
Information Sciences Letters Information Sciences Letters 

Volume 11 
Issue 1 Jan. 2022 Article 13 

2022 

On Generalize L-moments Method and Application on Control On Generalize L-moments Method and Application on Control 

Chart for Monitoring Fractional, Rates and Proportions Data Chart for Monitoring Fractional, Rates and Proportions Data 

Enayat M. Abd Elrazik 
Department of Statistics, Mathematics, and Insurance, Benha University, Benha, Egypt, 
ekhalilabelgawad@taibahu.edu.sa 

Mahmoud M. Mansour 
Department of Statistics, Mathematics, and Insurance, Benha University, Benha, Egypt\\ Department of 
MIS, Taibah University, Yanbu, Saudi Arabia, mahmoud.mansour@fcom.bu.edu.eg 

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl 

Recommended Citation Recommended Citation 
M. Abd Elrazik, Enayat and M. Mansour, Mahmoud (2022) "On Generalize L-moments Method and 
Application on Control Chart for Monitoring Fractional, Rates and Proportions Data," Information Sciences 
Letters: Vol. 11 : Iss. 1 , PP -. 
Available at: https://digitalcommons.aaru.edu.jo/isl/vol11/iss1/13 

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for 
inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an 
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, 
u.murad@aaru.edu.jo. 

https://digitalcommons.aaru.edu.jo/isl
https://digitalcommons.aaru.edu.jo/isl/vol11
https://digitalcommons.aaru.edu.jo/isl/vol11/iss1
https://digitalcommons.aaru.edu.jo/isl/vol11/iss1/13
https://digitalcommons.aaru.edu.jo/isl?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol11%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/isl/vol11/iss1/13?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol11%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo


Inf. Sci. Lett. 11, No. 1, 69-84 (2022) 69

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/110109

On Generalize L-moments Method and Application

on Control Chart for Monitoring Fractional, Rates and

Proportions Data

Enayat M. Abd Elrazik1 and Mahmoud M. Mansour1,2,∗

1 Department of Statistics, Mathematics, and Insurance, Benha University, Benha, Egypt
2 Department of MIS, Taibah University, Yanbu, Saudi Arabia

Received: 2 Jul. 2021, Revised: 12 Sep. 2021, Accepted: 2 Oct. 2021

Published online: 1 Jan. 2022

Abstract: This paper proposes GL-moments’ method as a generalization to the TL-moments and the L-moments methods. Population

GL-moments in terms of the quantile function and shifted Jacobi polynomials were defined. Some relations between GL-moments

depending on Jacobi Polynomials were also derived. Furthermore, interpretation of the first two population GL-moments by U-statistics

was introduced. Also, we obtained two expressions to estimate the population GL-moments: the first expression, which depends on

Downton’s estimator, is a nearly unbiased estimator. Finally, to avoid an upper control limit exceeding one in p-chart, we propose a

control chart based on generalized linear moments for monitoring fractional, rates and proportions data. Control limits are proposed

and simulated average run length experiments show the proposed control charts to be less influenced by extreme observations than their

classical counterparts and lead to tighter control limits. An example is given that summarizes the benefits included in the charts.

Keywords: L-moments, TL-moments, Jacobi Polynomials, p-chart

1 Introduction

The estimation problem in statistical inference is accepted
as a first topic. A random sample of dimension, n, chosen
from a probability distribution where θ is the unknown
parameters (shape, location, and scale), is used to
estimate the unknown parameters. The standard statistical
method is to summarize a probability distribution using
the moments of the distribution. In parametric
distributions, it is always presumed that the sample
moments are equal to those of the fitted distribution. The
classical system of moments is not necessarily most
fitting. Often it is impossible to determine just how much
detail regarding the shape of a distribution is transmitted
by its moments. Also, sample moments’ numerical values
may be somewhat different from those of the probability
distribution from which the sample was taken, especially
when the sample size is tiny. Moreover, the approximate
parameters of the distribution obtained through traditional
methods are always less reliable than those produced by
other prediction methods, such as the process of

maximum likelihood; see, for example, Vogle and
Fennessey [1].

Many statistical methods are focused on using linear
combinations of order statistics but there has not been
established a coherent theory for the classification of
probability distributions until Hosking[2] presented
L-moments as an alternative to the traditional moments.
As an extension of L-moments that depend on assigning
zero weight to extreme observations, Elamir and Seheult
[3] introduced TL-moments. TL-moments give more
robust estimators than L-moments in the presence of
outliers. Moreover, population TL-moments may be well
defined where the corresponding population L-moments
do not exist. Many researchers have developed and used
statistical methods based on L-moments and
TL-moments: [4,5,6,7,8,9,10,11,12,13,14,15].

The Trimmed L-moments technique was developed as
an alternative to the L-moments technique by[3]. The
Trimmed L-moments method depends on trimming some
observations from both tails of the distribution by
assigning these extreme values zero weights. Thus, it is
an important method since it gives more robust estimators
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than the L-moments in the presence of outliers. But the
authors discussed this method when t (the number of
trimmed observations) is an integer. The purpose of this
paper is to expand the meaning of t from integer numbers
to rational numbers by adding a new approach, which
may be called Generalize L-moments (GL-moments),
which assigns a minimal weight for the extreme values.
This could help to explain better how the distribution
continues to evolve. Also, we propose a control chart
based on generalized linear moments for monitoring
fractional, rates and proportions data. This control chart
assumes that the fraction data can be approximated by a
normal distribution and proposes new control limits based
on GL-moments. The proposed Chart was applied in real
study leading to better outcomes when compared with the
Shewhart, Ryan[16], Chen[17], Sant’Anna and Caten[18],
and Lima-Fiho et al.[19] control charts for monitoring
variables of fraction type. This paper is organized as
follows. Section 2 presents Generalized Linear-moments
(GL-moments) as a generalization of the Trimmed
L-moments method. Section 3 provides estimate the
parameters using GL-moments of Symmetric Generalized
Lambda Distribution and normal distribution. Section 4
presents a literature review about determination of control
limits. Section 5 presents the steps required to compute
the proposed control limits. Section 6 proposed simulated
average run length experiments show the proposed
control charts to be less influenced by extreme
observations than their classical counterparts, and lead to
tighter control limits. Section 7 An example is given that
summarizes the benefits included in the charts. In Section
8 concluding remarks are provided.

2 A Generalized Linear Moments

The Trimmed L-moments method depends on trimming
some observations from both tails of the distribution by
assigning these extreme values to zero weights. Thus, it is
an essential method since it gives more robust estimators
than the L-moments in outliers’ presence. Nevertheless,
the authors discussed this method when t (the number of
trimmed observations) is an integer. This section aims to
extend the value of t from integer numbers to rational
numbers by introducing a new linear method of
estimation that may be called Generalized
Linear-moments (GL-moments) as a generalization of the
Trimmed L-moments method.

2.1 L-moments and TL-moments

Hosking [2] introduced L-moments, as an alternative to
the conventional moments. The L in L-moments
emphasizes the construction of L-moments from linear
combinations of order statistics. The main advantage of
L-moments over conventional moments is that

L-moments, being linear functions of the random sample
observations, suffer less from the effects of sampling
variability, so that, L-moments are more robust than
conventional moments.

Elamir and Seheult[3] introduced TL-moments as an
extension of L-moments that depend on giving zero
weight to extreme observations. TL-moments give more
robust estimators than L-moments in the presence of
outliers. Moreover, population TL-moments may be well
defined where the corresponding population L-moments
do not exist. Also, they discussed TL-moments when t
(number of trimmed observations) is an integer number.

Definition 2.1. Let X be a real-valued random variable
with distribution function F and quantile function x(F),
and let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be the order statistics of a
random sample of size n drawn from the distribution of X.

Thus, the rth TL-moment Ψ
(t1,t2)
r is given as

Ψ
(t1,t2)
r = r−1

r−1

∑
j=0

(−1) j

(
r− 1

j

)
E (Xr+t1− j:r+t1+t2),

r = 1,2, . . . , t1, t2 = 0,1,2, . . . , (1)

where t1and t2are the amounts of lower and upper
trimming.

In the symmetric case, where t1 = t2 = t, (1) can be
re-written as

Ψ
(t)
r = r−1

r−1

∑
j=0

(−1) j

(
r− 1

j

)
E
(
Xr+t− j:r+2t

)
,

r = 1,2, . . . , t = 0,1,2, . . . (2)

Note that, the TL-moments Ψ
(t1,t2)
r are equal to the L-

moments when t1 = t2 = 0.
The first two Sample TL-moments by using (2) are

given as

ψ
(t)
1 = Ê (Xt+1:2t+1) , ψ

(t)
2 = Ê (Xt+2:2t+2 −Xt+1:2t+2) ,

when t = 1 the first two sample TL-moments are

ψ
(1)
1 = Ê (X2:3) ,ψ

(1)
2 =

1

2
Ê (X3:4 −X2:4) ,

while the alternative expressions for the first two
sample TL-moments, when t = 1 , are given by

ψ
(1)
1 =

n−1

∑
i=2




(
i−1

1

)(
n−i

1

)

(
n
3

)


xi:n,

ψ
(1)
2 =

1

2

n−1

∑
i=2




(
i−1

2

)(
n−i

1

)
−
(

i−1
1

)(
n−i

2

)

(
n
4

)


xi:n.
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2.2 Population GL-moments

We can define the population GL-moments in terms of
Jacobi polynomials. The Jacobi polynomials of degree n

is defined by

H
(α ,ω)
n (X) =

1

2n

n

∑
k=0

(
n+α

k

)(
n+ω

n− k

)
(X − 1)n−k ×

(X + 1)k,α,ω ≥−1, n = 1,2, . . .(3)

(see, Abramowitz and Stegun[19]). The Jacobi
polynomials in (3) form a complete orthogonal system on
the interval [−1,1] with respect to the weight function
(1−X)α(1+X)ω

. The shifted Jacobi polynomials can be
obtained via putting X = 2F − 1, 0 ≤ F ≤ 1 as

H
∗(α ,ω)
n (F) =

n

∑
k=0

(−1)n−k

(
n+α

k

)(
n+ω

n− k

)
Fk ×

(1−F)n−k, α,ω ≥−1, n = 1,2, . . . (4)

The shifted Jacobi polynomials in (4) are orthogonal
on [0,1] with respect to the weight functionFα(1−F)ω

.

When, α = ω = 0,H
∗(0,0)
n (F)reduces to the shifted

Legendre polynomials

H∗
n (F) =

n

∑
k=0

(−1)n−k
(n

k

)( n

n− k

)
Fk ×

(1−F)n−k, α,ω ≥−1, n = 1,2, . . . , (5)

which are, also, orthogonal on the interval [0,1] with
constant weight function; (see, Lanczos [21] ). Note that,
the shifted Legendre polynomials may be re-written as

H∗
n (F) =

n

∑
k=0

(−1)n−k
(n

k

)(n+ k

k

)
Fk,n = 1,2, . . . (6)

Hosking [2], introduced an alternative expression for
the L-moments, which depends on shifted Legendre
polynomials and the quantile function x(F) = F−1(x) , as

Ψr+1 =

∫ 1

0
x(F)H∗

n (F) dF, r = 0,1,2, . . . (7)

where H∗
n (F) is the shifted Legendre polynomials that

is given in (6).
Hosking [6] introduced an analogous result for

trimmed L-moments which is given by

Ψ
(t1,t2)

r+1 =
r!(r+ t1 + t2 + 1)!

(r+ 1)(r+ t1)!(r+ t2)!

∫ 1

0
x(F)F t1 ×

(1−F)t2 H
∗(t21,t1)
n (F) dF,

r = 0,1,2, . . . , t1, t2 = 0,1,2, . . . (8)

where, H
∗(t21,t1)
n (F)is a shifted Jacobi polynomial

introduced in (4).

Since H
∗(t21,t1)
n (F) is defined for t1, t2 real numbers,

where t1, t2 > −1 , which include rational numbers, we
can extend the TL-moments, defined in (8), to
GL-moments by replacing t1, t2 = 0,1, . . . integer
numbers, to g1,g2 ≥ 0, positive rational numbers, as
follows

Ψ
(g1,g2)

r+1 =
r!Γ (r+ g1 + g2 + 2)

(r+ 1)Γ (r+ g1 + 1)Γ (r+ g2 + 1)

×
∫ 1

0
x(F)Fg1 (1−F)g2H

∗(g2,g1)
n (F) dF

=
r!Γ (r+ g1 + g2 + 2)

(r+ 1)Γ (r+ g1 + 1)Γ (r+ g2 + 1)

×E
[
x(F) F

g1(1−F)g2H
∗(g2,g1)
n (F)

]
,

r = 0,1,2, . . . , g1,g2 ≥ 0, (9)

H
∗(g2,g1)
n (F) =

r

∑
j=0

(−1)r− j

(
r+ g2

j

)(
r+ g1

r− j

)

×F j(1−F) r− j

=
r

∑
j=0

(−1)r− j

×
Γ (r+ g1 + 1)Γ (r+ g2 + 1)

j!(r− j)!Γ (r− j+ g2 + 1)Γ (g1 + j+ 1)

×F j(1−F) r− j,

under the condition that the integral in (9) is defined.

In the symmetric case, g1 = g2 = g , the expression in
(9) can be re-written as

Ψ
(g)

r+1 =
Γ (r+ 1) Γ (r+ 2g+ 2)

(r+ 1)[Γ (r+ g+ 1)]2

× E
[
x(F) Fg(1−F)g

H
∗(g)
n (F)

]
, g ≥ 0, (10)

where

H
∗(g)
n (F) =

r

∑
j=0

(−1)r− j

(
r+ g

j

)(
r+ g

r− j

)
F j(1−F) r− j

=
r

∑
j=0

(−1)r− j [Γ (r+ g+ 1)]2

j!(r− j)!Γ (r− j+ g+ 1)Γ (g+ j+ 1)

×F j(1−F) r− j.
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Note that, the expression of the GL-moments in (9) can
be re-written as follows.

Ψ
(g1,g2)

r+1 = (r+ 1)−1
∑r

j=0 (−1) j
(

r
j

)

× Γ (r+g1+g2+2)
Γ (r+g1− j+1)Γ (g2+ j+1)

×E
[
x(F)F r+g1− j(1−F)g2+ j

]
,

r = 0,1,2, . . . , g1,g2 ≥ 0. (11)

Also, In the symmetric case, g1 = g2 = g , the
expression in (10) can be re-written as

Ψ
(g)

r+1 = (r+ 1)−1
r

∑
j=0

(−1) j

(
r

j

)

×
Γ (r+ 2g+ 2)

Γ (r+ g− j+ 1)Γ (g+ j+ 1)

×
∫ 1

0
x(F)Fr+g− j(1−F)g+ j

dF

Ψ
(g)

r+1 = (r+ 1)−1
r

∑
j=0

(−1) j

(
r

j

)

×
Γ (r+ 2g+ 2)

Γ (r+ g− j+ 1)Γ (g+ j+ 1)

× E
[
x(F) F r+g− j(1−F)g+ j

]
,

r = 0,1,2, . . . , g1,g2 ≥ 0. (12)

Note that, the expression of the GL-moments in (11)
and (12)) are analogous to the expression of the
TL-moments, by replacing t1, t2 = 0,1, . . . by g1,g2 ≥ 0.

2.3 The First Two Population GL-moments

The general expressions for the first Two GL-moments in
the general and symmetric case are given as follows: The
general expressions for the first Two GL-moments, in

the general case, in (9), are

Ψ
(g1,g2)

1 =
Γ (g1 + g2 + 2)

Γ (g1 + 1)Γ (g2 + 1)

∫ 1

0
x(F)Fg1(1−F)g2 dF

Ψ
(g1,g2)

2 =
Γ (g1 + g2 + 3)

2 Γ (g1 + 1)Γ (g2 + 2)

∫ 1

0
x(F)Fg1(1−F)g2

×
[(

g1 + g2 + 2

g1 + 1

)
F − 1

]
dF.

Illustrative Examples:

The first Two GL-moments for each of the following
choices of g1 and g2

g1 = 0, g2 = 0.5 , g1 = 0.5, g2 = 0 ,g1 = 0.5, g2 =
1.5 and g1 = 1.5, g2 = 0.5 are:

(1) g1 = 0, g2 = 0.5:

Ψ
(0,0.5)

1 =
Γ (2.5)

Γ (1.5)

∫ 1

0
x(F)(1−F)0.5

dF

=
Γ (2.5)

Γ (1.5)
E
[
x(F)(1−F)0.5

]
,

Ψ
(0,0.5)

2 =
Γ (3.5)

2 Γ (2.5)

∫ 1

0
x(F)(1−F)0.5 [2.5F − 1] dF

=
Γ (3.5)

2Γ (2.5)
E
[
x(F) (1−F)0.5 (2.5F − 1)

]
,

(2) g1 = 0.5, g2 = 0 :

Ψ
(0.5,0)

1 =
Γ (2.5)

Γ (1.5)

∫ 1

0
x(F)F0.5 dF

=
Γ (2.5)

Γ (1.5)
E
[
x(F) F

0.5
]
,

Ψ
(0.5,0)

2 =
Γ (3.5)

2 Γ (2.5)

∫ 1

0
x(F)F0.5

[
2.5

1.5
F − 1

]
dF

=
Γ (3.5)

2Γ (2.5)
E

[
x(F) F

0.5

(
2.5

1.5
F − 1

)]
,

(3) g1 = 0.5, g2 = 1.5 :

Ψ
(0.5,1.5)

1 =
Γ (4)

Γ (1.5)Γ (2.5)

∫ 1

0
x(F)F0.5 (1−F)1.5

dF

=
Γ (4)

Γ (1.5)Γ (2.5)
E
[
x(F) F

0.5(1−F)1.5
]
,

Ψ
(0.5,0)

2 =
Γ (5)

2Γ (1.5)Γ (3.5)

×
∫ 1

0
x(F)F0.5(1−F)1.5

[
4

1.5
F − 1

]
dF

=
Γ (5)

2Γ (1.5)Γ (3.5)

×E

[
x(F)F0.5 (1−F)

1.5
(

4

1.5
F − 1

)]
,

(4) g1 = 1.5, g2 = 0.5:

Ψ
(1.5,0.5)

1 =
Γ (4)

Γ (1.5)Γ (2.5)

∫ 1

0
x(F)F1.5 (1−F)0.5

dF

=
Γ (4)

Γ (1.5)Γ (2.5)
E
[
x(F) F

1.5(1−F)0.5
]
,
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Ψ
(1.5,0.5)

2 =
Γ (5)

2Γ (2.5)Γ (2.5)

×
∫ 1

0
x(F)F1.5(1−F)0.5

[
4

2.5
F − 1

]
dF

=
Γ (5)

2Γ (2.5)Γ (2.5)

×E

[
x(F) F1.5 (1−F)

0.5
(

4

2.5
F − 1

)]
.

The general expressions for the first Two
GL-moments, in the symmetric case, in (10), are

Ψ
(g)

1 =
Γ (2g+ 2)

Γ (g+ 1)Γ (g+ 1)

∫ 1

0
x(F)Fg(1−F)g

dF,

Ψ
(g)

2 =
Γ (2g+ 3)

2 Γ (g+ 1)Γ (g+ 2)

×
∫ 1

0
x(F)Fg(1−F)g [2F − 1]dF.

Illustrative Examples:
As a simple example, where g = 0 , g = 0.5 and g =

1.5 the first four GL-moments are:
(1) g = 0:

Ψ
(0)

1 =

∫ 1

0
x(F)dF = E [x(F)] ,

Ψ
(0)

2 =

∫ 1

0
x(F) [2F − 1]dF = E [x(F) [2F − 1]] .

(2) g = 0.5:

Ψ
(0.5)

1 =
Γ (3)

Γ 2 (1.5)

∫ 1

0
x(F)F0.5(1−F)0.5

dF

=
Γ (3)

Γ 2 (1.5)
E
[
x(F) F0.5 (1−F)0.5

]
,

Ψ
(0.5)

2 =
Γ (3)

2 Γ (1.5)Γ (2.5)

×
∫ 1

0
x(F)F0.5(1−F)0.5 [2F − 1]dF

=
Γ (3)

2 Γ (1.5)Γ (2.5)

×E

[
x(F)F0.5(1−F)0.5 [2F − 1]

]
.

(3) g = 1.5:

Ψ
(1.5)

1 =
Γ (5)

Γ 2 (2.5)

∫ 1

0
x(F)F1.5(1−F)1.5

dF

=
Γ (5)

Γ 2 (2.5)
E
[
x(F) F1.5 (1−F)1.5

]
,

Ψ
(1.5)

1 =
Γ (5)

Γ 2 (2.5)

∫ 1

0
x(F)F1.5(1−F)1.5

dF

=
Γ (5)

Γ 2 (2.5)
E
[
x(F) F1.5 (1−F)1.5

]
,

Ψ
(1.5)

2 =
Γ (6)

2 Γ (2.5)Γ (3.5)

×
∫ 1

0
x(F)F1.5(1−F)1.5 [2F − 1]dF

=
Γ (6)

2 Γ (2.5)Γ (3.5)

×E
[
x(F)F1.5(1−F)1.5 [2F − 1]

]
.

2.4 Relations between GL-moments

In this section we use some recurrence relations of Jacobi
polynomials to derive corresponding relations between
GL-moments with different rational degrees.
Relation 1
For r = 0,1,2, . . . and g1,g2 ≥ 0

Ψ
(g1,g2)

r+1 =
(r+ 1)(2r+ g1 + g2 + 2)Ψ

(g1,g2+1)
r+1

(r+ 1)(r+ g1 + g2 + 2)

+
(r+ 2)(r+ g1 + 1)Ψ

(g1,g2)
r+2

(r+ 1)(r+ g1 + g2 + 2)
, (13)

thus

Ψ
(g1,g2+1)

r+1 =
(r+ 1)(r+ g1 + g2 + 2)Ψ

(g1,g2)
r+1

(r+ 1)(2r+ g1 + g2 + 2)

−
(r+ 2)(r+ g1 + 1)Ψ

(g1,g2)
r+2

(r+ 1)(2r+ g1 + g2 + 2)
.

Proof. From [19], and [21] we find

H
(α+1,ω)
n (x) =

2(n+α + 1)H
(α ,ω)
n (x)

(1− x)(2n+α+ω + 2)

+
−2(n+ 1)H

(α ,ω)
n+1 (x)

(1− x)(2n+α+ω + 2)

where n = 0,1,2, . . . and α,ω ≥ 0.
This can be expressed in terms of shifted Jacobi
polynomials as

H
∗(α+1,ω)
r (F) =

(r+α + 1)H
(α ,ω)
r (F)

(1−F)(2r+α +ω + 2)

+
−(r+ 1)H

(α ,ω)
r+1 (F)

(1−F)(2r+α +ω + 2)
,
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thus,

H
∗(α ,ω)
r (F) =

(1−F)(2r+α +ω + 2)H
∗(α+1,ω)
r (F)

(r+α + 1)

−
(r+ 1)H

∗(α ,ω)
r+1 (F)

(r+α + 1)

A direct substitution of this expression in (9) with
replacing α,ω by g1,g2 respectively, in shifted Jacobi
polynomials, gives relation 1.
Relation 2
For r = 0,1,2, . . . and g1,g2 ≥ 0

Ψ
(g1,g2)

r+1 =
(r+ 1)(2r+ g1 + g2 + 2)Ψ

(g1+1,g2)
r+1

(r+ 1)(r+ g1 + g2 + 2)

−
(r+ 2)(r+ g2 + 1)Ψ

(g1,g2)
r+2

(r+ 1)(r+ g1 + g2 + 2)
, (14)

thus,

Ψ
(g1+1,g2)

r+1 =
(r+ 1)(r+ g1 + g2+ 2)Ψ

(g1,g2)
r+1

(r+ 1)(2r+ g1 + g2 + 2)

−
(r+ 2)(r+ g2 + 1)Ψ

(g1,g2)
r+2

(r+ 1)(2r+ g1 + g2 + 2)
.

Proof:
From [20], and [22] we find

H
(α ,ω+1)
n (x) =

2(n+ω + 1)H
(α ,ω)
n (x)

(1+ x)(2n+α +ω + 2)

+
−2(n+ 1)H

(α ,ω)
n+1 (x)

(1+ x)(2n+α+ω + 2)
,

where n = 0,1,2, . . . and α,ω ≥ 0 this can be
expressed in terms of shifted Jacobi polynomials as

H
∗(α ,ω+1)
r (F) =

(r+ω + 1)H
∗(α ,ω)
r (F)

(F)(2r+α +ω + 2)

+
(r+ω + 1)H

∗(α ,ω)
r (F)+ (r+ 1)H

∗(α ,ω)
r+1 (F)

(F)(2r+α +ω + 2)
,

this can be expressed in terms of shifted Jacobi
polynomials as

H
∗(α ,ω)
r (F) =

(F)(2r+α +ω + 2)H
∗(α ,ω+1)
r (F)

(r+ω + 1)

−
(r+ 1)H

∗(α ,ω)
r+1 (F)

(r+ω + 1)
.

A direct substitution of this expression in (9) gives
relation 2.

For example, when g1 = g2 = 0.5 we obtain the following
relations

Ψ
(1.5,0.5)

r+1 =
(r+ 3)

(2r+ 3)
Ψ

(0.5,0.5)
r+1 +

(r+ 2)(r+ 1.5)

(r+ 1)(2r+ 3)
Ψ

(0.5,0.5)
r+2 ,

and

Ψ
(0.5,1.5)

r+1 =
(r+ 3)

(2r+ 3)
Ψ

(0.5,0.5)
r+1 +

(r+ 2)(r+ 1.5)

(r+ 1)(2r+ 3)
Ψ

(0.5,0.5)
r+2 ,

adding both results gives

Ψ
(1.5,0.5)

r+1 +Ψ
(0.5,1.5)

r+1 =
2(r+ 3)

(2r+ 3)
Ψ

(0.5,0.5)
r+1 ,

Subtracting the second from the first gives

Ψ
(1.5,0.5)

r+1 −Ψ
(0.5,1.5)

r+1 =
2(r+ 2)(r+ 1.5)

(r+ 1)(2r+ 3)
Ψ

(0.5,0.5)
r+1 .

These relations also give the relationship between
L-moments and TL-moments. For example, when
g1 = g2 = 0 we obtain the following relations

Ψ
(1,0)

r+1 =
(r+ 2)

(2r+ 2)

[
Ψ

(0,0)
r+1 +Ψ

(0,0)
r+2

]
,

and

Ψ
(0,1)

r+1 =
(r+ 2)

(2r+ 2)

[
Ψ

(0,0)
r+1 +Ψ

(0,0)
r+2

]
,

adding both results gives

Ψ
(1,0)

r+1 +Ψ
(0,1)

r+1 =
(r+ 2)

(r+ 1)
Ψ

(0,0)
r+1 ,

subtracting the second from the first gives

Ψ
(1,0)

r+1 −Ψ
(0,1)

r+1 =
(r+ 2)

(r+ 1)
Ψ

(0,0)
r+2 .

Different relations could be obtained for different
rationales.

2.5 Representation of Population GL- moments

as U-statistics

We may represent GL-moments as linear functions of the
U-statistics χp:n represented by [22], where

E (Xp+1:n−Xp:n) =

(
n

p

)∫

x
F p

x (1−Fx)
n−p

dx = χp:n,

(15)
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hence, we have
∫

x
F p

x (1−Fx)
n−p

dx =
χp:n(

n
p

) . (16)

To re-express the GL-moments in terms of U-statistics we
use the following integral, for the shifted Jacobi
polynomials,

∫ 1

0
Fω (1−F)α

H
∗(α ,ω)
r (F) dF

=
Fω+1(1−F)α+1

H
∗(α+1,ω+1)
r−1

r
, (17)

(see, [19]). If the quantile function x(F) is differentiable,
we can integrate (9) by parts using (17) to obtain

Ψ
(g1,g2)

r+1 =
(r− 1)!Γ (r+ g1 + g2 + 2)

(r+ 1)Γ (r+ g1 + 1)Γ (r+ g2 + 1)

×
∫ 1

0
x′ (F)Fg1+1(1−F)g2+1

H
∗(g2+1,g1+1)
n (F) dF

=
(r− 1)!Γ (r+ g1 + g2 + 2)

(r+ 1)Γ (r+ g1 + 1)Γ (r+ g2 + 1)

×E
[
x′ (F) F

g1+1
(1−F)g2+1

H
∗(g2+1,g1+1)
r−1 (F)

]
(18)

where x′ (F) = 1/ f (x) is the 1st derivative of the quantile
function, we may write the GL-moments as a function of
U-statistics forr = 1,2,3, . . .using (18) as follows.

Ψ
(g1,g2)

r+1 =
(r− 1)!Γ (r+ g1 + g2 + 2)

(r+ 1)Γ (r+ g1 + 1)Γ (r+ g2 + 1)

×
∫

x
Fg1+1(1−F)g2+1

H
∗(g2+1,g1+1)
r−1 (F) dx

=
1

(r+ 1)

r−1

∑
j=0

(−1)r− j−1

(
r− 1

j

)

×
(

r+ g1 + g2 + 1

g1 + j+ 1

)

×
∫

x
Fx

g1+ j+1(1−Fx)
g2+r− j

dx

=
1

(r+ 1)

r−1

∑
j=0

(−1) j

(
r− 1

r− j− 1

)

×
(

r+ g1 + g2 + 1

r+ g1 − j

)

×
∫

x
Fx

r+g1− j(1−Fx)
g2+ j+1

dx

=
1

(r+ 1)

r−1

∑
j=0

(−1) j

(
r− 1

r− j− 1

)

×
(

r+ g1 + g2 + 1

r+ g1 − j

)
χr+g1− j:r+g1+g2+1(

r+g1+g2+1
r+g1− j

)

=
1

(r+ 1)

r−1

∑
j=0

(−1) j

(
r− 1

r− j− 1

)

× χr+g1− j:r+g1+g2+1 (19)

For r ≥ 1 . This presentation in terms of the U-statistics
facilitates the interpretation and understanding of the GL-
moments.

2.6 GL-Mean and GL-Variance

We define the GL-mean Gµ (g1,g2) and the GL-variance

GV (g1,g2) which are the generalization of the standard
population mean and population variance in terms of
GL-moments.
The GL-mean and GL-variance can be defined as

Gµ (g1,g2) =Ψ
(g1,g2)

1 =
Γ (g1 + g2 + 2)

Γ (g1 + 1)Γ (g2 + 1)
×

×E [x(F) F
g1(1−F)g2 ] . (20)

And

GV (g1,g2) =
∞

∑
r=1

(r+ 1)2Γ (2r+ g1 + g2 + 1)

r!(r+ g1 + g2 + 1)2Γ (r+ g1 + g2 + 1)

×Γ (r+ g1 + 1)Γ (r+ g2 + 1)(21)

forg1,g2 ≥ 0.
Proof:

When r=0 , we obtain the GT-mean from (9) as

µ (g1,g2) =Ψ
(g1,g2)

1 =
Γ (g1 + g2 + 2)

Γ (g1 + 1)Γ (g2 + 1)

×E [x(F) F
g1(1−F)g2 ] .

This is the usual mean weighted by a power of the

cumulative distribution function multiplied by a constant.

In case the distribution is symmetric and g1 = g2 = g,

µ (g) = µ = E(X) is the population mean

µ = µ (g) =Ψ
(g)

1 =
Γ (2g+ 2)

Γ 2 (g+ 1)
E [x(F) F

g(1−F)g] .

Following Sillitto [24] and Hosking [2] we find that

0 = limS→∞

∫ 1
0 R2 (F)dF

=
∫ 1

0 x2(F) F
g1(1−F)g2dF

−∑∞
r=0

(r+1)2(2r+g1+g2+1)

r!(r+g1+g2+1)2Γ (r+g1+g2+1)

×Γ (r+ g1 + 1)Γ (r+ g2 + 1)Ψ 2(g1,g2)
r+1 (22)

This can be written as

0 =

∫ 1

0
x2(F) F

g1(1−F)g2dF

−
Γ (g1 + 1)Γ (g2 + 1)

(g1 + g2 + 1) Γ (g1 + g2 + 1)
Ψ2(g1,g2)

1

−
∞

∑
r=1

(r+ 1)2 (2r+ g1 + g2 + 1)

r!(r+ g1 + g2 + 1)2Γ (r+ g1 + g2 + 1)

×Γ (r+ g1 + 1)Γ (r+ g2 + 1)Ψ2(g1,g2)
r+1
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hence,

∫ 1

0
x2(F) F

g1(1−F)g2dF

−
Γ (g1 + 1)Γ (g2 + 1)

(g1 + g2 + 1) Γ (g1 + g2 + 1)
Ψ2(g1,g2)

1

=
∞

∑
r=1

(r+ 1)2 (2r+ g1 + g2 + 1)

r!(r+ g1 + g2+ 1)2Γ (r+ g1 + g2 + 1)

×Γ (r+ g1 + 1)Γ (r+ g2 + 1)Ψ2(g1,g2)
r+1 ,

thus, we obtain

GV (g1,g2) =

∫ 1

0
x2(F) F

g1(1−F)g2dF

−
Γ (g1 + 1)Γ (g2 + 1)

(g1 + g2+ 1) Γ (g1 + g2 + 1)
Ψ2(g1,g2)

1

=

∫ 1

0
x2(F) F

g1(1−F)g2dF

−
Γ (g1 + g2 + 2)

Γ (g1 + 1)Γ (g2 + 1)

[∫ 1

0
x(F) F

g1(1−F)g2dF

]2

=
∞

∑
r=1

(r+ 1)2 (2r+ g1 + g2 + 1)

r!(r+ g1 + g2 + 1)2Γ (r+ g1 + g2 + 1)

×Γ (r+ g1 + 1)Γ (r+ g2 + 1)Ψ2(g1,g2)
r+1 .

When g1,g2 = 0 we obtain the population variance in
terms of the L-moments; as

GV (0,0) = σ2 =

∫ 1

0
x2(F)dF −Ψ2

1 =
∞

∑
r=1

Ψ2
r+1,

(see, [23] and [2]). It is clear from the representation of

GL-variance in terms of GL-moments that GV (g1,g2) > 0.

2.7 Sample GL-moments

In this section we introduce two methods of estimating
the population GL-moments; the first method gives nearly
unbiased estimators, and the estimators of the second
method are biased.

(1) Nearly Unbiased Estimator Definition 2. Let
x1:n ≤ x2:n ≤ ·· · ≤ xn:n denote the sample order statistics
of a random sample x1,x2, . . . ,xn of size from the
population. The sample GL-moments are given by

ψ
(g1,g2)
r+1 = (r+ 1)−1

∑r
j=0 (−1)r− j

(
r
j

)

× Γ (r+g1+g2+2)
Γ (g1+ j+1)Γ (g2+r− j+1)

×∑n
i=1

Γ (i)Γ (n−i+1)Γ (n−g1−g2−r)
Γ (n+1)Γ (n−i−g2−r+ j+1)Γ (i− j−g1)

xi:n

= (r+ 1)−1
∑r

j=0 (−1)r− j
(

r
j

)

×∑n
i=1

(
i−1

g1+ j

)(
n−i

r+g2− j

)

(
n

r+g1+g2+1

) xi:n ,

r = 0,1, . . . ,n, g1,g2 ≥ 0 (23)

Proof: It is known that

E(Xk:r) =
r!

(k− 1)!(r− k)!

∫ 1

0
x(F)Fk−1(1−F)r−k

dF

=
Γ (r+ 1)

Γ (k)Γ (r− k+ 1)
E
[
x(F) F

k−1(1−F)r−k
]
,

(see;[24]. Thus

E
[
x(F) F

k−1(1−F)r−k
]
=

Γ (k)Γ (r− k+ 1)

Γ (r+ 1)
E (Xk:r) ,

(24)
replacing r-j in place j in (11) and using binomial

coefficient properties

Ψ
(g1,g2)

r+1 = (r+ 1)−1
r

∑
j=0

(−1)r− j

(
r

j

)

×
Γ (r+ g1 + g2 + 2)

Γ (g1 + j+ 1)Γ (r+ g2 − j+ 1)

×E

[
x(F) Fg1+ j(1−F)r+g2− j

]
,

then, the estimated GL-moments become

ψ
(g1,g2)
r+1 = (r+ 1)−1

r

∑
j=0

(−1)r− j

(
r

j

)

×
Γ (r+ g1 + g2 + 2)

Γ (g1 + j+ 1)Γ (r+ g2 − j+ 1)

×Ê
[
x(F) Fg1+ j(1−F)r+g2− j

]
. (25)

From ([24]) we get

E
[
x(F) Fg1+ j(1−F)r+g2− j

]
=

Γ (g1 + j+ 1)

Γ (r+ g1 + g2 + 2)

×
Γ (r+ g2 − j+ 1)

Γ (r+ g1 + g2 + 2)
×E

(
Xg1+ j+1:r+g1+g2+1

)
. (26)

But, by using Downton’s estimator as

E (Xk+1:k+l+1) =
1(
n

k+l+1

)
n

∑
i=1

(
i− 1

k

)(
n− i

l

)
Xi:n,
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then

E
(
Xg1+ j+1:r+g1+g2+1

)
=

1(
n

r+g1+g2+1

)

×
n

∑
i=1

(
i− 1

g1 + j

)(
n− i

r+ g2 − j

)
Xi:n, (27)

substituting (27) in (26); the estimator of

E
[
x(F) Fg1+ j(1−F)r+g2− j

]
is

Ê
[
x(F) Fg1+ j(1−F)r+g2− j

]
=

∑n
i=1

Γ (i)Γ (n−i+1)Γ (n−g1−g2−r)
Γ (n+1)Γ (n−i−g2−r+ j+1)Γ (i− j−g1)

xi:n. (28)

Substituting (28)in (26); we obtain the sample
GL-moments that shown in (25).
Under the condition

n

∑
i=1

(
n− g1− g2− r− 1

i− 1− j− g1

)

×F i−1− j−g1(1−F)n−i−g2−r+ j = 1,

the sample GL-moments, in (24), are said to be “nearly

unbiased” estimators of the corresponding population GL-
moments, in (7). This can be shown as follows

E

[
n

∑
i=1

Γ (i)Γ (n− i+ 1)Γ (n− g1− g2 − r)

Γ (n+ 1)Γ (n− i− g2− r+ j+ 1)Γ (i− j− g1)
xi:n.

]

=
n

∑
i=1

Γ (n− g1− g2 − r)

Γ (n− i− g2− r+ j+ 1)Γ (i− j− g1)

×
∫ 1

0
x(F)F i−1(1−F)n−i

dF

=
n

∑
i=1

Γ (n− g1− g2 − r)

Γ (n− i− g2− r+ j+ 1)Γ (i− j− g1)

×
∫ 1

0
x(F)Fg1+ j(1−F)r+g2− j

F i−1− j−g1

× (1−F)n−i−g2−r+ j
dF

=

∫ 1

0
x(F)Fg1+ j(1−F)r+g2− j

×
n

∑
i=0

(
n− g1− g2 − r− 1

i− 1− j− g1

)

×F i−1− j−g1(1−F)n−i−g2−r+ j
dF

= E

[∫ 1

0
x(F)Fg1+ j(1−F)r+g2− j

d f

]

Note, It possible to write the equation(25) as following

ψ
(g1,g2)
r+1 =

n

∑
i=1

wi (r,g1,g2)xi:n,

where

wi (r,g1,g2) =
r

∑
j=0

(−1)r− j
(

r
j

)(
i−1

g1+ j

)(
n−i

r+g2− j

)

(r+ 1)
(

n
r+g1+g2+1

) ,

r = 0,1, . . . , i = 1,2, . . . ,n, g1,g2 ≥ 0

is the weights function.
Some values of these weights are given in table (1).

From this table we see that the trimmed L-moments
assign zero weights for the extreme observation, but
sample GL- moments assigns small weight for the
extreme observations which capture more information
about the tail of the distribution. www111

Table 1: The weights of the sample GL-moments ψ
(g1,g2)
1 ,

ψ
(g1,g2)
2 , and ψ

(g1,g2)
3 for sample size n= 10 and different choices

of g1 andg1.

Est∗ www111 www222 www333 www444 www555

ψ
(0,0)
1 0.100 0.100 0.100 0.100 0.100

ψ
(1,1)
1 0 0.067 0.117 0.150 0.167

ψ
(.99,.99)
1 0.001 0.067 0.117 0.149 0.166

ψ
(0,0)
2 -.100 -.077 -.055 -.033 -.011

ψ
(1,1)
2 0 -.066 -.083 -.064 -.024

ψ
(.99,.99)
3 -.001 -.067 -.083 -.064 -.023

www666 www777 www888 www999 www111000

ψ
(0,0)
1 0.100 0.100 0.100 0.100 0.100

ψ
(1,1)
1 0.167 0.150 0.117 0.067 0

ψ
(.99,.99)
1 0.166 0.149 0.117 0.067 0.001

ψ
(0,0)
2 0.011 0.033 0.055 0.078 0.100

ψ
(1,1)
2 0.024 0.064 0.083 0.067 0

ψ
(.99,.99)
3 0.023 0.064 0.083 0.067 0.001

Est∗: The sample GL-moments.

2.8 The First Two Sample GL-moments

noindent We can obtain the first two sample GL-moments,
from (25), as follows.

ψ
(g1,g2)
1 =

1(
n

g1+g2+2

)
n

∑
i=1

[(
i− 1

g1

)(
n− i

g2

)]
xi:n, (29)

and

ψ
(g1,g2)
2 =

1

2
(

n
g1+g2+2

)

×
n

∑
i=1

[(
i− 1

g1 + 1

)(
n− i

g2

)
−
(

i− 1

g1

)(
n− i

g2 + 1

)]
xi:n.

(30)
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the first two sample GL-moments for the first two
sample GL-moments, in the symmetric case,

ψ
(g)
1 =

1(
n

2g+2

)
n

∑
i=1

[(
i− 1

g

)(
n− i

g

)]
xi:n, (31)

and

ψ
(g)
2 = 1

2
(

n
2g+2

)

×∑n
i=1

[(
i−1
g+1

)(
n−i

g

)
−
(

i−1
g

)(
n−i
g+1

)]
xi:n. (32)

3 Examples of GL-moments for Symmetric

Distributions

In this section we give the first two GL-moments, in the
symmetric case,g1 = g2 = g , and estimate the parameters
using GL-moments of Symmetric Generalized Lambda
Distribution and normal distribution.

3.1 The Symmetric Generalized Lambda

Distribution (GLD) with Three Parameters m,a

and b

If X is distributed according to the generalized lambda
distribution (GLD), then the quantile function is

x(F) = m+
Fb − (1−F)d

a
, 0 < F < 1,

where m is a location parameter, a is a scale parameter
and b and d are a shape parameters (see, [26,27] ).

In the symmetric case, where b = d , the quantile function
is given by

x(F) = m+
Fb − (1−F)b

a
, 0 < F < 1, (33)

by substituting(29) in (12), we get the rth population
GL-moment for the symmetric lambda distribution as

Ψ
(g)

r+1 = (r+ 1)−1
r

∑
j=0

(−1) j

(
r

j

)

×
Γ (r+ 2g+ 2)

Γ (r+ g− j+ 1)Γ (g+ j+ 1)

× mβ (r+ g− j+ 1, g+ j+ 1)

+ a−1β (b+ r+ g− j+ 1, g+ j+ 1)

− β (r+ g− j+ 1, b+ g+ j+ 1), (34)

Where β (a, b) =
Γ (a)Γ (b)
Γ (a+b) , g ≥ 0 and r = 0,1,2, . . .

Thus, the first two GL-moments for symmetric lambda
distribution are

Ψ
(g)

1 = m,

and

Ψ
(g)

2 =
a−1Γ (2g+ 3)

Γ (b+ 2g+ 3)

[
Γ (b+ g+ 2)

Γ (g+ 2)
−

Γ (b+ g+ 1)

Γ (g+ 1)

]

=
a−1b Γ (2g+ 3)Γ (b+ g+ 1)

Γ (g+ 2)Γ (b+ 2g+ 3)
.

By any method of moments, the parameters are
estimated by equating the population rth moment with the
corresponding sample moment, we obtain as many
equations as the number of unknown parameters. The
estimators are simply the solution of the system of
equations obtained. Thus, the GL-moments estimators of

the parameters mmm,bbb and aaa denoted m̂mm, b̂bb and âaa,
respectively, are given by

m̂ = ψ
(g)
1 ,

b̂ =

(
−B±

√
B2 − 4AC

)

2A
,

where

A =
[
ψ

(g)
4 (g+ 3)−ψ

(g)
2 (2g+ 3)

]
,

B =
[
ψ

(g)
4 (g+ 3)(4g+ 7)− 3ψ

(g)
2 (2g+ 3)

]
,

C =
[
ψ

(g)
4 (g+ 3)

(
4g2 + 14g+ 12

)
− 2ψ

(g)
2 (2g+ 3)

]
.

The close value for b̂ must satisfy the condition on b.

â =
b̂ Γ (2g+ 3)Γ (b̂+ g+ 1)

ψ
(g)
2 Γ (g+ 2)Γ (b̂+ 2g+ 3)

.

The four-parameter GLD is useful for modeling
probability distributions and representing data when the
underlying distribution is known (see,[28]) and provides
good approximations to other well-known distributions.
For example, the distribution with
m = 0, a = 0.1975, b = d = 0.1349 results in an
approximation to the standard normal distribution
(see,[29]).

3.2 The Normal Distribution

If X is distributed according to the normal distribution,

then

f (x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]
,
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−∞ < x < ∞, −∞ < µ < ∞, σ > 0

F (x) =
1

σ
√

2π

∫ x

−∞
exp

[
−1

2

(
x− µ

σ

)2
]
,

x(F)has no explicit analytical form. For the normal
distribution, using the Generalized Lambda Distribution
(GLD), approximations introduced by [29] can be used to
obtain the first two GL-moments, wheng = 0,0.5,1,1.5,
along with estimating the parameters.

Thus, by the approximations of GLD when
m = 0 , a = 0.1975 and b = d = 0.1349 and
g = 0,0.5,1,1.5 GL-moments estimators of µ ,σ for the
normal distribution (the details are given in appendix ) are

µ̂ = ψ
(0)
1 = ψ

(0.5)
1 = ψ

(1)
1 = ψ

(1.5)
1

σ̂ =
ψ

(0)
2

0.5638
=

ψ0.5
2

0.3885
=

ψ1
2

0.2962
=

ψ1.5
2

0.2393
. (35)

4 A literature review of control charts

4.1 Statistical process control charts

A control chart is a valuable method in controlling the
development process to detect process changes and
recognize unexpected situations. The usage of attribute
control charts occurs when measuring objects against a
criterion and classifying them as either reaching or
dropping short of the standard. Walter Shewhart designed
the first control chart and proposed the following general
model for control charts. Let τ be a sample statistic that
measures some quality characteristic of interest, and
suppose that the mean of τ is µτ and the standard
deviation of τ is στ . Then the center line (CL), the upper
control limit (UCL) and the lower control limit (LCL) in
the relevant control chart are defined as follows:




LCL = µτ − k στ ,

CL = µτ ,

UCL = µτ + k στ ,

(36)

Usually, the value k equals 3 is used due to the Normal
distribution approximation, corresponding a control region
= 0.9973 and ARL0 = 370. To set control limits we must
estimate µτ and στ based on m samples of size n obtained
from the process when it is under control. In line with the
presumption that all measured data are independent and
come from the same normal distribution while the process
is under control. We can presume that the process mean
and variance are unchanged.

4.2 Control chart for monitoring fractional,

rates and proportions data based on Binomial

distribution

For simplification, we can get a constant indefinitely
broad manufacturing mechanism consistent, it will
consist of generated products of varying characteristics,
and the performance will be either conforming (0) or
non-conforming (1). Considering a random sample of n

items, as n independent Bernoulli trials, we obtain n

stochastically independent random variables Xi (with
i = 1, . . . ,n). Each Xi follows a zero-one distribution
with P (Xi = 0) = 1− p and P (Xi = 1) = p, where
p [0, 1] holds. The number of non-conforming items in
the sample, X = ∑n

i=1 Xi is then defined as
Binomial-distributed random variable X with
E[X ] = np, Var(X) = np(1− p) as well as the fraction
of nonconforming substance, which can be calculated by
the provided data, by the sample fraction nonconforming:

p̂ =
∑n

i=1 Xi

n
(37)

Since the estimator (37) can be obtained from the Binomial
distribution, its mean is given by E[p̂] = p and its variance
by Var(p̂) = p(1− p)/n . Selecting m random samples
each of size
n, where X1, . . . ,Xm (with X j as the number of
non-conforming items in the j-th sample, j = 1, . . . ,m)
are stochastically independent, We measure the average
of the actual sample fractions that were substantially
non-conforming as

p =
∑m

j=1 p̂ j

m
(38)

the Binomial p-chart is defined as follows (compare for
further details Montgomery,[30]):

UCL = min
[
1, p+ k

√
p(1− p)/n

]

CL = p

LCL = max
[
0, p− k

√
p(1− p)/n

]

4.3 Existing Literature Overview and Study

Holes

Control charts for fraction nonconforming as a classical
method of statistical process control are commonly
applied in numerous branches such as industrial
production, transactional market, service industry, or
recently in the health care sector (e.g., the volume of virus
C or B in blood). There are some guidelines that deal with
the suppositions of symmetry and normal distribution
approximation. Schader and Schmid [15] counseled that a
normal approximation to the binomial distribution is
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satisfactory if two rules are satisfied: (i) np (1− p) ≥ 9
and (ii) np ≥ 5 when 0 < p ≤ 0.5 ≤ (1− p). further,
[31]described an approximation as satisfactory, when the
size of p is in the range (0.3 ≤ p ≤ 0.7) and n is
extremely large for np ≥ 5 and n(1− p)≥ n, the variance
p (1 − p) remains constant, while[30] indicated that a
Normal approximation to the Binomial distribution is
satisfactory when np ≥ 10 and p is inside the range
(0.1 ≤ p ≤ 0.9) . In lots of research the p-Charts used
are in conditions where the parameter p is considered
small (i.e. p = 0.001; 0.01; 0.05; 0.1; etc.). In these
cases, a Binomial distribution is quite skewed and the
approximation by a Normal distribution is not
satisfactory, as it allows values negative or greater than
one. Quesenberry [32] introduced a Binomial Q Chart to
monitor nonconforming proportion using a nonlinear
transformation for the control limits and demonstrated
that it approximates the Normal distribution closer to the
Binomial. Heimann [33] proposed a modification of the
p-Chart control limits for large sample sizes
(n > 10,000), noting that in this case the control limits
are narrow, thus the false alarm rate increases. Ryan and
Schwertman[34] introduced a adaptation of the np-Chart
control limits to fit on the Normal approximation when
p < 0.03, while Chen[17] introduced an adjustment to
the p-Chart control limits and compared them with the
traditional p-Chart and the Binomial Q Chart using the
false alarm rate. Sim and Lim [35] adapted the attribute
control charts to monitor zero-inflated data and used the
Blyth-Still interval with 3-sigma to calculate control
limits if this data follows a Binomial and Poisson
distribution. Bourke [36] compared the performance of
four control charts by monitoring shifts of the
nonconforming proportion in industrial processes. He
noted similarities in the performance of the Synthetic
control chart and np-Chart over a long-time period of
in-control process. With similar purposes, Aebtarm and
Bouguila [37] compared the performance with eleven
control charts for monitoring defects with Poisson
distribution. Anna and Caten [38] introdced control charts
for proportion non-conforming, where the control limits
are based on the Beta distribution. Mohammed et
al.[39]discuss p-charts in the light of very large sample
sizes and present solutions for the problem of narrow
control limits. There are also many works regarding
np-charts, which are equivalent to p-charts when the
sample size n is constant (see, [40,41,42]). The addressed
efforts strengthen the capability of the Binomial p-chart
commonly, though not enough when tracking proportions
non-conforming in high-yield processes (see[43]).
Moreover, this process control area is governed by
so-called cumulative count statistics dependent on the
Geometric distribution. (see, for example, [44,45]) or,
more generally, the negative Binomial distribution (see,
for example, [46,47,48]). Moreover, there are also
p-charts for monitoring high-yield processes, such as a p

chart based on an adjusted confidence interval (Wang,
[43]) or an improved p-chart using the Cornish–Fisher

quantile correction [49]. Further related works are given
by [50,51,52].

In addition, We will like to comment on the most current
works regarding control charts relating to tracking
production processes. Haridy, et al.[53] discuss a
Binomial EWMA chart based on a curtailment method to
monitor the fraction of non-conforming items. Lima-Filho
and Bayer[19] present control charts for fraction
non-conforming, where the control limits are based on the
Kumaraswamy distribution. Argoti and Carrion-Garcia
[54] present a heuristic method to obtain quasi
ARL-unbiased p-charts. In [55], the Beta distribution is
used for the construction of a Beta regression control
chart for monitoring fractions non-conforming. Lee Ho,
et al. [56] are concerned with control charts for fractions
non-conforming when the monitored proportions are not
results of Bernoulli experiments. Lima-Filho et al.[19]
present control charts for fraction non-conforming, where
the control limits are based on the inflated beta
distribution. Aslam et al. [57] suggested an optimum
mixed attribute variable control chart for the Weibull
distribution in an accelerated hybrid censoring scheme
keeping the advantages of both attribute and variable
control charts. Prior studies are based on developing
elements of the binomial chart or the alternatives to it.
Nevertheless, the chart’s most significant point is the
specification control limit in phase I analysis. It is mostly
neglected or solved using approximations. To avoid an
upper control limit exceeding one in p-chart, we propose
a control chart based on generalized linear moments for
monitoring fractional, rates, and proportions data.

5 Determination of control limits

When constructing p-chart based on process data, m
regularly spaced samples, each of size n, must be taken to
estimate the process Centre and spread. To set control
limits we must estimate µτ and στ based on m samples of
size n obtained from the process when it is under control.
In line with the presumption that while the mechanism is
under operation, all measured data are independent and
come from the same normal distribution, we can presume
that the process mean and variance are unchanged.

To avoid an upper control limit exceeding one, here, the
control limits of the p-chart will be modified by replacing
p j with trimmed value. The trimmed value is defined as
(29). Thus, the procedure involves trimming g of the order
observations from each tail and computing the mean of the
remaining observations.

The steps required to compute the proposed control limits
are summarized as follows:

Step 1. Select the values of g1and g2.

Step 2. Compute p̂ j value, rank it and eliminate the r
smallest and the r largest values.
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Step 3. Compute the overall GL-mean as follows:

P(g1,g2) = ψ
(g1,g2)
1 =

1((
n

g1+g2+2

))

×
n

∑
i=1

[((
i− 1

g1

))((
n− i

g2

))]
xi:n,

Step 4. Compute the control limits for the process as
follows:

UCL =P(g1,g2)

+ k

√
P(g1,g2)(1−P(g1,g2))/(n− g1− g2),

CL = P(g1,g2),

LCL =P(g1,g2)

− k

√
P(g1,g2)(1−P(g1,g2))/(n− g1− g2).

Where the value k equals 3 is used due to the Normal
distribution approximation.

6 Average run length of proposed control

charts

Control limits for the proposed chart are based upon the
assumption that the process outcomes are normal
approximation to the binomial distribution and
independently distributed. In truth, the observation can be
made without any likelihood distribution. Processes from
distributions with heavy tails than a standard distribution
appear to have more points beyond the control limits for
example, average run length (ARL). Disturbing variations
from normalcy are not uncommon. We examine defects
resulting from implementing the proposed method for
nonnormal data.
We consider observations generated from Kumaraswamy,
Beta and uniform distributions. Table 2 contains results
for independent observations generated from
Kumaraswamy, Beta and uniform distributions. The
control limits for the non-trimmed and trimmed control
charts in Table 2 was computed by averaging the results
of 150 replications of m = 20 random samples of size n =
5 observations from each distribution. The trimmed charts
limits were based on trimming 3 out of 20 sample values
of p̂ j. An additional 1000 samples of size 5 were
generated from each distribution, and the number of
points falling outside the control limits an estimate of the
ARL was noted.
Table (2) reveals that the non-trimmed and trimmed
control charts’ simulated control limits are identical when
the process generates uniform data. On the other hand, the
Kumaraswamy and Beta distributions results differ: the
trimmed charts are far tighter than the corresponding

limits for the non-trimmed charts. The effect of these
tighter limits is that more points fall outside, signaling the
need for appropriate corrective measures when extreme
departures from normality are encountered.

Table 2: Average Run Length (out of 1000) and UCL and LCL

for samples of size 5 from some distributions

distribution % trimming UCL LCL ARL

Kumaraswamy non-trimmed 0.851 0.935 17

15% trimmed 0.871 0.923 20

Beta non-trimmed 0.731 0.832 14

15% trimmed 0.744 0.819 16

Uniform non-trimmed 0.892 0.963 8

15% trimmed 0.895 0.957 9

7 Example

The chart control limits were calculated for the
probability of false alarms (a = 0.0027) in the monitoring
process, based on the Normal distribution after Shewhart,
Ryan[58], Chen [17], Sant’Anna and Caten[18](Beta),
and Lima-Fiho et al.[19] (Kumaraswamy) charts and
based proposed chart.

The data set consists of a data set of the study of
contaminated peanut by toxic substances in 34 batches of
120 pounds. reported in Draper and Smith[59], p.101.

0.971,0.979,0.982,0.971,0.957,0.961,0.956,0.972,0.889,
0.961,0.982,0.975,0.942,0.932,0.908,0.970,0.985,0.933,
0.858,0.987,0.958,0.909,0.859,0.863,0.811,0.877,0.798,
0.855,0.788,0.821,0.830,0.718,0.642,0.658

Table.3 shows that the Shewhart, Ryan, Chen, Beta and
Kumaraswamy charts extrapolate the upper limit for
monitoring variable, which is restricted to the [0,

1]-interval, while the proposed chart 12% trimmed
(g1 = 0,g2 = 4) does not extrapolate this region,
considering in-control process.

Finally, the control charts with the approximation to the
Normal distribution and Beta, Kumaraswamy charts
showed above one values. In contrast, the proposed Chart
with control limits based on the 12% trimmed
(g1 = 0,g2 = 4) presented satisfactory estimates within
the [0, 1]-interval. At that point, the proposed Chart is
more robust for monitoring fraction data.

8 Conclusions

In this paper we have introduced the method of
GL-moments as a generalization to the TL-moments and
the L-moments methods. We have defined population
GL-moments in terms of the quantile function and shifted
Jacobi polynomials. We have also derived, depending on
Jacobi Polynomials, some relations between
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Table 3: Control Charts limits for the data

LCL UCL

Shewhart 0.686 1.095

Ryan 0.747 1.15

Chen 0.6369 1.0453

Beta 0.6692 1.001

Kumaraswamy 0.5804 1.015

Proposed (g1 = 0,g2 = 4)12% trimmed 0.51 0.991

Fig. 1: Control Chart based on Shewhart, Ryan, Chen, Beta and

Kumaraswamy and proposed Charts for the data.

GL-moments. Furthermore, we have introduced
interpretation of the first two population GL-moments by
U-statistics. We have also obtained two expressions to
estimate the population GL-moments: the first expression,
which depends on Downton’s estimator, is nearly
unbiased estimator. By re-writing this expression in terms
of weights function, we have shown, in table 1, that
GL-moments capture more information about the tail of
the distribution than TL-moments. Finally, to avoid an
upper control limit exceeding one, we proposed a control
chart based on generalized linear moments for monitoring
fractional, rates and proportions data. This control chart
assumes that the fraction data can be approximated by a
normal distribution and proposes new control limits based
on GL-moments.
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Appendix

The First two GL-moments for Normal Distributions with
Parameters (µ ,σ), by the Approximations of GLD
Let Fx and Fy denote the distribution functions of X and
Y = g(x). Similarly, let xx(F) and yy(F) denote their
quantile functions, then yY (F) = g [xX(F)].
The important consequence of this
If Y = µ +σX , then yY (F) = µ +σxX(F), See [60].
since all normal distributions can be obtained by location
and scale adjustment to N (0,1) , Karian and Dudewicz
[28] considered a GLD (m,a,b) fit to N (0,1), i.e

GLD(0,0.1975,0.1349)
the approximation to the Normal distribution
with(µ = 0,σ = 1);
The quantile function for the generalized lambda
distribution (GLD), which given as

x(F) = m+
Fb − (1−F)b

a
, 0 < F < 1.

If z =
(

x−µ
σ

)
≈ N (0,1),

then z(F) = Fb−(1−F)b

a
, since m = 0 in

approximation the normal distribution.
Thus,
if x = µ +σz,then

x(F) = µ +σ z(F) = µ +σ
Fb−(1−F)b

a
(A.1)

The first two GL-moments for the normal distributions
with (µ ,σ), by the approximations of GLD, by
substituting (A.1) in (12), are

Ψ
(g)

1 = µ ,

Ψ
(g)

2 = σ
a−1b Γ (2g+ 3)Γ (b+ g+ 1)

Γ (g+ 2) Γ (b+ 2g+ 3)
, b>−(g+ 1).
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