the expanded definition 

of c. Two individuals x, y ∈ I are said to be 

indiscernible by the concept c if and only if 

a(x)=a(y) for every a∈B.  

In other words, two individuals x, y ∈ I cannot 

be distinguished with respect to a concept c if 

their instantiation over the sets of attributes and 

concepts the expanded definition of c are the 

same.  

Every concept c induces a unique 

indiscernibility relation. The partition of I 

induced by c is denoted by I/c and the 

equivalence class in the partition containing 

𝑖 ∈ 𝐼, denoted by [𝑖]𝑐  .  the c-upper, c-lower 

and the c-boundary region approximations of X 

⊆I can be defined respectively as follows: 

𝑐∗(𝑋) = {𝑖 ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 [𝑖]𝑐 ⊆ 𝑋}     
                                 (4) 

𝑐∗(𝑋) = {𝑖 ∈ 𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 [𝑖]𝑐 ∩ 𝑋 ≠ ∅}     
         

             (5) 

The c-boundary region = 𝑐∗(𝑋) − 𝑐∗(𝑋) 
      

     (6) 

In the rest of this paper, we shall use 𝑓∗(𝑐) and  

𝑓∗(𝑐) instead of 𝑐∗(𝑋)  and 𝑐∗(𝑋) respectively 

to resents the upper and lower approximation of 

c over the set of instances I.  

Definition 3: A concept c is said to be vague if 

its c-boundary region is not empty 

Definition 4: An individual i, is said to be an 

absolute instance of 𝑐 ∈ 𝐶,  if and only if  𝑖 ∈

𝑓∗(𝑐).  
 Definition 5: An individual i is said to be a 

rough instance of 𝑐 ∈ 𝐶,  if and only if  𝑖 ∈
(𝑓∗(𝑐)−𝑓∗(𝑐)).  
Definition 6: A concept  𝑐 ∈ 𝐶  is satisfiable if  

𝑓∗(c) ≠ ∅ . if 𝑓∗(𝑐) = ∅  and  𝑓∗(𝑐) ≠ ∅, then c 

is roughly satisfiable. 

  4.1.  Ontologies satisfiability approximation 

algorithm 

Reasoning capability helps in deciding the 

consistency of a knowledge base. This is 

important since the knowledge base describes 

the real state of the ontologies and consequently, 

definitions should not contradict each other.  

Many reasoning problems can be reduced to 

checking the satisfiability of the knowledge 

base. Accordingly  

A concept 𝑐 ∈ 𝐶  is called satisfiable with 

respect to a given knowledge base if there exists 

an interpretation model I  that maps c to a non-

empty set. that is 𝑐𝐼 ≠ ∅ 

The widely used algorithm to decide the 

satisfiability of ontologies is the tableaux-based 

algorithm. It aims at constructing a model that 

satisfies all axioms of the given knowledge base.  

Tableaux reasoning approach for several 

expressive description logics have been 

described extensively in [20, 21] Several OWL 

reasoners use tableaux procedures and have 

proved to be efficient[22]. They include 

Sequoia reasoner [23], FaCT++[24], or 

RacerPro[25]. Alternative reasoning techniques 

include the resolution methods[26], 

consequence-based approaches [27],  

hypertableaux [28] which is a refinement of the 

tableaux technique and is used as the core 

reasoner of OWL2 DL.  

We now present a reasoning algorithm to decide 

the satisfiability of concepts based on 

membership approximation methods. This 

algorithm constructs a model that defines a set 

of possible domains of approximation dom (𝑅), 
a set of all approximation relations (R)  with 

associated range ran(𝑅), and establishes if an 

approximation of the defined relations holds 

between the domains and the ranges. 

Mathematically, the domain and the range of a 
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relation R are respectively defined by  dom 

(𝑅)  =   {(𝑎 ∈  𝐴  ( (𝑏 ∈ 𝐵) ( (𝑎, 𝑏)  ∈  𝑅)} 
and   

ran (𝑅)  =   {𝑏 𝐵  (  𝑎 ∈ 𝐴)  ( (𝑎, 𝑏) ∈  𝑅)}. 
In the rest of this paper, we assume all concepts 

definition are in Negation Normal Form (a 

formula is in Negation Normal Form(NNF) if 

the negation operator is only applied to 

variables and the only other allowed Boolean 

operators are conjunction and disjunction). 

 

Definition 7: Let O be an ontology and let  𝑐 ∈
𝐶  be a concept in NNF.  𝛿(𝑋, 𝑌)  is the 

satisfiability approximation model for c with 

respect to ontology O if and only if 𝑋 ⊆ ℘(𝐼) is 

the set of domains of approximation and Y is the 

set of pair (r,E) such that E is the range of 

approximation and  𝑟: 𝑑 ⟶ 𝐸  is a relation 

associating individuals from the domain 𝑑 ∈ 𝑋 

to elements of E where 𝑋, 𝑌  are generated from 

the expansion rules applied to c. 

 

The set of possible domain of approximation 

𝑋 = {𝑑1, 𝑑2, . . . , 𝑑𝑛}  is defined by 𝑑𝑖 =
𝑓(𝑐1) ∩ 𝑓(𝑐2) ∩. . .∩ 𝑓(𝑐𝑚)  for some 𝑐𝑖 ∈ 𝐶 

where 𝑐𝑖′𝑠  are introduced by the expansion 

rules defined in figure 2 and 𝑓(𝑐𝑖)  is the 

approximation of 𝑐𝑖. 
The set of pair (r, E) of possible approximation 

range 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}  defined by 𝑒𝑖 =
𝑓(𝑐1) ∩ 𝑓(𝑐2) ∩. . .∩ 𝑓(𝑐𝑚)  for some 𝑐𝑖 ∈ 𝐶 

also introduced by the expansion rules  and 𝑟 ∈
𝑅 is a relation such that (r,E) is a pair of Y iff 

𝑟 ∈ 𝑅  and is defined from X  to E . 

for simplicity purposes, in the remaining of this 

paper, we shall use 𝑐𝑖𝑑𝑖   and 𝑐𝑖𝑒𝑖   rather 

than 𝑓(𝑐𝑖)𝑑𝑖  and 𝑓(𝑐𝑖)𝑒𝑖  to denote the fact 

that the elements of 𝑑𝑖  and 𝑒𝑖  are generated 

from the approximation of 𝑐𝑖. Furthermore, the 

following properties must be established. 

(i) if C   di, then C  di 

(ii) if C   ei, then C  ei 

(iii)if C   ei, is introduced by  S.C, then 

the cardinality of the relation S:di→ ei  

must be 0 and the relation S:di→ 

ei   must be is empty, for some di ∈ 𝑋 

(iv) if C   ei, is introduced by  S.C then 

the cardinality of the relation S:di→ ei  

must be > 0, for some di ∈ 𝑋 

(v) if C   ei, is introduced by nS.C, then 

the cardinality of the relation S:di→ ei  

must be   n, for some di ∈ 𝑋 

(vi)  if C   ei, is introduced by  nS.C , 

then the cardinality of the relation 

S:di→ ei  must be   n, for some di ∈ 𝑋 

   lema1: a concept   𝑐 ∈ 𝐶 is satisfiable with 

respect to ontology O iff c has a clash-free 

approximation model such that the following 

conditions hold: 

- ∃𝑑 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑓(𝑑) ≠ ∅ 𝑎𝑛𝑑 

- ∀(𝑟, 𝐸) ∈ 𝑌, 𝑟:  𝑑 → 𝑒𝑖  is not empty and 

satisfy the properties on cardinality stated 

above for some 𝑒𝑖E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Future Computing and Informatics Journal, Vol. 7 [2022], Iss. 1, Art. 5

https://digitalcommons.aaru.edu.jo/fcij/vol7/iss1/5
DOI: https://doi.org/10.54623/fue.fcij.7.1.5

PC
Typewritten text
74



 

 

 

⊓- Rule:        if  C1 ⊓C2 di, and there is no d X such that d=di {C1, C2 } then di ← di
{ C1, C2} 

⊔ - Rule:       if C1 ⊔ C2  di, and there is no d' and d'' such that d'= di {C1 } and d''= di
{C2 } then  

                          create d' such that:   d'← di {C2 }  and set     di← di {C1 } 

 - Rule:       if   S.C    di   

                                   If there is a pair (r,E) Y such that r=S then 

                                         If there is no dE such that cd then,   

                                              create a new set d E such that d={c} and set  α= - 

                                  If there is no pair (r,E) R such that r=s then  

                                       create a new pair (S,E) such that Y=Y (S,E) where  E={{c} 

 - Rule:       if    S.C    di   

                                If there is a pair (r,E) Y such that r=S then 

                                     If there is no dE such that cd then,  

                                         create a new set d E such that d={c} and set  α= + 

                                     If there is dE such that cd then, set α= + 

                                If there is no pair (r,E) Y such that r=s then  

                                       create a new pair (S,E)  such that Y=Y (S,E) where E ={{c}} and 

set  α= + 

  – rule:     if  (n S.C)   di,  

                           If there is a pair (r,E) R such that r=S then 

                               If there is no dE such that cd then,   

                                     create a new set d E such that d={c} and set  α=- ,β=n , γ=∞ 

                              If there is dE such that cd then, set β=n, γ=∞ 

                          If there is no pair (r,E) Y such that r=s then  

                             create a new pair (S,E) such that Y=Y (S,E)  where E is E={{c}}and set 

α=-,β=n, γ=∞ 

  – rule:  if   (n S.C)   di, 

                       If there is a pair (r,E) Y such that r=S then 

                            If there is no dE such that cd then,  

                                 create a new set d E such that  d={c} and set  α=- ,β=0 , γ=n 

                           If there is dE such that cd then, set β=0,  γ=n 

                      If there is no pair (r,E) R such that r=s then  

                          create a new pair (S,E)  such that Y=Y  (S,E) where E={{c}} and set  

α=- ,β=0 , γ=n 

Figure 3 Expansion Rule 

The cardinality property ensures that the 

universal and existential qualifications as well 

as the cardinality restriction of the relations are 

satisfied. Let Δ (𝛼, 𝛽, 𝛾) defines the 

characteristics of the relation r with respect to E 

such that 𝛼  represents the qualification, 𝛽  the 

minimum cardinality and 𝛾  the maximum 

cardinality of the relation r with respect  to E. 𝛼 

takes the value of “-” if the relation is 

introduced by the existential qualification or in 

the absence of qualification and takes the value 

of “+” if the relation is introduced by the 

universal qualification. 

The cardinality properties constraints is defined 

as follow:  
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- If 𝛼 = −, then cardinality of r  : diX → eiE  >0  

- If 𝛼 = +, then the cardinality of r: diX → eiE  0 and r: diX → eiE   is empty 

- 𝛽 𝛾 
The approximation model is said to be fully 

expanded if no further expansion is possible. 

The expansion contains a clash if (c and  c ) 
 di or ei. If the expansion contains some 

inconsistencies with respect to the cardinality 

properties, then the expansion model has a clash. 

Clashes either in the domain and range of 

approximation or in cardinality properties 

invalidate only the affected sets or relations. 

They are said to be blocked. Blocked sets can 

no longer be expanded since they contain a 

contradiction. The approximation model is said 

to be fully blocked when all possible sets or 

relations of approximation are blocked. 

The algorithm starts by initializing the D with a 

single set containing c that is X={{c}} and Y=∅. 

for each diX if di contains a non-leave concept, 

substitute it with its definition and apply the 

expansion rule on it until no further expansion 

is possible or di is blocked. For  each eiE if ei 

contains a non-leave concept, substitute it with 

it definition and apply the expansion rule on it 

until no further expansion is possible or ei is 

blocked. 

4.2 Interpretation of Satisfiability of Vague 

Concepts. 

Unlike the two-state tableaux-based algorithm 

in which, concepts are either satisfiable or not 

satisfiable, the algorithm 𝛿(𝑋, 𝑌)  has three 

states of decision for vague concepts. Concepts 

are absolutely satisfiable, roughly satisfiable or 

not satisfiable. 

Definition 8: A vague concept definition is said 

to be absolutely satisfiable or just satisfiable for 

short iff 

 

∃𝑖 ∈ 𝑓∗(𝑑𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ∀(𝑟, 𝑒𝑖), ∃𝑗 ∈ 𝑓∗(𝑒𝑖) ⋀ 𝑗 ∈ ℎ∗(𝑟(𝑖)) for some 𝑖, 𝑗 ∈ 𝐼.  
where 𝑑𝑖 ∈ 𝑋 is the domain of approximation, ℎ∗ ⊆ 𝑓∗ × 𝑓∗ is the lower approximation of the relation 

r(i),  𝑒𝑖 ∈ 𝐸 is the range of approximation and I is the set of individuals. 

Furthermore,  

(a) If r is introduced by (∀𝑟) then, ∀(𝑗) ∈ ℎ∗(𝑟𝑠(𝑖)),   𝑗 ∈ 𝑓∗(𝑒𝑖). 

(b) If r is introduced by (∃𝑟) then, ∃(𝑗) ∈ ℎ∗(𝑟𝑠(𝑖)), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑗 ∈ 𝑓∗(𝑒𝑖). 

(c) If r is introduced by (≥ 𝑛. 𝑟) then,  |ℎ∗(𝑟𝑠(𝑖))| ≥ 𝑛 where  |ℎ| denotes the cardinality of  h. 

(d) If r is introduced by (≤ 𝑛. 𝑟) then,  |ℎ∗(𝑟𝑠(𝑖))| ≤ 𝑛. 

Definition 9: A vague concept definition is said to be roughly  satisfiable iff 

∃𝑖 ∈ 𝑓∗(𝑑𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ∀(𝑟, 𝑒𝑖), ∃𝑗 ∈ 𝑓
∗(𝑒𝑖) 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ ℎ

∗(𝑟𝑠(𝑖)) for some 𝑖, 𝑗 ∈ 𝐼 
where 𝑑𝑖 ∈ 𝑋 is the domain of approximation, ℎ∗ ⊆ 𝑓∗ × 𝑓∗ is the upper approximation of the relation 

r(i),  𝑒𝑖 ∈ 𝐸 is the range of approximation and I is the set of individuals. 

Furthermore,  

(a) If r is introduced by (∀𝑟) then, ∀(𝑗) ∈ ℎ∗(𝑟𝑠(𝑖)),   𝑗 ∈ 𝑓
∗(𝑒𝑖) 

(b) If r is introduced by (∃𝑟) then, ∃(𝑗) ∈ ℎ∗(𝑟𝑠(𝑖)), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑗 ∈ 𝑓
∗(𝑒𝑖) 

(c) If r is introduced by (≥ 𝑛. 𝑟) then,  |ℎ∗(𝑟𝑠(𝑖))| ≥ 𝑛  

(d) If r is introduced by (≤ 𝑛. 𝑟) then,  |ℎ∗(𝑟𝑠(𝑖))| ≤ 𝑛  

Definition 10:  A vague concept is said to be 

not satisfiable if it is neither absolutely 

satisfiable nor roughly satisfiable. 

 It is necessary to note that, for crisp concepts, 

their satisfiability will always be evaluated to 

either satisfiable or not satisfiable since the 

upper and the lower approximations of the 

domains, the ranges and the relations are the 

same. With this, the classical tableaux-based 

algorithm decision is therefore recovered for 

crisp concepts. 

 

5. Results and Discussion 

In this section, we will demonstrate how the 
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proposed reasoning procedure can be applied 

on vague ontology and compare the results with 

the tableaux-based algorithm. Tableaux 

procedure aims at constructing a model that 

satisfies all axioms of the given knowledge base. 

It is implemented as a finite tree which is 

expanded as concepts are expanded using the 

expansions rule [29]. Nodes of the tree are 

labeled with concept name and edges are 

labeled with role occurring between concepts.  

Like the algorithm presented in this work, the 

tableaux-based algorithm assumes the concepts' 

definition to be in NNF. For the sake of 

simplicity, we restrict the approximation 

throughout this section to the data available in 

Tbox and Abox defined in section 2.1. which 

were extracted and adapted from a large OWL 

ontology defined in [30]  

Example1: approximation of the vague concept 

using the proposed algorithm. 

HappyFather ⊑ Man ⊓ hasChild.Person 

⊓careFor.Healthy 

By expanding this definition of HappyFather,  

we obtain 

 

HappyFather ⊑ (Person ⊓ ￢Woman) ⊓hasChild.Person ⊓careFor.Healthy  

⊑ (Person ⊓ ￢( Person ⊓ Female) ⊓hasChild.Person ⊓careFor.Healthy  

⊑ (Person ⊓ ( ￢Person⨆ ￢Female) ⊓hasChild.Person ⊓careFor.Healthy  

𝐻𝑎𝑝𝑝𝑦𝐹𝑎𝑡ℎ𝑒𝑟 ⊑  {
 Person ⊓  ￢Person ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ 𝑐𝑎𝑟𝑒𝐹𝑜𝑟. 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 (𝑖)

 Person ⊓  ￢Female  ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ 𝑐𝑎𝑟𝑒𝐹𝑜𝑟. 𝐻𝑒𝑎𝑙𝑡ℎ𝑦  (𝑖𝑖)
 

Note that(i) is blocked due to the contradiction Person ⊓  ￢Person . Table 1 is obtained by applying 

the expansion rules defined in figure 2. This is also shown pictorially in figure 3.  The existence of 

the following relations needs to be established and shows that each of them satisfies its cardinality 

properties as specified in Figure 3 by using the Abox knowledge.  

{ f(Person)∩ f(￢female) } 
ℎ𝑎𝑠𝑐ℎ𝑖𝑙𝑑
→       { f(Person) }  

{ f(Person)∩ f(￢female) } 
𝐶𝑎𝑟𝑒𝐹𝑜𝑟
→      { f(Healthy) }  

In the expansion of Table 1,  person is the most general concept and can be treated similarly as  crisp 

attribute,  hasChild is a crisp relation. However careFor is a vague relation and healthy is a vague 

attribute.    

 

Table 1. Expansion of HappyFather 

 Domain Relation Range Description 

1  

2 

3 

4 

5 

{{ HappyFather }} 

{{Man, haschild.Person, careFor.Healthy}} 

{{Person, ￢ Female, haschild.Person, 

careFor.Healthy }} 

{ {Person, ￢Female , careFor.Healthy }} 

{ {Person,  ￢Female }} 

- 

- 

- 

haschild 

careFor 

- 

- 

- 

{{Person} 

{{Healthy} 

- 

- 

- 

α =+, β=1,γ=∞ 

α =+, 

β=1,γ=∞ 
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Figure 3. Representation of the Expanded Model of HappyFather 

 

Based on Abox of figure 2, the following knowledge can be derived.  

f(Person)={ sarah_webb, edmund_bright_1813, john_ bright _1842, mary_ bright _1845, 

caroline_bright_1822, eliza_bright_1825, james_bright_1809, william_bright_1827} 

f(female)={ sarah_webb, mary_ bright _1845, eliza_bright_1825,  caroline_bright_1822 } 

The satisfiability of { f(Person)∩ f(￢female) } 
ℎ𝑎𝑠𝑐ℎ𝑖𝑙𝑑
→       { f(Person) } can now be evaluated. 

f(￢Female)= f(Person)- f(Female)={ edmund_bright_1813, john_ bright _1842, 

james_bright_1809, william_bright_1827} 

f(Person)∩f(￢Female)={ edmund_bright_1813, john_ bright _1842, james_bright_1809, 

william_bright_1827} 

The partitions created by the relation ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 from the  set f(Person)∩f(￢Female)  to the set 

f(person) based on the knowledge in the Abox can now be defined. Consider the individual 

edmund_bright_1813 then, 

 ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813)={ john_ bright _1842, mary_bright_1845)} 

Since the cardinality of ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑𝑠(edmund_bright_1813)>0, the relation   

hasChild { f(Person)∩ f(￢female) }→ { f(Person) }   is satisfied by edmund_bright_1813. 

The satisfiability of { f(Person)∩ f(￢female)} 
𝐶𝑎𝑟𝑒𝐹𝑜𝑟
→      { f(Healthy)} can now be evaluated. Based on 

the knowledge in the Abox, the decision table of Table 2 can be constructed. 

Table 2. Decision Table of healthy  

From the table, the set of partitions of f(person) with respect to Healthy  is defined as follows: 

 Attributes  

f(person) MentallyStable EmotionallyStable MedicallySound   Healthy   

edmund_bright_1813 1 1 0 0 

john_ bright _1842 1 0 1 1 

james_bright_1809 0 1 1 0 

caroline_bright_1822 0 1 1 1 

mary_bright_1845  1 0 1 1 

eliza_bright_1825 1 1 0 0 

sarah_webb 0 1 1 0 

william_bright_1827 1 1 0 1 

 

Person,  ￢Female 

Person Healthy 

hasChild 

(α =-, β=1,γ=∞) 
careFor 

(α =+, β=1,γ=∞) 
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[MentallyStable:1; EmotionallyStable:0; MedicallySound:1]= {mary_ bright _1845, john_ bright 

_1842} 

[MentallyStable:0; EmotionallyStable:1; MedicallySound:1 ] = {james_bright_1809, sarah_webb, 

caroline_bright_1822} 

 [ MentallyStable:1; EmotionallyStable:1; MedicallySound:0] = {william_bright_1827, 

eliza_bright_1825, edmund_bright_1813} 

The rough approximation of Healthy are therefore as follow: 

𝑓 ∗(𝐻𝑒𝑎𝑙𝑡ℎ𝑦)={{  mary_ bright _1845, john_ bright _1842 } 

𝑓 ∗(𝐻𝑒𝑎𝑙𝑡ℎ𝑦) ={{ mary_ bright _1845, john_ bright _1842}, {james_bright_1809, 

caroline_bright_1822, sarah_webb }, {william_bright_1827, eliza_bright_1825, 

edmund_bright_1813}} 

Since 𝑓 ∗(𝐻𝑒𝑎𝑙𝑡ℎ𝑦) ≠ 𝑓 
∗(𝐻𝑒𝑎𝑙𝑡ℎ𝑦) ≠ ∅, Healthy is vague and satisfied. 

Therefore, the approximation of the relation CareFor over the Cartesian product  𝑓(𝑃𝑒𝑟𝑠𝑜𝑛) ×
𝑓(𝐻𝑒𝑎𝑙𝑡ℎ𝑦) can be defined  in such a way that, 

(𝑥, 𝑦) ∈ 𝐶𝑎𝑟𝑒𝐹𝑜𝑟 ⇒  𝑥 ∈ 𝑓(𝑃𝑒𝑟𝑠𝑜𝑛)  ∧ 𝑦 ∈ 𝑓(𝐻𝑒𝑎𝑙𝑡ℎ𝑦) 
Assuming an individual edmund_bright_1813 then, the partition defined by 𝐶𝑎𝑟𝑒𝐹𝑜𝑟 is as follow: 

𝐶𝑎𝑟𝑒𝐹𝑜𝑟 (edmund_bright_1813)={ john_bright_1842, mary_bright_1845,caroline_bright_1822, 

james_bright_1809} 

The granule of knowledge about edmund_bright_1813  are the following. 

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813)={ john_bright_1842, mary_bright_1845 } 

ℎ𝑎𝑠𝑆𝑖𝑠𝑡𝑒𝑟 (edmund_bright_1813)={ caroline_bright_1822,eliza_bright_1825 } 

ℎ𝑎𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟 (edmund_bright_1813)={james_bright_1809,william_bright_1827) } 

These granules of knowledge can be regarded as the partitions created based on the knowledge on 

edmund_bright_1813. 

By comparing the 𝐶𝑎𝑟𝑒𝐹𝑜𝑟 (𝑒𝑑𝑚𝑢𝑛𝑑_𝑏𝑟𝑖𝑔ℎ𝑡_1813)   with others granules of knowledge stated 

above,  it appears that, at  the upper approximation, edmund_bright_1813 cares for anybody related to 

him by blood. But the lower approximation shows that, he cares for all his children. Thus, 

𝐶𝑎𝑟𝑒𝐹𝑜𝑟∗(𝑒𝑑𝑚𝑢𝑛𝑑_𝑏𝑟𝑖𝑔ℎ𝑡_1813)={ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813), 

ℎ𝑎𝑠𝑆𝑖𝑠𝑡𝑒𝑟 (edmund_bright_1813), ℎ𝑎𝑠𝐵𝑟𝑜𝑡ℎ𝑒𝑟 (edmund_bright_1813)} 

𝐶𝑎𝑟𝑒𝐹𝑜𝑟∗(𝑒𝑑𝑚𝑢𝑛𝑑_𝑏𝑟𝑖𝑔ℎ𝑡_1813)={ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813)} 

The cardinality of 𝐶𝑎𝑟𝑒𝐹𝑜𝑟∗ (𝑒𝑑𝑚𝑢𝑛𝑑_𝑏𝑟𝑖𝑔ℎ𝑡_1813) with respect to the range of approximation 

f(Healthy) is greater than 0 and none of the 𝐶𝑎𝑟𝑒𝐹𝑜𝑟∗(edmund_bright_181) belongs to f(￢Healthy).  

Consequently, 

{ f(Person)∩ f(￢female) } 
𝐶𝑎𝑟𝑒𝐹𝑜𝑟
→      { f(Healthy) }  is roughly  satisfied. Thus, edmund_bright_1813 is 

a rough instance of HappyFather. Therefore,  HappyFather is  roughly satisfied. 

Example 2: Satisfiability model of the vague concept HappyFather using tableaux-based algorithm. 

HappyFather ⊑ Man ⊓hasChild.Person ⊓careFor.Healthy   

Step1: Expansion of HappyFather based on the concept definition in the Tbox. 

HappyFather ⊑ Man ⊓hasChild.Person ⊓careFor.Healthy   

 ⊑ (Person ⊓￢Female) ⊓hasChild.Person ⊓careFor.Healthy   

Step 2:  Construction of a tree model  for concept HappyFather 

Figure 4 represents the tree model of HappyFather. 

From the knowledge in the Abox, the following can be established 

Healthy I ={ john_ bright _1842, mary_ bright _1845, caroline_bright_1822, william_bright_1827} 

𝐶𝑎𝑟𝑒𝐹𝑜𝑟 (edmund_bright_1813)={ john_bright_1842, mary_bright_1845, caroline_bright_1822, 

james_bright_1809 } 
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ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813)={ john_bright_1842, mary_bright_1845} 

 

 

 

Starting with edmund_bright_1813, from the  tree model, the relation 

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑 (edmund_bright_1813) is satisfied.  However, careFor.Healthy is not satisfied since 

james_bright_1809 is an instance of 𝐶𝑎𝑟𝑒𝐹𝑜𝑟 (edmund_bright_1813) but not an  instance of HealthyI. 

This violates the requirement of universal quantification. Therefore, HappyFather is not satisfiable 

with respect to the interpretation. 

The satisfiability of HappyFather based on tableaux-based algorithm and the proposed algorithm  

𝛿(𝑋, 𝑌) in Example 1 and 2 respectively all terminate. However, HappyFather  was roughly 

satisfiable with 𝛿(𝑋, 𝑌), and is not satisfiable while investigating with the tableaux-based 

interpretation as expected. This is where 𝛿(𝑋, 𝑌) differs from the tableaux-based algorithm. Since 

tableaux-based algorithm cannot interpret uncertain relations or concepts in an approximate manner. 

 

Example 3: Satisfiability model of MotherWithoutDaughter ≡Mother⊓ hasChild.￢Woman using 

the tableaux-based algorithm 

Step1: Expansion of MotherWithoutDaughter 

MotherWithoutDaughter ≡ Mother⊓ hasChild.￢Woman. 

   ≡(Woman ⊓ hasChild.Person) ⊓ hasChild.￢Woman 

≡((Person ⊓Female) ⊓ hasChild.Person) ⊓ hasChild.￢ (Person ⊓Female) 

≡((Person ⊓Female) ⊓ hasChild.Person) ⊓ hasChild. (￢Person ⨆￢Female) 

≡((Person⊓Female)⊓≥ 1hasChild.Person)⊓     

  (hasChild.￢Person⨆  hasChild.￢Female) 

Figure 4. Tree of HappyFather 

 

𝑥 

𝑦1 𝑦3 

 

x=edmund_bright_1813 

L(x)={ Person, ￢Female, hasChild.Person , 

careFor.Healthy } 

z 

 

careFor careFor 

z =  john_bright_1842       
 L(z)={Person } 

 

𝑦2 𝑦4 

 

 

careFor 
careFor 

hasChild 

𝑦1= john_bright_1842 
𝑦2= mary_bright_1845 
𝑦3= caroline_bright_1822 

𝑦4= james_bright_1809 

L(𝑦𝑖)={Healthy} 
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≡ {
 Person ⊓ Female ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑.￢𝐹𝑒𝑚𝑎𝑙𝑒 (𝑖)

 Person ⊓ Female ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑.￢𝑃𝑒𝑟𝑠𝑜𝑛(𝑖𝑖)
 

Step 2:  Construction of a tree model  for concept MotherWithoutDaughter 

Figure 5 represents the tree model of MotherWithoutDaughter. Node  x2  is blocked for further 

expansion since L(x2) contains a clash.  

From  the knowledge in the Abox,  the following interpretations can be established. 

 hasChild(sarah_webb)={james_bright_1809, william_bright_1827} 

￢Female I= f(Person) - f(Female)={edmund_bright_1813, james_bright_1809, 

william_bright_1827} 

Since hasChild(sarah_webb) ⊆￢FemaleI,  y1 , y2 all satisfy L( yi )={ Person, ￢Female}. Thus 

MotherWithoutDaughter is satisfiable. 

 

 
Example 4: Assuming the approximation of the concept motherwithoutdaughter using the proposed 

algorithm. 

MotherWithoutDaughter≡Mother⊓ hasChild.￢Woman 

Similarly to example 1, Table 2 is obtained by applying the expansion rules on MotherWithoutDaughter. 

Table 3. Expansion model of MotherWhithoutDaughter 

Steps Domain Relation Range Description 

1  

2 

3 

4 

5 

6 

7 

{{ MotherWithoutDaughter }} 

{{ Mother ,   haschild.Man}} 

{{ Woman , 1haschild.Person ,  

haschild.Man}} 

{{Person, Female , haschild. Person,   

haschild.Man}} 

{ {Person,  Female   haschild.man}} 

{ {Person,  Female }} 

{ {Person,  Female }} 

 

 

 

 

haschild 

haschild 

haschild 

 

 

 

 

{{ Person }} 

{{Person, ￢

Woman}} 

 {Person, ￢

Female}} 

 

 

 

 

α=-,β=1,γ=∞ 

α =+, β=1,γ=∞ 

α =+, β=1,γ=∞ 

 

Finally, one needs to establish that the relation: haschild: { f(Person)∩ f(Female) }→{ f(Person)∩ f(

Figure 5. Tree Model of  MotherWithoutDaughter 

 

𝑥 

𝑥1 

 

 

𝑦1 𝑦2 

 

x= sarah_webb 

L(x)={ ((Person⊓Female),  ≥ 1hasChild.Person), 

(hasChild.￢Person⨆ hasChild.￢Female)} 

𝑥2 

 

 

⊔ 

⊔ 

hasChild 
hasChild 

 

 

𝑦1= james_bright_1809, 𝑦2= william_bright_1827 

L(𝑦𝑖)={ Person, ￢Female} 

𝑥1= sarah_webb 

𝑥2= sarah_webb  

L(𝑥1)={Person, Female, ≥ 1hasChild.Person, 

hasChild.￢Female} 

L(𝑥2)={Person, Female, ≥ 1hasChild.Person, 

hasChild.￢Person} 
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￢Female) } is defined and satisfies the cardinality properties by using the Abox knowledge.  

f(Person)∩f(￢Female)={ edmund_bright_1813, john_ bright _1842, james_bright_1809, 

william_bright_1827} 

f(Person)∩f(female)={ sarah_webb, mary_ bright _1845, eliza_bright_1825,  caroline_bright_1822 } 

Because person, female are all crisp and the role hasChild is also a crisp role, the approximation of 

MotherWithoutDaughter is crisp.  

Consider the individual sarah_webb then, the set of hasChild(sarah_webb)to the range (f(Person)∩f(

￢Female)) is defined as follow 

hasChild (sarah_webb)={james_bright_1809, william_bright_1827} 

The  cardinality constraint of the relation is Δ=(α =+, β=1,γ=∞) as shown in table 3 

The cardinality of  hasChild(sarah_webb) with respect to the range of approximation (f(Person)∩f(

￢Female)) is greater than 0  and, the  cardinality of  hasChild(sarah_webb) to  ￢(f(Person)∩f(￢

Female)) is also is 0. Therefore the cardinality constrain is satisfied. Thus, Sarah_web is an instance of 

MotherWithoutDaughter. Consequently, MotherWithoutDaughter is satisfiable. 

The satisfiability of MotherWithoutDaughter based on tableaux-based algorithm and that of δ(X, Y) all 

terminate and show that MotherWithoutDaughter   is satisfiable with respect to the available knowledge. 

Since MotherWithoutDaughter  is a crisp concept, it was expected that the two algorithms should 

terminate with the same decision.  

 

6.Conclusion 

This paper presents a reasoner for vague DL 

ontologies to approximate membership thereby 

providing room for soft reasoning over ALC 

ontologies. We have shown through examples 

that, the satisfiability of ontologies with 

uncertainty can be approximated by 

constructing a tableaux-based like model with 

roles and concepts interpretation approximated 

through rough set. The separation of the 

representation of uncertainty from the 

reasoning mechanism presented here helps in 

achieving this without necessarily remodeling 

existing ontologies.  Although ALC is limited in 

terms of expressivity, the same principle can be 

extended to expressive description logic since 

rough set supports all constructs used for 

defining complex concepts and roles of 

expressive description logics.  Future works 

will look into achieving a satisfiability 

reasoning of expressive DL such as  SROIQ 

which is the core logic of OWL.  
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