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Abstract: In this article, the fractional order bioheat model of heat transfer is used to offer a new interpretation to investigate the

thermal damage in living tissues under laser irradiations. The effects of thermal relaxation time and the fractional order parameter

on the temperature of living tissues and the thermal damages are studied. The basic equation is formulated in the domain of Laplace

transform to get the analytical solution. The numerical solution is obtained by using the implicit finite difference method (IFDM). The

efficiency and accuracy of this method have been verified using numerical example. Considering the thermophysical properties of living

tissue, the effects of fractional time parameter and the thermal relaxation time on the temperature distributions in living tissues were

analyzed and presented graphically.

Keywords: Fractional derivative; finite difference method; living tissue; thermal damage; Laplace transforms.

1 Introduction

A human body behaves under various environmental
conditions of humidity, air temperature and wind speed.
Recently studies development show that the thermal
transfer problems in living tissue becomes one of
complicated issues but there are several discussions a
finding in this field. In the modernistic medicine, the
methods of heat treatments have been used like laser
surgery [1], laser tissues soldering [2] and hyperthermia
[3]. Therefore, a study on the treatment of tumors is
urgently needed to save human lives around the world.
Many techniques are adopted to treat the tumors, among
which laser treatments are considered one of the most
prospective technologies.

A thorough understanding of mechanical properties
and thermal behaviors of living tissue are beneficial in
improving treatments efficiencies and preventing thermal
damages through laser tissues interactions. Pioneering
work dates back to Pennes [4] to analyze the relationships
between arterials blood and tissues temperature, in which
a thermal transfer equations are presented and have been
widely used to describe the thermal behaviors of living
tissue in the treatments. Recently, fractional calculus have
found very successful application to solve real-world

problems, such as heat transfer, fluid flow and
viscoelasticity. Several published researches have proven
that mathematical theories with fractional derivative can
be used to describe the process of heat transfer in
different media. Ezzat et. al. [5,6], have presented the
fractional thermal waves models overtime for the Pennes
bioheat equations to study thermal behaviors in biological
tissue caused by instantaneous surface heating Patra et. al.

[7] applied the finite difference method to investigate the
computational models on thermoelasticity analysis under
the magnetic field in a rotating cylinder.

Mukhopadhyay and Kumar [8] studied the
generalized thermoelastic problem of hollo cylinder by
using the finite difference method. Abd-Alla et. al. [9]
applied the finite difference method to study the
thermoelastic interaction in annular cylinders. Abd-Alla
et. al. [10] have used by the implicit finite-difference
technique to investigate the solution of the transient
coupled thermoelasticity of a hollo fins. Abd-Alla et. al.

[11] discussed the impacts of magnetic field in an
isotropic non-homogeneous cylinder. Zhao et. al. [12]
investigated a two level finite difference method for one
dimensional Pennes’ bioheat model. Singh et. al. [13]
studied the solution of fractional bioheat equation by
finite difference approach and homotopy perturbation
method. Patil et. al. [14] used the finite difference scheme
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based analysis of bioheat transfers in human breast cyst.
Damor et. al. [15] studied the numerical solutions of a
fractional bio-heat model with constant and sinusoidal
heat flux condition on skin tissues Hobiny and Abbas[16]
have studied the analysis of thermal damages in skin
tissues subject to moving heating source.
Finite-decomposition method is used to get the solutions
of the heating transfer problems in tissue during
hyperthermia as in Gupta et. al. [17]. The Homotopy
perturbation method are presented to studied the
numerical simulation for heating transfer in tissue during
thermal therapy as in Gupta et. al. [18]. Esneault and
Dillenseger [19] investigated the temperature increment
over time in hypothermia by the finite difference method.
Analytical solution is very interesting because of its lower
outlay and exact evaluations than experimental and
numerical computations. By using the finite element
scheme, Diaz et. al. [20] studied the solution of
thermo-diffusion model in the tissues to investigate the
resulting of thermal damages. Saeed and Abbas [21]
applied the finite element approach to study the nonlinear
dual-phase lag bioheat model in spherical tissue. When a
real phenomenon regards to heat transfers in finite
mediums are investigated, the linear/nonlinear models of
heating transfer has been expanded and their numerical or
analytical solutions have been solved by many authors
[22,23,24,25,26,27,28,29,30,31,32]. The present work
is devoted to study the effects of fractional time parameter
and the thermal relaxation time on the temperature
distribution and the thermal damages of biological tissues
by the bioheat model in living tissues. The numerical
results can be used as a substantiation division for living
tissue interaction such as continuous scanning laser
interaction.

2 Mathematical model

In this work, we consider a semi-infinite living tissue with
the thickness of L = 0.3cm. Based on Cattaneo [33] and
Ezzat et. al. [5], the fractional bioheat formulations in
living tissues can be given as

k∇2T = (1+
τα

0
Γ (α+1)

∂ α

∂ tα )(ρc ∂T
∂ t

+ωbρbcb(T −Tb)−Qm −Qext),0 < α ≤ 1,

(1)
Taking into account the definition can be expressed by

∂ α h(r, t)

∂ tα
=







h(r, t)− h(r,0), α → 0,

Iα−1 ∂h(r,t)
∂ t

, 0 < α < 1,
∂h(r,t)

∂ t
, α = 1

(2)

Ivh(r, t) =
∫ t

0

(t − s)v

Γ (v)
h(r,s)ds, v⋗ 0 (3)

lim
v→1

∂ vh(r, t)

∂ tv
=

∂h(r, t)

∂ t
. (4)

The full spectrum of local thermal conduction is
described by standard thermal conduction to ballistic
thermal conduction as shown in equation (2). The
different values of fractional parameter 0 < α ≤ 1 cover
two types of conductivity, α = 1 for normal conductivity
while 0 < α < 1 for low conductivity, ωbis the rate of
blood perfusions, t is the time, T is the tissues
temperature, c is the specific heat of tissues, k is the
thermal conductive of tissues, ρ is the tissues mass
density, ρb is the blood mass density, Tb is the blood
temperature, cb is the blood specific heat, τ0 is the
thermal relaxation time, Qm is the metabolic heating
generations in living tissue and Qext refer to the heat
generated per unit volume of tissue. Gardner et. al. [34]
supposed the laser heat sources as follow

Qext(x, t) = I0µa[U(t)−U(t− τp)][C1e−
k1
δ

x −C2e−
k2
δ

x],
(5)

where µa is the absorption coefficient, U(t) is the step
function, δ is penetration depth, τp is the laser exposure
time, I0 is the laser intensity and C1,C2,k1 and k2 are the
functions of diffuse reflectance Rd and they are mentioned
as in [34]. The penetrations depth can be given by [34]:

δ =
1

√

3(µs(1− g)+ µa)µa

, (6)

where g is the anisotropy factor and µs is the scattering
coefficient. Now, the boundary conditions and initial
condition are expressed as

T (0, t) = 0, T (L, t) = 0, (7)

T (x,0) = Tb,
∂T (x,0)

∂ t
= 0 (8)

For appropriateness, the dimensionless forms are defined
as

T / =
T −T0

T0

, T
/

b =
Tb −T0

T0

,

(t/,τ
/
0 ,τ

/
b ) =

k

ρcL2
(t,τ0,τb)

(k
/
1,k

/
2) =

L

δ
(k1,k2), Rb =

ωbρbcbL2

k
,

Rm =
L2Qm

kT0

, Rr =
L2I0µa

kT0

.

(9)

In the dimensionless forms of parameters in (9), the
governing formulation (1) with the boundary (7) and the
initial conditions (8) can be written by (for
appropriateness, the dash has been neglected)

∂ 2T
∂x2 = (1+

τα
0

Γ (α+1)
∂ α

∂ tα )(
∂T
∂ t

−Rb(Tb −T )−Rm−Rr f (x, t)),

(10)

T (0, t) = 0, T (L, t) = 0, (11)
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T (x,0) = Tb,
∂T (x,0)

∂ t
= 0 (12)

where

f (x, t) = [U(t)−U(t− τp)][C1e−k1x −C2e−k2x].

3 Analytical method

Applying the Laplace transforms for equations (10)-(12),
which are defined by the formula

M(x,s) = L[M(x, t)] =

∫ ∞

0
M(x, t)e−stdt, s⋗ 0, (13)

∂ 2T

∂x2
− f1T =− f2 − f3e−k1x − f4e−k2x, (14)

∂T (0, t)

∂x
= 0,

∂T (L, t)

∂x
= 0, (15)

where s is the parameter of Laplace transforms, f1 = 1+
sα τα

0

Γ (α+1)(s+Rb), f2 =
1
s
(RbTb+Rm), f3 =

RrC1
s

(1−e−sτb),

f4 =
−RrC2

s
(1− e−sτb)

The exact solution of equation (14) can be given as

T (x,s) = f2
f1
+A1e

√
f1x +A2e−

√
f1x + f3

f1−k2
1

e−k1x + f4
f1−k2

1

e−k2x.

(16)
where A1and A2 are constants. For finally solution of
temperature distribution, a numerically reversal method
was adopted depending on Stehfest[35]. In this method,
the inverse M(x, t) of the Laplace transform M(x,s) is
approximated by the relation

M(x, t) =
ln2

t

M

∑
j=1

V jM(χ , j
ln2

t
), (17)

whereV j is given by the following equation:

V j = (−1)
n
2+1

min(i, n
2 )

∑
k= i+1

2

k
n
2+1(2k)!

( n
2
− k)!k!(i− k)!(2k− 1)!

(18)

Numerical scheme

The linear partial differential governing equation are
obtained. For the numerical solution, the implicit finite
differences methods (IFDM) are used. The domain of
solution 0 ≤ x ≤ x f , 0 ≤ t ≤ t f , are replaced by grids
described by the set of nodes points (xm, ts), in which
xm = mh,m = 0,1,2, . . . ..,M andts = sk,s = 0,1,2, . . . ..,S.

Therefore,k =
t f

s
,h =

x f

M
are expressed as the times steps

and mess width respectively. For the time derivative and
the space derivative, the derivative is replaced the central
difference. Thus, the approximations of finite difference
scheme for the system of partial differential equations
with respect to the independent variables:

∂ f

∂ t
=

f s+1
m − f s−1

m
2k

+ o(k2), ∂ 2 f

∂ t2 =
f s+1
m −2 f s

m+ f s−1
m

2k
+ o(k2),

(19)

∂ f

∂x
=

f s+1
m+1− f s+1

m−1

2h
+ o(h2), ∂ 2 f

∂x2 =
f s+1
m+1−2 f s+1

m + f s+1
m−1

2k
+ o(h2)

(20)

∂ α f

∂ tα
=

k−α

Γ (2−α)

s−1

∑
i=0

b1−α
i [ f s−i

m − f s−i−1
m ],0 < α ≤ 1

(21)

∂ γ f

∂ tγ = k−γ

Γ (3−γ) ∑s−1
i=0 b

2−γ
i [ f s−i

m − 2 f s−i−1
m + f s−i−2

m ],1 < γ ≤ 2

(22)
where b1−α

i = (i+ 1)1−α − (i)1−α ,γ = α + 1
The equation (10) is then replaced by the implicit finite
difference equations by

T s+1
m+1 − 2T s+1

m +T s+1
m−1

h2

−
k−α

Γ (2−α)

s−1

∑
i=0

b1−α
i [ f s−i

m − f s−i−1
m ]−T s+1

m

+Rm +Rr f −
τα

0

Γ (α + 1)
(

k−γ

Γ (3− γ)

×
s−1

∑
i=0

b
2−γ
i [ f s−i

m − 2 f s−i−1
m + f s−i−2

m ]

+Rb

k−α

Γ (2−α)

s−1

∑
i=0

b1−α
i [ f s−i

m − f s−i−1
m ]) = 0

(23)

4 Evaluation of thermal damages

Burn assessment is one of the most important attributes
of skin tissue bioengineering science. To quantify thermal
damage, the method improved by Moritz and Henriques
[36,37] can be used:

Ω =

∫ t

0
Be−

Ea
RT dt, (24)

where B = 3.1 × 10ˆ98s−1 is the frequency
factor,Ea = 6.28 × 10ˆ5J/mol is the activation energy
andR = 8.313J/mol·K is the constant of universal gas.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


10 A. Abdalla et al.: The Effects of fractional derivatives of...

0 0.005 0.01 0.015 0.02 0.025 0.03

x 

37

37.5

38

38.5

39

39.5

40

40.5

T

  =   1.0 (analytical solution )

  =   1.0  (IFDM solution)

  =   0.5 (analytical solution )

  =   0.5  (IFDM solution)

Fig. 1: The variation of temperature via the distance with and

without the time fractional derivative.
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Fig. 2: The variation of temperature through the time with and

without the time fractional derivative.
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Fig. 3: The variation of thermal damages through the time with

and without the time fractional derivative.
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Fig. 4: The variation of temperature via the distance with and

without the thermal relaxation time.
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Fig. 5: The variation of temperature through the time with and

without the thermal relaxation time.
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5 Results and Discussion

Several simulations were carried out to test the
performance of the proposed nonlinear thermal model
based on the hyperbolic bio-heat transfer. For numerical
calculations, examples of thermal property values for skin
tissues have been written [38]

ρ
b
=1060(kg)(m−3),cb = 3860(J)(kg−1)(k−1),

ω
b
= 1.87× 10−3(s−1),Tb = 37◦C,τp = 10(s),

Qm = 1.19× 103(W )(m−3),
Io = 122× 103(W )(m−2),L = 0.03(m),g = 0.9,
ρ = 1000(kg)(m−3),c = 4187(J)(kg−1)(k−1),
k = 0.628(W)(m−1)(k−1),τo = 5(s),

To = 37◦C,µs = 12000(m−1),µa = 40(m−1).

This mathematical model which is based on
hyperbolic Pennes bioheat transfer has been founded with
the interface and suitable boundary conditions. The
perfusion, metabolic and conducting heat resource terms
have been used in the formulations[39,40,41,42]. A slab
of tissues is 3cm thick and its reference temperature equal
to normal temperature i.e. Tb = To = 37◦C. For the aim of
studying the impacts of fractional parameter α and the
thermal relaxation time τo on the temperature and the
resulting of thermal damage. the numerical outcomes
have been presented as in figures 1-6. Figure 1 shows the
variations of temperature with respect to the distance x

att = 80 second when the thermal relaxation timeτo = 5s

and the laser exposureτp = 10s with (α = 0.5) and

without (α = 1) fractional time derivative. It is clear from
the graph that the temperature starts from maximum
values, after that it reduces continuously to the normal
temperature Tb = 37◦C. Figure 2 exabits the time histories
of the temperature with (α = 0.5) and without(α = 1)
fractional time derivative. It is notices that the
temperature begins from the normal temperature Tb and
rises with the time till maxmum values after that reduces
to the normal temperature again. Figure 3 show the
resulting of thermal damages through the time t. It is
observed that the time histories of the thermal damage
have been obtained with(α = 0.5) and without(α = 1)
fractional time derivative. As expect, the fractional time
derivative has major effect on the distributions on the
temperature and the thermal damages. Figures 4, 5 and 6
show the effect of thermal relaxation time τowith
fractional bioheat model (α = 0.5) on the the temperature
distributions and the resulting of thermal damage. As
expect, thermal relaxation time τo has great effects on the
variations of temperature and the resulting of thermal
damage. Otherwise, Figures 1-6 illustrate the solutions
obtained numerically by the implicit finite differences
methods (IFDM) superimposed on the solution obtained
analytically. The precision of the Implicit Finite
Differences Methods (IFDM) formulations was validated
by comparing the numerical solution and the analytical
solution for the field quantities
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