A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America

Mousa Abdulkhareem Abu dalbouh
Yarmouk University, Jordan, m.a.abudalboh@yu.edu.jo

Wasfi M. Khazaleh
Yarmouk university, Jordan, wasfee@yu.edu.jo

Ahmad Bataineh
Yarmouk University, Jordan, a.batainh@yu.edu.jo

Saed Banihani
Yarmouk University, Jordan, Saed.Banihani@yu.edu.jo

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/jaaru_rhe

Part of the Arabic Studies Commons, Medicine and Health Sciences Commons, and the Sports Studies Commons

Recommended Citation
Abu dalbouh, Mousa Abdulkhareem; Khazaleh, Wasfi M.; Bataineh, Ahmad; and Banihani, Saed (2023) "A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America," Journal of the Association of Arab Universities for Research in Higher Education: مجله اتحاد الجامعات العربية (للبحوث في التعليم العالي): Vol. 43: Iss. 2, Article 17.
Available at: https://digitalcommons.aaru.edu.jo/jaaru_rhe/vol43/iss2/17

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Journal of the Association of Arab Universities for Research in Higher Education by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, u.murad@aaru.edu.jo.
A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America

Mousa Abudalboh
Associate professor, Faculty of Education
Yarmouk University, Jordan
m.a.abudalboh@yu.edu.jo

Wasfi Khazaleh*
Professor, Faculty of Physical Education
Yarmouk University, Jordan
wasfee@yu.edu.jo

Ahmad Bataineh
Teacher, Faculty of Physical Education
Yarmouk University, Jordan
a.bataineh@yu.edu.jo

Saed Banihani
Teacher, Faculty of Physical Education
Yarmouk University, Jordan
Saed Banihani@yu.edu.jo

Abstract

This paper compared the current test batteries between fitness tests in the United States and Jordan, focusing on the fitness components of students at the age of 16 years. The study sample consisted of 378 students from the 10th grade. 192 of this sample were males and 186 were females. Researchers applied King Abdullah Award tests and compared results with the American criteria (www.presidentschallenge.org) and the criteria mentioned by Baumgartner, Jackson St., Maher & Rowe, 2007, using Percentiles, Kolmogorov–Smirnov normal distribution, Skewness coefficient convolution, means, and standard deviations. Jordanian students showed weakness in all fitness parameters tested in comparison with fitness gram, while the girls (16 years) did not show a significant difference as compared with the mentioned criteria. The authors recommended the use of the percentile degree that has been built in this study by the Ministry of Education in Jordan to establish a criterion for students of all ages in Jordan.

Key Words: fitness, fitnessGram, award of the President.
A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America

Mousa Abudalboh
Wasfi Khazaleh
Ahmad Bataineh
Saed Banihani

Introduction
Fitness is an important topic that has been studied since the 1950s, especially after (Kraus & Hirschland, 1954) study which indicated weakness in American children compared with European child, in the mid-1970s and 1980s many studies emerged to find batteries for physical fitness like Taxes Youth Fitness Test,(1973), Manitoba Physical Performance Test,(1977), South Carolina Test,(1978), AAHPERD HRFT,(1980-1984), Fit Youth Today,(1986), FITNESSGRAM Presidents Challenge,(1994 ). Winsley, (2006) indicated that fitness is the ability of an individual to carry out daily life, also Deiry (2014),(Morrow, jr., Mood, D., Disch, j &., Kang (2016) indicated that technically, physical fitness involves measures and levels of muscular strength, Deiry (2009) mentioned that the judgment of the individual that he is inappropriate or improper shape must use criteria to compare the results with the individuals in the same age and gender, domestically or internationally. Safrit & Looney, (1992) and Morrow et al, (2016) emphasized that criterion is very important for students to compare themselves with others. Hence this study is to compare the fitness level in Irbid schools with President Award and FITNESSGRAM criteria in America at the age (16) years.

Literature Review
Body fitness has been one of the most prominent issues being studied since the early 50’s, and especially after the study conducted by (Kraus & Hirschland, 1954) which pointed out that the fitness level of American children is very weak compared to that of European children. Ever since the USA has been nurturing the fitness level of children in schools. In addition, in the late 70’s they were keen on finding statistical standards and restructuring them. In the 1980’s a lot of physical batteries have been found such as (Texas Youth Fitness Test: 1973, Manitoba Physical Performance Test: 1977, South Carolina Test: 1978, AAHPERD HRFT: 1980-1984, Fit Youth Today: 1986, FITNESSGRAM Presidents Challenge: 1994).

(Winsley 2000) pointed out that fitness can be defined as the ability of a normal person to do their daily errands efficiently without showing the symptoms of fatigue, and the ability to perform tasks in their free time. (Morrow jr., et al,2011) Defined it as acquiring or restoring the physical abilities connected to good health, and those are essential to perform daily activities and facing expected and unexpected physical challenges.

(Al-deiry, 2009) mentioned that in order to judge someone as fit or unfit proper standards must be used to compare his results with those of others in the same age and gender group both locally and internationally. (Safrit and Looney, 1992), (Morrow et al, 2016) argue that statistical standards used to grade students are beneficial in enhancing programs and distinguishing excellence on a local and national level.

And from the previous studies that are related to the current study is the study (dairy 2009)-which aimed to enhance the fitness level of 17-year-old students in both Jordan, UAE, and Egypt and find differences between them. Other studies (Almomani, 2013; Albre & Harahsheh, 2014; Albataineh &thers 2012) that have been conducted in the Jordanian environment pointed out that fitness levels among students in schools are weak. The study of (Abu Salah, 2010) aimed to identify the fitness level connected to health in high school students in Tulkarem; Palestine, one of its most important results indicated that the current level of fitness has decreased when compared to international levels.
commence the study on 16-year-old students and compare the results to the American standards.

**Research Questions:**
1. What are the results of the fitness tests conducted on 16-year-old students for both males and females in IRBID school?
2. What are the percentiles for the results of the fitness tests for 16-year-old male and female students in the schools of IRBID?
3. Are there any statistical differences at (α ≤ 0.05) for the results of tests of fitness among students at age (16) year in schools of IRBID compared with some fitness tests in American Batteries?

**Material & methods**

**Study Procedure:** The descriptive approach has been used because it fits the nature and goals of the current study.

**Study Sample:** A sample of 378 male and female students from the 10th grade of Irbid schools. The sample has been distributed between 192 male students and 186 female students in the 16-year-old criteria.

**Used Tests:** The tests used in this study are the same as those used in King Abdullah II Award in Jordanian schools in order to compare it with the Criteria, and the following criteria (Baumgartner, Jackson St., Maher & Rowe, 2007) has been used:

**Table 1: Criteria of some fitness tests batteries in America**

<table>
<thead>
<tr>
<th>Tests</th>
<th><strong>Curl-Ups(min 60)</strong></th>
<th><strong>Shuttle Run</strong></th>
<th><strong>Sit &amp; Reach(cm)</strong></th>
<th>Endurance One</th>
<th>90 Push-Ups(Every 3 sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Criteria</td>
<td>45</td>
<td>9.4</td>
<td>30</td>
<td>8.30</td>
<td>18</td>
</tr>
<tr>
<td>Female Criteria</td>
<td>35</td>
<td>10.9</td>
<td>34</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

*FITNESSGRAM  **President’s Challenge

**Results**

**First Question:** What are the results of the fitness tests conducted on 16-year-old students for both males and females in the schools of (IRBID)?

Figures (1-10) answer the question as follows:

Kolmogorov-Smirnov normal distribution, level of statistical significance, Skewness, Means, and standard deviations for males Figures (1-5)

**FIGURES**

![Fig (1) sit ups (Kolmogorov- Smirnov Z = 1.31 , Sig: 0.064)](image1)

![Fig (2) Shuttle Run (Kolmogorov- Smirnov Z= 1.26 Sig: 0.085)](image2)
A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America

Mousa Abudalboh
Wasfi Khazaleh
Ahmad Bataineh
Saed Banihani

It is obvious from the figures (1-5) for the male results that all of them fit in the Kolmogorov-Smirnov normal distribution with statistical semantics of more than 0.05 and skewness within (+-3) which show homogenous results. The figures also showed means and standard deviations for the tests respectively:(37.3 ± 5.99, 11.51 ± 0.628, 26.3 ± 5.38, 11.55 ± 1.31, 13.11 ± 5.64)

Kolmogorov-Smirnov normal distribution, level of statistical significance, Skewness, Means, and standard deviations for females. From figures (6-10) show the results:

Fig (3) Sit & Reach (Kolmogorov-Smirnov Z= 1.11 Sig: 0.170)

Fig (4) Endurance (Kolmogorov-Smirnov Z= 1.31 Sig: 0.066)

Fig (5) Push ups (Kolmogorov-Smirnov Z= 1.30 Sig: 0.068)

Fig (6) Sit Ups (Kolmogorov-Smirnov Z= 1.04 Sig: 0.229)

Fig (7) Shuttle Run (Kolmogorov-Smirnov Z= 0.976 Sig: 0.229)
We can see from figures (6-10) for the female’s results that they all fit in the Kolmogorov-Smirnov normal distribution with Statistical semantics greater than 0.05, Skewness coefficient was within +-3 indicating homogenous results for the samples. The figures also show means and standard deviations for the fitness result respectively:(3-.53 ± 4.52, 12.73 ± 1.35, 29.52± 4.90, 13.88 ± 1.09,6.69± 2.71)

Second question: What are the percentiles for the results of the fitness tests for 16-year-old male and female students in the schools of (IRBID),?

To answer this question we calculated the percentiles (0-10) as presented in Table (2)

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Curl-ups</th>
<th>Shuttle Run</th>
<th>Sit &amp; Reach</th>
<th>Endurance one mile</th>
<th>Push-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>12.40</td>
<td>19</td>
<td>13.33</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>12.11</td>
<td>22</td>
<td>12.45</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>11.81</td>
<td>23</td>
<td>12.25</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>11.62</td>
<td>25</td>
<td>12.00</td>
<td>11</td>
</tr>
<tr>
<td>50</td>
<td>37</td>
<td>11.44</td>
<td>26</td>
<td>11.47</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>38</td>
<td>11.23</td>
<td>28</td>
<td>11.23</td>
<td>14</td>
</tr>
<tr>
<td>70</td>
<td>41</td>
<td>11.12</td>
<td>29</td>
<td>11.00</td>
<td>15</td>
</tr>
<tr>
<td>80</td>
<td>43</td>
<td>11.00</td>
<td>31</td>
<td>10.41</td>
<td>17</td>
</tr>
<tr>
<td>90</td>
<td>47</td>
<td>12.76</td>
<td>33</td>
<td>9.42</td>
<td>21</td>
</tr>
<tr>
<td>Range</td>
<td>24</td>
<td>2.70</td>
<td>23</td>
<td>5.32</td>
<td>27</td>
</tr>
</tbody>
</table>

| Females     |          |             |             |                   |         |
| 10          | 24       | 14.52       | 23          | 15.31             | 3       |
| 20          | 26       | 14.20       | 25          | 15.00             | 4       |
| 30          | 28       | 13.57       | 27          | 14.37             | 5       |
| 40          | 30       | 13.02       | 28          | 14.15             | 6       |
| 50          | 31       | 12.56       | 29          | 14.00             | 7       |
| 60          | 32       | 12.29       | 31          | 13.47             | 8       |
| 70          | 33       | 11.95       | 32          | 13.23             | 9       |
| 80          | 34       | 11.58       | 34          | 13.00             | 10      |
| 90          | 36       | 10.83       | 36          | 12.27             | 12      |
| Range       | 20       | 5.35        | 20          | 4.30              | 15      |

It is obvious from table (2) that the percentiles for the fitness tests ranged between the minimum value for the corresponding percentile and rank (10) and the highest value of the corresponding class percentile (90).

Third Question: Are there any statistical differences at (α ≤ 0.05) for the results of tests of
fitness among students age (16) years in Irbid compared with some fitness tests in American Batteries? To answer this question, we calculated the Mean and Standard deviation and On Sample T-test, in order to be able to compare the criterion grade as a cut-off score, as shown in Table (3):

**Table (3) averages and deviations and pieces and test One Sample T-test**

<table>
<thead>
<tr>
<th>Tests</th>
<th>Means</th>
<th>Std-Deviation</th>
<th>Criteria Degree (Cut) Score</th>
<th>One Sample T-test</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male N=192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curl ups</td>
<td>37.34</td>
<td>5.99</td>
<td>45</td>
<td>13.07</td>
<td>0</td>
</tr>
<tr>
<td>Shuttle Run</td>
<td>11.51</td>
<td>0.628</td>
<td>9.4</td>
<td>46.54</td>
<td>0</td>
</tr>
<tr>
<td>Sit and Reach</td>
<td>26.32</td>
<td>5.38</td>
<td>30</td>
<td>9.48</td>
<td>0</td>
</tr>
<tr>
<td>Endurance One M</td>
<td>11.55</td>
<td>1.31</td>
<td>8.30</td>
<td>34.39</td>
<td>0</td>
</tr>
<tr>
<td>Push ups</td>
<td>13.11</td>
<td>5.64</td>
<td>18</td>
<td>12.01</td>
<td>0</td>
</tr>
<tr>
<td>Female N=186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curl ups</td>
<td>30.54</td>
<td>4.52</td>
<td>35</td>
<td>13.47</td>
<td>0</td>
</tr>
<tr>
<td>Shuttle Run</td>
<td>12.37</td>
<td>1.35</td>
<td>10.9</td>
<td>18.50</td>
<td>0</td>
</tr>
<tr>
<td>Sit &amp; Reach</td>
<td>29.52</td>
<td>4.90</td>
<td>34</td>
<td>12.46</td>
<td>0</td>
</tr>
<tr>
<td>Endurance One M</td>
<td>13.88</td>
<td>1.09</td>
<td>10</td>
<td>48.45</td>
<td>0</td>
</tr>
</tbody>
</table>

Table (3) shows that there are statistical differences at ($\alpha \geq 5$) for all the fitness tests between Jordanian students from Irbid and the cutoff points for the American fitness test batteries criteria, except in the female Push up tests where no statistical differences were found between the two parties.

**Discussion**

It can be concluded from the results that all of them fulfilled the homogeneity conditions and normal distribution. This is due to the accuracy and size of the samples used, as well as controlling the macro factors affecting the test results, it could also be used in diagnosing the fitness level of students. (Croker and Algena 2009) indicated that a criterion gives us information about sample performance in comparison with another certain criterion or credible sample, (Alhhammouri & Alkahlout, 2009) (Odeh 2010) and (Allam, 2011) indicated the importance of the percentiles in feedback and exploring strengths and weaknesses and deciding student level on comparison with his peers.

Overall, the study showed a clear weakness in all the elements of fitness for all students in the 16-year-old criteria at the School of Irbid in Jordan compared with some American fitness batteries, and the results were very similar to the study of (Almomani, 2013; Albare & Harahsheh 2014), and this weakness is mainly due to the lifestyle of the Jordanian student against that of the American student which can be characterized by little movement, reliance on modern transportation and the use of technology for many hours without doing a single physical activity, as well as not having any fitness programs applied actively, and the sufficiency of only a one-hour physical education class per week.

**Conclusions**

1- All the results of the chosen fitness tests fulfilled the homogeneity and normal distribution conditions.
The average level of all the fitness tests held for 16-year-old male/female students is known.

Percentiles ranging from (10-19) degrees for all the fitness tests have been constructed.

The results showed a clear weakness in all the fitness tests held for 16-year-olds in Irbid Schools against the batteries in the American President’s Fitness Award, except for the female push-up test.

Conflicts of interest
The researchers emphasize the importance of using percentiles to evaluate the students at Irbid School. In addition, the Ministry of Education needs to pay attention to and care about these results.

References:


Batayneh, Ahmad and others. (2012). evaluation of the motor capacity of minimum basic school students with test battery Munich fitness. The magazine scientific theories and applications. Faculty of physical education. Alexandria University (accepted for publication).


A comparative Study of health Fitness Test Batteries between the King Abdullah II Award in Jordan with Criteria of President Award and FitnessGram in America

Mousa Abudalboh
Wasfi Khazaleh
Ahmad Bataineh
Saed Banihani

Journal of the Association of Arab Universities for Research in Higher Education (???? ????? ??????? ?????? (?????? ?? ??????? ???????, Vol. 43 [2023], Iss. 2, Art. 17

https://digitalcommons.aaru.edu.jo/jaaru_rhe/vol43/iss2/17