Hadhramout University Journal of Natural & Applied Sciences

Volume 20 | Issue 1

Article 2

2023

Evaluation of Crocus sativus L. Quality Using FTIR Spectroscopy

Lina M. Alnaddaf Albaath University, hatem005@gmail.com

Mohamad Nabil Ksaier

Salim F. Bamsaoud Physics Department, Hadhramout University, saalem88@yahoo.com

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/huj_nas

Part of the Agricultural Economics Commons, and the Biotechnology Commons

Recommended Citation

Alnaddaf, Lina M.; Ksaier, Mohamad Nabil; and Bamsaoud, Salim F. (2023) "Evaluation of Crocus sativus L. Quality Using FTIR Spectroscopy," *Hadhramout University Journal of Natural & Applied Sciences*: Vol. 20: Iss. 1, Article 2. Available at: https://digitalcommons.aaru.edu.jo/huj_nas/vol20/iss1/2

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Hadhramout University Journal of Natural & Applied Sciences by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, u.murad@aaru.edu.jo.

Contents lists available at https://digitalcommons.aaru.edu.jo/huj_nas/.

Hadhramout University Journal of Natural & Applied Science

Article

Digital Object Identifier: Received 26 February 2023, Accepted 9 September 2023, Available online 13 September 2023

Evaluation of Crocus sativus L. Quality Using FTIR Spectroscopy

Lina M Alnaddaf^{1*}, Mohamad Nabil Ksaier² and Salim F. Bamsaoud³

¹Department of field crops, College of Agriculture, Albaath University, Homs, Syria ²Industry Homs Chamber, Medico Labs, Homs, Syria

³Physics Department, Faculty of Science, Hadhramout University, Mukalla, Yemen

*Corresponding author: hatem005@gmail.com

This is an open-access article under production of Hadhramout University Journal of Natural & Applied Science with eISSN 2790-7201

Abstract: *Crocus sativus L*. is one the important spices that gives food a distinctive color and taste as well as its medicinal value. Its quality can be estimated using different analysis methods. In This study we used FTIR spectroscopy to Evaluate *Crocus sativus L*. quality at MEDICO Lab 2023. FTIR Spectroscopy is a fast and reliable analytical method for quality saffron evaluation. The results of FTIR spectra indicated functional groups related to O-H, C=C, C=O, C-O, C(O)–O, C-H, C-H (cis-) and C-H (trans-). Also, our samples lacked the distinctive bands of the active substances of crocetin. Furthermore, the flowers in our samples contained different numbers of stigmas, evidence of the genetic mixing of the bulbs used.

Keywords: Crocus sativus L., Evaluation, FTIR Spectroscopy, Quality

1. Introduction:

Stigma flowers of Crocus sativus L. are considered the most expensive spices in the world. It is also characterized by its pharmacological and medicinal properties. It has many benefits in food as coloring and aromatic agents are caused by its rich composition of proteins (10-14%), carbohydrates (12-15%), total oils (5-9%), ash (4%), fiber (4-5%) as well as volatiles (0.3-0.8%) [1]. Stigma flowers of Crocus sativus L. contain crocetin (C20H24O4, 8,8' Diapocarotenedioic acid), picrocrocin (C16H26O7, 4-(β -D-glucopyranosyloxy)-2,6,6trimethyl-1-cyclohexene-1-carbox-aldehyde) and safranal (C10H14O,2,6,6-trimethyl-1, 3-cyclohexadiene-1carboxaldehyde) [2]. These are components responsible for the unique characteristics of saffron such as the bright yellowred dye and bitter taste [3].

A number of alternative methods exist to evaluate the quality of agricultural products, including saffron, apart from the conventional approaches. The conventional methods include the use of chemical reagents, involve the completion of time-consuming and financially burdensome procedures, and call for a considerable amount of effort [4]. Hence, it is imperative to provide significant attention to emerging technologies like nanotechnology, as it has shown exceptional results in agricultural applications, particularly in improving agricultural production and assessing its quality [5, 6]. Moreover, it is important for researchers to take into consideration new investigation technologies for quality testing that may provide an accurate and prompt evaluation of the quality of agricultural products. One of these methods is infrared spectroscopy. FTIR spectroscopy is a very effective method for identifying organic compounds. It utilizes infrared light in the range of 4000 cm-1 to 400 cm-1 [7].

Also, it is characterized by speed, sensitivity and versatility [8]. The FTIR spectroscopy is also used to identify functional compounds of samples with an easy preparation protocol without any hazardous chemicals [9].

FTIR spectroscopy was used to characterize functional groups and to define the quality and authenticity of saffron [10], as well as to determine geographical origin [11]. Furthermore, it could character the changes in effective materials as a result of storage [12]. In addition, to distinguish authentic saffron, commercial saffron and colorant-added saffron as adulterated samples were mixed with other plant colorants [13].

As a result of the medical and economic importance of saffron, its cultivation has spread in recent times in several regions in Syria, where the bulbs were imported from different areas. Therefore, it is vital to verify the quality of saffron samples due to their efficiency being strongly dependent on plant components.

The present study aimed at studying the functional groups of some samples using FTIR spectroscopy and identifying the differences among these samples collected from local fields.

2. Materials and methods:

2.1. Plant materials:

Six stigma saffron samples were collected from different fields in Homs city. Moreover, one sample of *Crocus sativus*

L. was brought from Iran as a control sample. It was noticed that the flowers that were collected as samples for analysis contained different numbers of stigmas, starting from 2 to seven stigmas, so the samples were arranged as follows: **2.**

2.1. Plant materials:

Six stigma saffron samples were collected from different fields in Homs city. Moreover, one sample of *Crocus sativus L*. was brought from Iran as a control sample. It was noticed that the flowers that were collected as samples for analysis contained different numbers of stigmas, starting from 2 to seven stigmas, so the samples were arranged as follows:

 Table 1. The samples for analysis

The sample	Characterization flowers
1	control
2	The flower contains two stigmas
3	The flower contains three stigmas
4	The flower contains four stigmas
5	The flower contains five stigmas
6	The flower contains six stigmas
7	The flower contains seven stigmas

Figure 1. Numbers of stigmas in the different flowers

2.2. Sample preparation:

All samples of stigmas were finely ground using an agate pestle and mortar. After that, each sample was mixed with KBr at a 1/140 ratio (w/w) and a KBr disc was prepared.

2.3. FTIR Spectroscopy:

FTIR spectrum was performed using a (IRAffinity-1S-4100 SHIMADZU) from 4000 cm-1 to 400 cm-1 with a 4 cm-1 instrumental resolution.

3. Results and Discussion:

3.1. FTIR Spectrum

The spectra image of FTIR and the functional groups for all samples in the present study was shown in Table 2. There were three patterns of spectra images. The first one was for sample 2, Figure 2. This image included various peaks of 3394, 2935, 2885, 1649, 1456, 1384, 1228, 1045, 669, 792, 856 and 923 cm-1. The second pattern was for samples 3 to 7 due to the similarity of their spectra images in Figure 3, where it contained the peaks of (3396-3410), (2920-2924), 2852, 1651, 1456, 1384, 1228, 1047, 1051, 831, 921 cm-1. The third pattern was for the control sample which showed peaks of 3410, 2920, 2852, 1697, 1653, 1624, 1575, 1556, 1543, 1456, 1384, 1228 and 1072 cm-1 Figure 4.

Figure 3. FTIR for sample 4

sample	Functional group	samples	Functional group	control	Functiona			
2	T unetional group	3 to 7	r unetional group	control	l group			
3394	hydroxyl (-OH) group of	3396-	hydroxyl (-OH) group of	3410	hydroxyl (-OH) group			
	sugars	3410	sugars		of sugars			
2935	C-H asymmetric and	2920-	C-H asymmetric and	2920	C-H asymmetric and			
2885	symmetric stretching	2924	symmetric stretching	2852	symmetric stretching			
	vibrations	2852	vibrations		vibrations			
-	-	-	-	1697	C=O stretching in			
					crocetin esters,			
					aliphatic esters, and			
					free carboxylic groups			
					of crocetin and amino			
					acids			
1649	C=C stretching	1651	C=C stretching vibrations	1653	C=C stretching			
1019	vibrations of carotenoids	1001	of carotenoids and	1000	vibrations of			
	and anocarotenoids the		apocarotenoids the amide		carotenoids and			
	amide I band and the Ω_{-}		I band and the $O-H$		apocarotenoids the			
	H bending vibrations of		bending vibrations of		amide I band and the			
	water		water		$\Omega_{\rm H}$ bending			
	water		water		vibrations of water			
				1624-	C_{-0} vibrations in			
				1575-	esters the amide II and			
-	-	-	-	1575-	aromatic $C-C$			
				15/3	stretching vibrations			
1456-	alkyl and alkenyl groups	1456-	alkyl and alkenyl groups	1456-	alkyl and alkenyl			
138/	aromatic C-C bonds O-	138/	aromatic C=C bonds O-H	138/	groups aromatic C-C			
1504	H bending phenol	1504	bending phenol	1504	bonds O-H bending			
	II bending phenor		bending phenor		phenol			
1228	$C(\mathbf{O})$ O stratching	1228	C(0) O stratching	1228	C(0) O stratching			
1220	vibrations and OH in	1220	vibrations and -OH in	1220	vibrations and <u>-OH</u> in			
	plana vibrations/amida		plana vibrations/amida III		plana vibrations/amida			
			plane viorations/annue m					
	111			1072	Γ			
-	-	-	-	1072	sugars			
1045	C-O-C glycosidic	1047-	C-O-C glycosidic linkages	-	-			
10.0	linkages of	1051	of oligosaccharides.					
	oligosaccharides	1001	bending vibration in					
	bending vibration in		sugars					
	sugars		5.5mb					
669-	C-H (cis-) and C-H	831-921	C-H (cis-) and C-H (trans-	_	_			
792-	(trans-) out-of-plane	051 721) out-of-plane vibrations					
856-	vibrations		, out of plane violations					
923	1010010115							

Table 2. FTIR spectrum for Crocus sativus L. stigmas

Our results of FTIR indicated the presence of similar functional groups in most spectral regions in all samples except the band in 1697 cm-1 in a control sample. This band is characterized by the carbonyl (C=O) group which contains functional groups of esters, ketones and aldehydes related to the crocin content in the saffron. This agrees with Foschi et al. [4] Nakanishi and Solomon [14]. Furthermore, the presence of bands 1624, 1575, 1556 and 1543 cm-1 in control samples indicated its protein content. According to Ordoudi et al. [8], Petrakis and Polissiou [15], these bands correlated with the presence of protein. In contrast, all samples distinguish with the bands in the region 1200-700 cm-1 correlated with the presence of polysaccharides and sugars compared with the control sample. A similar study indicated that this region is associated with the presence of sugar [16].

Most research studies indicated that the bands characterizing in 1800–1500 cm-1 region provide vital information on the presence of secondary metabolites especially crocin, picrocrocin and safranal [1-4,10-17]. Therefore, FTIR spectrum results show that our samples were not of good quality. In addition, the presence of different numbers of stigmas in the flowers, evidence of impurity of the cultivated bulbs as well as the occurrence of genetic mixing.

4. Conclusion:

FTIR analysis of stigmas saffron affirmed the presence of similar functional groups for samples. Also, there weren't any bands indicating crocin compound compared with the control. Our results showed low-quality samples and impure genetic bulbs.

Reference:

[1] N. Naim et al., "ATR-FTIR spectroscopy combined with DNA barcoding and GC-MS to assess the quality and purity of saffron (Crocus sativus L.)," Vibrational Spectroscopy, vol. 123, p. 103446, Nov. 2022, doi: 10.1016/j.vibspec.2022.103446.

[2] M. Carmona, A. Zalacain, A. M. Sánchez, J. L. Novella, and G. L. Alonso, "Crocetin Esters, Picrocrocin and Its Related Compounds Present in Crocus sativus Stigmas and Gardenia jasminoides Fruits. Tentative Identification of Seven New Compounds by LC-ESI-MS," Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 973–979, Jan. 2006, doi: 10.1021/jf052297w.

[3] M. D'Auria, G. Mauriello, and G. L. Rana, "Volatile organic compounds from saffron," Flavour and Fragrance Journal, vol. 19, no. 1, pp. 17–23, Oct. 2003, doi: 10.1002/ffj.1266.

[4] M. Foschi, L. Tozzi, F. Di Donato, A. Biancolillo, and A. A. D'Archivio, "A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas," Molecules, vol. 28, no. 1, p. 33, Dec. 2022, doi: 10.3390/molecules28010033.

[5] M. A. Bahwirth, S. F. Bamsaoud, and L. M. Alnaddaf, "Nanomaterial Impact on Plant Morphology, Physiology and Productivity," Springer eBooks, pp. 319–340, Jan. 2023, doi: https://doi.org/10.1007/978-3-031-20878-2_12.

[6] L. M. Alnaddaf, S. F. Bamsaoud, and M. Bahwirth, 'Perspective Chapter: Application of Nanotechnology Solutions in Plants Fertilization and Environmental Remediation', Urban Horticulture - Sustainable Gardening in Cities. IntechOpen, May 19, 2023. doi: 10.5772/intechopen.1001441.

[7] A. Biancolillo, M. Foschi, and A. A. D'Archivio, "Geographical Classification of Italian Saffron (Crocus sativus L.) by Multi-Block Treatments of UV-Vis and IR Spectroscopic Data," Molecules, vol. 25, no. 10, p. 2332, May 2020, doi: 10.3390/molecules25102332.

[8] R. Kaavya et al., "Application of infrared spectroscopy techniques for the assessment of quality and safety in spices: a review," Applied Spectroscopy Reviews, vol. 55, no. 7, pp. 593–611, Jan. 2020, doi: 10.1080/05704928.2020.1713801.

[9] A. Naumann, G. Heine, and R. Rauber, "Efficient discrimination of oat and pea roots by cluster analysis of Fourier transform infrared (FTIR) spectra," Field Crops Research, vol. 119, no. 1, pp. 78–84, Oct. 2010, doi: 10.1016/j.fcr.2010.06.017.

[10] S. A. Ordoudi, L. R. Cagliani, D. Melidou, M. Z. Tsimidou, and R. Consonni, "Uncovering a challenging case of adulterated commercial saffron," Food Control, vol. 81, pp. 147–155, Nov. 2017, doi: 10.1016/j.foodcont.2017.05.046.

[11] E. Anastasaki et al., "Differentiation of saffron from four countries by mid-infrared spectroscopy and multivariate analysis," European Food Research and Technology, vol. 230, no. 4, pp. 571–577, Dec. 2009, doi: 10.1007/s00217-009-1197-7.

[12] S. Varliklioz Er, H. Eksi-Kocak, H. Yetim, and I. H. Boyaci, "Novel Spectroscopic Method for Determination and Quantification of Saffron Adulteration," Food Analytical Methods, vol. 10, no. 5, pp. 1547–1555, Nov. 2016, doi: 10.1007/s12161-016-0710-4.

[13] S. A. Ordoudi, M. de los Mozos Pascual, and M. Z. Tsimidou, "On the quality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics," Food Chemistry, vol. 150, pp. 414–421, May 2014, doi: 10.1016/i foodchem.2013.11.014

10.1016/j.foodchem.2013.11.014.

[14] Nakanishi K, Solomon PA. (1977). Infrared absorption spectroscopy. Holden-Day, San Francisco

[15] E. A. Petrakis and M. G. Polissiou, "Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics," Talanta, vol. 162, pp. 558–566, Jan. 2017, doi: 10.1016/j.talanta.2016.10.072.

[16] C. S. Pappas, P. A. Tarantilis, P. C. Harizanis, and M. G. Polissiou, "New Method for Pollen Identification by FT-IR Spectroscopy," Applied Spectroscopy, vol. 57, no. 1, pp. 23–27, Jan. 2003, doi: 10.1366/000370203321165160.

[17] F. Y. Lee, T. T. Htar, and G. A. Akowuah, "ATR-FTIR and Spectrometric Methods for the Assay of Crocin in Commercial Saffron Spices (Crocus savitusL.)," International Journal of Food Properties, vol. 18, no. 8, pp. 1773–1783, Oct. 2014, doi: 10.1080/10942912.2014.923911.

تقييم جودة الزعفران . Crocus sativus L. باستخدام التحليل الطيفي FTIR لينا ممدوح النداف ^{1,*}، محمد نبيل القصير ²، سالم فرج بامسعود ³

الملخص: يعد الزعفران L. Crocus sativus L من التوابل المهمة تضفي للطعام لونًا ومذاقًا مميزًا بالإضافة إلى قيمته الطبية. ويمكن تقدير جودته باستخدام طرائق تحليل مختلفة. استخدمنا في هذه الدراسة التحليل الطيفي FTIR لتقييم جودة الزعفران L. Crocus sativus L في مخابر ميديكو لعام 2023. يعد التحليل الطيفي FTIRطريقة تحليلية سريعة وموثوقة لتقييم جودة الزعفران. أشارت نتائج أطياف FTIR إلى مجموعات وظيفية مرتبطة بـ H–O وC = C و O–C و O– (O) C و H–C و (-c) C–H (trans و (-c) C–C و C= C الخوار العينات الى الحزم الطيفية المميزة للمادة الفعالة الكروسيتين. كذلك، احتوت الأزهار في هذه العينات على أعداد مختلفة من المياسم دلالة على الاختلاط الجينى للبصيلات المستخدمة.

الكلمات المفتاحية: الزعفران Crocus sativus L. النوعية، تقييم، FTIR Spectroscopy