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Abstract: In this research, the basic definitions of an operad, graded algebra, and A∞-module are introduced. The A∞-algebras and

their (co)homology are studied to obtain the relations between the cyclic and dihedral (co)homology. The L∞-algebras are discussed,

and the relations of the isomorphism between primitive and indecomposable elements in the L∞-algebras are presented. We demonstrate

the relation between cyclic and dihedral (co)homology of L∞-algebras. Finally, the Mayer-Vietoris sequence of L∞-algebras is

investigated.

Keywords: Operad, Module, Graded algebra, A∞-algebras, L∞-algebras, Mayer-Vietoris sequence.

1 Introduction

An operad is important algebraic tool used to study the
operation on the elements of the given type of algebra.
For example, the algebraic operads include commutative
algebra, associative algebra, and Lie algebra. Recently,
numerous algebras have received attention, including
Poisson, Jordan, Gerstenhaber, Pre-Lie, Leibniz,
Batalin-Vilkovisky, and dendriform algebras.
The operadic point is crucial because it applies the known
results from classical algebras to other algebras, and the
operadic language can express statements and proofs.
Further, the operad theory can provide new results.
Dmitry Tamarkin and Maxim Kontsevich applied the
operadic theorem for the deformation-quatization of
Poisson manifolds [1]. Operads play a fundamental role
in many objects, including algebraic topology,
C ∗−algebra, non-commutative geometry, differential
geometry, symplectic geometry, quantum field theory,
deformation theory, renormalization theory, category
theory, string topology, combinational algebra, computer
science and universal algebra.
In the mid- twentieth century, Michel Lazard started the
operation composition of theoretical study [1].
In the sixties, F. Adam, J. Michael, A. Joyal, G. Kelly, P.
May, S. Maclane, J. Stasheff, R. Vogt and numerous
topologists used the operad theory in the algebraic
topology as the efficient tool [2]. During the nineties, the
deformation theory had envolved from algebra into

topology by many scientists as E. Getzler, V. Ginzburg, V.
Hinich, J. Jones, M. Kapranov, M. Kontsevich, Y. Manin,
M. Markl, V. Schechtman, V. Smirnov and D. Tamarkin
[3].
We encounter difficulties in the relationship between
algebraic study and homotopy theory because the
algebraic structure of a chain complex cannot be
converted to a homotopy equivalent chain complex.
A∞−algebras are the higher structure of associative
algebra, which was discovered by Stasheff [1]. However,
Kontsevich studied the higher structure of Lie algebras,
called L∞−algebras.
This problem was the main reason for defining the
concept of an operad.
In the early sixties, Stusheff studied A∞−algebras [5]. It
was then developed by Kadeishvili, Smirnove,
Huebschmann, Proute and others, who also applied it to
topology [4].
Recently: in [6] and [7], A. H. Noreldeen introduced the
Hochschild (co)homology of A∞−algebras and
D∞−differential module. Then, in [8] he studied
differential A∞−algebras. In [9] and [10], Alaa
thoroughly studied everything related to E∞−algebras.
Here, the A∞−algebras and L∞−algebras were
discussed. Further, A∞−algebras was defined by
examining it properties and providing a A∞−module
definition.
The second section provides a simplified definition of an
operad and an explanation of its various types.

∗ Corresponding author e-mail: ala2222000@yahoo.com
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In the third section: the definition of graded algebra in a
simple form is presented with some examples.
In the fourth section: the A∞−operad is presented as an
introduction to the study of A∞−algebras, the
A∞−algebra is investigated, the A∞−algebra is defined,
and some important definitions and properties are
provided.
In the fifth section: the (co)homology theory of
A∞−algebras and some of it properties were studied as
Hochschild, Cyclic and Dihedral (co)homology of
A∞−algebras are introduced.
In the sixth section: the Lie algebra and L∞−algebras are
investigated. Further, the Hochschild, Cyclic and Dihedral
(co)homologies of L∞−algebras are probed.
The seventh section is divided into two parts, the first of
which introduces and establishes relations between both
Hochschild and Cyclic homology of A∞−algebras, and
between Cyclic and Dihedral homologies of
A∞−algebras. In the second part, the isomorphism
between primitive and indecomposable elements in the
L∞−algebras is introduced, and the relation between the
Cyclic and Dihedral (co)homologies of L∞−algebras iss
obtained. Finally, the Mayer-Vietoris sequence of
L∞−algebras is studied and proved.

2 What is the Operad?

J. Micheal, J.Peter and Ranier M. pioneered the study of
operads, a concept introduced in algebraic topology [1].
In the early nineties, Kontsevish, Ginzburg, and Kapranov
developed Operads, which enabled them to clarify the
duality phenomena in rational homotopy theory by
utilizing the koszul duality of operands [11]. In
mathematics, operad divided into two types:
(i) Non-Symmetric operad, which consists of:

1.The Sequence (P (n))n∈N , which is the set of all n-ary
operations elements,

2.The identity element 1 ∈ P (1),
3.The composition function

◦ : P (n)×P (x1)×·· ·×P (xn)→ P (x1 + . . .+ xn) ,
(α,α1, . . . ,αn) 7−→ α ◦ (α1, . . . ,αn) ,

for all n,x1, . . . ,xn ∈ Z, satisfying that:

α ◦ (1, . . . ,1) = α = 1 ◦α,

α ◦ (α1 ◦ (α1,1, . . . ,α1,x1
) , . . . ,αn ◦ (αn,1, . . . ,αn,xn))

= (α ◦ (α1, . . . ,αn))◦ (α1,1, . . . ,α1,x1
, . . . ,αn,1, . . . ,αn,xn)

(1)
(ii) Symmetric operad (called operad) is the same
non-symmetric operad, but there is a symmetric group Σn

action on P (n)and satisfy (1) and:
∀t ∈ Σxi

, r ∈ Σn;

(α ∗∇)◦ (αr1
, . . . ,αrn) = (α ◦ (α1, . . . ,αn))∗r,

α ◦ (α1 ∗t1, . . . ,∗tn = (α ◦ (α1, . . . ,αn))∗ (t1, . . . ,tn).

Hence, the morphisms of the operad can be defined. For
two operads, P,Q, there is a morphism f : P −→ Q:

fn : P (n)−→ Q (n) ; n ∈ N,

since:

1.f(1) = 1,
2.f(α ◦ (α1, . . . ,αn)) = f(α)◦ (f(α1) , . . . ,f(αn)) ,
3.f(x∗t) = f(x)∗t

Then, there is a category of operads, denoted by the term
oper [3].
Example (2-1)

By considering the field K and the vector space V with
finite-dimensional over K , the operad endomorphism of
V can be defined, as E ndV = {E ndV (n)}, where
E ndV (n) is the set of all linear maps, satisfying the
following:

1.E ndV (n) : V
⊗

n −→ V ,
2.β (f,g1, . . . ,gn) :

V
⊗

i1
⊗

. . .
⊗

V
⊗

in
g1

⊗
...

⊗
gn−−−−−−−→V

⊗
n f−→V ,

3.γ : x → E ndV (1) , 1 7−→ idV ,
4.(β (f,g1, . . . ,gn)) ∗ η =
f◦gη−1(1)

⊗
. . .

⊗
gη−1(n), η ∈ Σn.

For another operad O, the operad algebra can be
obtained as the morphism O −→ E nd.
Similarly, the operad algebra in algebraic topology can be
obtained by substituting V and computing the tensor
product with the topological spaces and the Cartesian
product [1].
The following section discusses the graded algebras and
introduces some examples for clarification.

3 Graded algebra

In mathematics, the degree of any element has a
multiplicative property. For example, the polynomial ring
with n-variables has a degree equal to the number of
variables in the vector. The product of two polynomials is
equal to the sum of their vectors, and its degree is equal to
the sum of the vectors’ degrees. After that, the graded
algebras were defined as algebras with an additional
property.
Along with defining graded algebra, we must first state
that the polynomial of a single variable is unique and
denoted by

C [x]∼= C
⊕

Cx
⊕

Cx2

⊕
. . . ,

since Cxn is the polynomial on the form anx
n. For a semi-

group G , the G -graded algebra is the algebra A , which is
defined by:

A =
⊕

g∈G

Ag,
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since ⊙ : A〉×A| −→ A〉|. The elements in A〉 are called
homogeneous elements, but the value of i is the degree
[12]. Some examples of graded algebras would be
demonstrated:
Example (3-1)

Consider the group G , and K [G ] is the algebra of the
G−group; the direct sum is defined as;

K [G ] =
⊕

g∈G

Lg,

given that L} is a free h-module with one-dimensional,
the structure of graded algebra is as follows:

ℓi · ℓj = ℓij.

For more examples, consider the vector V , where n−
degree homogeneous elements of the tensor product T nV

are graded algebraic elements. The symmetric algebra
S nV and exterior algebra Λ nV are graded algebras. The
nth−cohomology ring in the cohomology theory is also
graded [13].
Graded algebra applicable to various fields, including
commutative algebra, homological algebra, algebraic
topology and algebraic geometry.
The study aims to demonstrate some properties of
A∞−algebras as propositions.

4 A∞−Operad

Before defining A∞−algebras, some basic definitions
would be introduced
We consider a field F and graded vector space as:

V =
⊕

V
p, p ∈ Z

then we could define the shift of V or the suspension S V

in terms, satisfying:

(S V )p = V
p+1 ∀p ∈ Z,

the tensor product of two homogenous maps g : V → V ‘,
f : W → W ‘as

g
⊗

f : V
⊗

W −→ V ‘
⊗

W ‘,

and defined by

(g
⊗

f)(V
⊗

W ) = (−1)fV g(V )
⊗

f(W ) ,
V ∈ V , W ∈ W ,

where V ,V ‘,W ,W ‘are graded spaces [7].
Example (4-1):

Consider the field f and the polynomial ring f [x,y]. For
the homogeneous polynomials, if
Pn = span{xmyn−m;n ∈ N} with degree n, then
f [x,y] =

⊕
Pn, n = 0,1,2, . . . is an example for the

graded vector space since the degree of every terms in Pn

is n. Then f [x,y] =
⊕

Pn, n = 0,1,2, . . . is also graded
algebra since;

(xmyn−m)
(
xkyl−k

)
= xm+ky(n+l)−(m+k) ∈ Pn+l.

Consider V ,V ‘ as complexes with homogeneous
first-degree differentials d, and d2 = 0. If, dSV = −dV ,
for g : V −→ V ‘, we obtain the following:

d(g) = dV ‘ ◦g− (−1)g g◦dV .

We stated that g is a morphism of complexes if and only if
d(g) = 0. If there is morphism h between graded spaces,
and g‘ = g+d(h), then g,g‘ are homotopic [7].
The A∞−algebra can be defined as the graded space A

defined by

bn : (S A )
⊗

p −→ S A , n ≥ 1.

For n = 1, the map is homogenous but for n > 1, then we
have:

∑
i+ j+l=n

bi+1+l ◦
(

I
⊗

i
⊗

b j

⊗
I
⊗

l
)
= 0,

where I is the identity map of S A . For analyzing little
value of n:
If n = 1, then b2

1 = 0. So, we get a complex (S A ,b1) and
m1 =−b1.
If n = 2, then we get

b1b2 +b2

(
b1

⊗
I + I

⊗
b1

)
= 0.

Since the differential of S A
⊗

S A is b1

⊗
I + I

⊗
b1,

then we get d(b2) = 0.
If n = 3, then we obtain the following:

b2 (b2

⊗
I + I

⊗
b2)+b1b3+

b3 (b1

⊗
I
⊗

I+ I
⊗

b1

⊗
I + I

⊗
I
⊗

b1) = 0.

We define m2 : A
⊗

A −→ A as:

m2 (x,y) = (−1)x b2 (x,y) .

If n > 3, then A∞−algebra can give the higher
homotopies. If bn vanished at n > 1, then the differential
graded (dg) algebra (A ,m1,m2) could be obtained [3].
Definition (4-2):[14]

Assume that A is the graded space defined by the
formula b0 : F−→ S A , ⌊n;n ≥ 0. Then, we can say that
A is week A∞−algebra in the sense that:

∑i+ j+l=nbi+1+l ◦
(
I
⊗

i ⊗b j

⊗
I
⊗

l
)
= 0; n ≥ 0. and we

have:
b2

1 =−⌊2(b0

⊗
I + I

⊗
b0) 6= 0.

Definition (4-3): [24]

For any two A∞−algebras A ,B, the morphism f : A −→
B can be defined as:

fn : (S A )
⊗

n −→ S A ; n ≥ 1,
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which is homogenous at n = 0. For n ≥ 1, we get

∑i+ j+l=n fi+1+l ◦
(
I
⊗

i
⊗

b j

⊗
I
⊗

l
)

= ∑i1+...+is
bs ◦ (fi1

⊗
. . .

⊗
fis)

, then, we obtain their algebraic morphism f1 as
H ∗A −→ H ∗B. If f1 is quasi-isomorphism, then f is
A∞− quasi-isomorphism.
The composition of f and g can be defined as:

(f◦g)n = ∑
i1+...+is=n

fis ◦
(
gi1

⊗
. . .

⊗
}is

)
.

Given that f1 = 1 and fn = 0 ∀n ≥ 2, we can obtain the
morphism of identical S A .
Proposition (4-4):[16]

If U(A ) is the dg-algebra and A is A∞−algebra, then
the A∞−quasi-isomorphism ϕ : A → U (A ) is the
universal A∞−algebra morphism.
If there is another dg-algebra morphism ψ : U(A ) → B,
then we have A∞−morphism h : A −→ B as h = ψ ◦ϕ .
Proposition (4-5):

Consider an A∞−algebra A and a complex V , if
f : A −→ V is quasi-isomorphism, then V is
A∞−algebra, and f can be extend to
A∞−quasi-isomorphism h : A → V .
Definition (4-6):

Consider the homological unital A∞−algebra A ; then the
A∞−module is defined as M , which is the graded space
defined by

bn : S M
⊗

(S A )
⊗

n−1 −→ (S M ) , n ≥ 1,

which is homogeneous at n = 1, satisfying the following:

∑
i+ j+l=n

bi+1+l ◦
(

I
⊗

i
⊗

b j

⊗
I
⊗

l
)
= 0.

and inducing the action:

H
∗
M

⊗
H

∗
A −→ H

∗
M ,

which is unital.
The following section discusses the theory of
(co)homology for A∞−algebras and defines the
Hochschild, Cyclic and dihedral homology, and
cohomology of A∞−algebras.

5 (Co)Homology theory of A∞−algebras

For the differential module (C ,d) such that
d : Cn −→ Cn−1 and if the simplicial faces are defined as
∂i : Cn −→ Cn−1, 0 ≤ i ≤ n, since ∂i∂ j = ∂ j−1∂i, i < j,
then we refer to this as ∂i being the simplitial faces of
(C ,d) (for more see [17], and [5]).
Given the arbitrary permutation σ in the symmetric group

Σm of the m-elements of permutations, such that its
components are (σ (i1) , . . . ,σ (im)) which acts on
(i1, . . . , im) such that i1 < .. . < imand then we can define(

σ̂ (i1), . . . , σ̂ (im)
)

as:

σ̂ (is) = σ (is)−α (σ (is)) , 1 ≤ s ≤ m,

since α (σ (is)) is the number of
(σ (i1) , . . . ,σ (is) , . . . ,σ (im)). Now, the F∞−module(
C ,d, ∂̃

)
can be defined as the differential module (C ,d)

with the family map;

∂̃ =
{

∂(i1,...,im) : Cn −→ Cn−m

}
,

i ≤ m ≤ n, 0 ≤ i1 < .. . < im ≤ n, i1, . . . , im ∈ Z

and satisfy that

d
(
∂(i1,...,im)

)
=

∑σ∈Σm ∑Iσ (−1)1+sign(σ) ∂(
σ̂(i1),...,σ̂(il)

)∂(
σ̂(il+1),...,σ̂(im)

).

Since Iσ denotes all permutations of
(

σ̂ (i1), . . . , σ̂ (im)
)

such that σ̂ (i1)< .. . < σ̂ (il), and σ̂ (il+1)< .. . < σ̂ (im).

Then ∂̃ =
{

∂(i1,...,im)
}

is the F∞−differential of
(
C ,d, ∂̃

)
,

whereas ∂(i1,...,im) is the ∞− simplitial of faces of F∞

module (see [2], and [11]).
Then, form = 1, we get:

d
(
∂(i1)

)
= 0, i ≥ 0

For m = 2,

d
(
∂(i, j)

)
= ∂( j−1)∂(i)− ∂(i)∂( j), i < j

For m=3,

d
(
∂(i, j,k)

)
=−∂(i)∂( j,k)− ∂(i, j)∂(k)− ∂(k−2)∂(i, j)

−∂( j−1,k−1)∂(i)+ ∂( j−1)∂(i,k)+ ∂(i,k−1)∂( j), i < j < k

If we define the differential module (C ,d) with the map
t= {tn : Cn −→ Cn} such that:

∀n ≥ 0; tn+1
n = ICn

, dtn = tnd.

Then we get the cyclic differential module (C ,d,t), and
if we also define the map r = {rn : Cn −→ Cn} such
r2

n = ICn
, then we get the dihedral differential module

(C ,d,t,r) and we get:

rntn = t−1
n rn,

drn = rnd.

For cyclic and dihedral module, we get;

∂itn = tn−1∂i−1, 0 < i ≤ n

∂0tn = ∂n, ∂irn = rn−1∂n−1, 0 ≤ i ≤ n

c© 2022 NSP
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Then we can define DF∞−module
(
C ,r,t,d, ∂̃

)
, also

known as a dihedral module, because it is with
∞-simplitial faces [11], since (C ,r,t,d) is the dihedral
differential module and satisfies that:

∂(i1,...,im)tn = tn−m∂(i1−1,...,im−1), i1 > 0

= (−1)m−1 ∂(i2−1,...,im−1,n),

i1 = 0

(2)

∂(i1,...,im)rn = (−1)
m(m−1)

2 rn−m∂(n−im,...,n−i1) (3)

Definition (5-1): [5] If we have a complex

A = {An} , ∀n ≥ 0, n ∈ Z, then we can define the
A∞−algebra (A ,d,π), as the differential module (A ,d),

since d : A∗ → A∗−1 and πn :
(
A

⊗
(n+2)

)
∗
→ A∗+n,

which satisfy that:

d◦πn−1 = dπn−1 +(−1)n πn−1 = ∑n−1
m=1 ∑m+1

t=1

(−1)n+t(n−m)+1 πm−1

(
I
⊗
(t−1)⊗πn−m−1

⊗
Im−t+1

)
,

(4)
since n = 1 : d◦π0 = 0.
For n = 2:

d◦π1 = π0

(
π0

⊗
I
)
−π0

(
1
⊗

π0

)
.

For n = 3:

d◦π2 = π0 (π1

⊗
I + I

⊗
π1)

−π1

(
π0

⊗
I
⊗

2 − 1
⊗

π0

⊗
I + I

⊗
2
⊗

π0

)

Now, the involutive A∞−algebra can be defined as the
complex (A ,d,πn,∗), since (A ,d,πn) is the A∞−algebra
and defined by automorphism ∗ : An → An such that
∀x ∈ A ; ∗(x) = x∗ and the following conditions are
satisfied:

(x∗)∗ = x,

d(x∗) = d(x)∗ ,πn (x0

⊗
x1

⊗
. . .

⊗
xn

⊗
xn+1)

∗

= (−1)ε πn

(
x∗n+1

⊗
x∗n

⊗
. . .

⊗
x∗1

⊗
x∗0
)
.

Since ε = n(n+1)
2

+∑0≤i≤ j≤n |xi|
∣∣x j

∣∣ , n ≥ 0. Then the
module of the dihedral differential is the complex
( αM (A ) ,t,r,d), since α =±1 and:

tn (x0

⊗
. . .

⊗
xn)

= (−1)β
xn

⊗
x0

⊗
x1

⊗
. . .

⊗
xn−1,

rn (x0

⊗
. . .

⊗
xn)

= α (−1)γ
x∗0

⊗
x∗n

⊗
x∗n−1

⊗
. . .

⊗
x∗1,

d(x0

⊗
. . .

⊗
xn)

= ∑n
i=0 (−1)µ

x0

⊗
. . .

⊗
xi−1

⊗
d(xi)

⊗
xi+1

⊗
. . .

⊗
xn.

Where

β = |xn|(|x0|+ . . .+ |xn|) , γ = ∑0<i< j≤n |xi|
∣∣x j

∣∣ ,
µ = |x0|+ . . .+ |xn−1| .

Since ∀n ≥ 0; tn+1
n = 1, r2

n = 1, tnrn = rnt
−1
n .

Theorem (5-2): [15]

If (A ,d,πn,∗) is the involutive A∞−algebra, then(
αM (A ) ,t,r,d, ∂̃

)
is the dihedral module

(DF∞ −module). The notations ΣK and Σ−1K denote
the one-dimensional vector space with degree −1 and 1
with 0-differential, respectively, for the field K with
characteristic zero. T̂X is the free formal augmented
differential of a graded associative algebra, which
generated by X and given by

T̂X =
∞

∏
n=0

X
⊗

n = K ×X ×
(
X

⊗
X

)
· · ·

By T̂≥iX , we mean the sub-algebra with an order of
element equal to or greater than i.
Definition (5-3): [18]

Consider the graded vector space X , then the
A∞−algebra structure on X , which is defined as the
derivation m : T̂≥1Σ−1X ∗ −→ T̂≥1Σ−1X ∗ with the
degree 1 and m2 = 0.
Definition (5-4):

If we consider two A∞−algebras (X ,m) and (Y ,m‘), we
have A∞−morphism of (X ,m) and (Y ,m‘) as an
associative algebras map ϕ : T̂≥1Σ−1Y ∗ −→ T̂≥1Σ−1X ∗,
where m◦ϕ = ϕ ◦m‘.
Definition (5-5): [18]

For a space of derivations Der(T̂≥1Σ−1X ∗) for the
A∞−algebra (X ,m), we can define the Hochschild
cohomology complex of X as the differential graded
vector space X ;

C H
•(X ,X ) = Der(T̂≥1Σ−1

X
∗)

and we denote it by H H •(X ,X ).
Definition (5-6):

With the graded vector space V and the involution map
V −→ V ∗ as defined (V ∗)∗ = V , then we can define the
differential graded associative algebra X with involution

satisfying for a,b ∈ A;(ab)∗ = (−1)|a||b| b∗a∗ and
d (a)∗ = d (a∗).
Definition (5-7):

If X is an involutive graded vector space, the structure of
A∞−algebra on X is the derivation
m : T̂≥1Σ−1X ∗ −→ T̂≥1Σ−1X ∗, with the one-degree and
m2 = 0.
Definition (5-8):

If Der+(T̂≥1Σ−1X ∗) is a subspace of the space of
derivation Der(T̂≥1Σ−1X ∗), the involutive Hochschild
cohomology complex H •

+ (X ,X ) can be defined as the
differential graded vector space

CH
•
+ (X ,X ) = Σ−1Der+(T̂≥1Σ−1

X
∗)

noting that space Der+(T̂≥1Σ−1X ∗) is eigenspace
corresponding to eigenvalue +1, while

Der−(T̂≥1Σ−1X ∗) is the eigenspace corresponding to
eigenvalue -1. Since we have that:

Der
(

T̂≥1Σ−1
X

∗
)
=Der+(T̂≥1Σ−1

X
∗)

⊕
Der−(T̂≥1Σ−1

X
∗).
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Definition (5-9):

For the involutive A∞−algebra (X ,m), the
skew-involutive Hochschlid cohomology complex
H H •

− (X ,X ) of (X ,m) is defined as the differential
graded vector space as

C H
•
− (X ,X ) = Σ−1Der

(
T̂≥1Σ−1

X
∗) .

Theorem (5-10): If (X ,m) is the involutive A∞−algebra,

then we have

H H
•(X ,X ) = H H

•
+ (X ,X )

⊕
H H

•
− (X ,X ).

Definition (5-11): [19]

For an involutive A∞−algebra (X ,m), the cyclic
cohomology H C •(X ) of X can be defined as the
differential graded vector space CC •(X ) scince:

CC
•(X ) = ∑

∞

∏
i=1

[(
Σ−1

X
∗)

⊗
i
]

Zi

,

for the cyclic group Zi of the order i.
Definition (5-12):

For two cyclic A∞−algebras (X ,m) and (Y ,m‘) with d,
the cyclic A∞−morphism can be defined as the map ϕ
such that ϕ (⊣‘) = a for all a ∈ Σ−1X ∗⊗Σ−1X ∗ and
a‘ ∈ Σ−1Y ∗⊗Σ−1Y ∗ with d+ 2 degree.
Definition (5-13):

Consider the graded vector space X with involution and
the dihedral group of order 2n is denoted by Dn; since
Dn = 〈r,s;rn = s2 = 1,srs−1 = r−1〉, then we define the
dihedral action as ∀xi ∈ X ;

1.r(x1

⊗
x2

⊗
. . .

⊗
xn) =

(−1)|xn|∑n−1
i=1

|xi|xn

⊗
x1

⊗
. . .

⊗
xn−1,

2.s(x1

⊗
x2

⊗
. . .

⊗
xn) = (x1

⊗
x2

⊗
. . .

⊗
xn)

∗
.

And the skew-dihedral action as

1.r(x1

⊗
x2

⊗
. . .

⊗
xn) =

(−1)|xn|∑n−1
i=1 |xi|xn

⊗
x1

⊗
. . .

⊗
xn−1,

2.s(x1

⊗
x2

⊗
. . .

⊗
xn) =−(x1

⊗
x2

⊗
. . .

⊗
xn)

∗
.

Proposition (5-14): [18]
If we consider involutive A∞−algebra (X ,m), we obtain
the graded vector spaces C D•

+(X ) and CD•
−(X ) as

follows:

1.C D•
+(X ) = ∑∏∞

i=1

[(
Σ−1X ∗)

⊗
i
]

Di

,

2.C D•
−(X ) = ∑∏∞

i=1

[(
Σ−1X ∗)

⊗
i
]

Di

.

Since Di is the dihedral action in (i) but a skew-dihedral
action in (ii).
Definition (5-15):

For the involutive A∞−algebra (X ,m), then the dihedral
cohomology H D•

+(X ) is space CD•
+(X ) which

differential with m and the skew-dihedral cohomology

H D•
−(X ) is space C D•

−(X ) which differential with m.
Theorem (5-16): [18]

If (X ,m) is A∞−algebra with involution, then we have

H C
•(X )∼= H D

•
−(X )⊕H D

•
+(X ).

Proof: We know that both ofCD•
+(X ) and CD•

−(X ) are

quotients of CC •(X )by two distinct actions of Z2 with
involution on X . By the relation

H H
•(X ,X = H H

•
+ (X ,X )⊕H H

•
− (X ,X ).

And from the isomorphism with the involution of
CC •(X ), we get the result.
Definition (5-17): [15]

Let (A ,d,πn,∗) be the involutive A∞−algebra and(
αM (A ) ,t,r,d, ∂̃

)
is DF∞−module, then we can

define the dihedral homology αH D (A ) as the dihedral

homology H D ( αM (A )) of
(

αM (A ) ,t,r,d, ∂̃
)

which is also defined as the homology of a chain complex(
Tot

(
D

(
αM (A )

))
, δ̂

)
.

Corollary (5-18): [15]

For any involutive A∞−algebra (A ,d,πn,∗) and chain

complex
(
M

(
αM (A )

)
,b
)

, then the dihedral

homology αH D (A ) is isomorphic to the homology of(
M

(
αM (A )

)
,b
)

.

Definition (5-19):

If K ,L ,M are examples of A∞−algebra which related
in the short exact sequence as;

0 → K• → L• → M• → 0.

With connected morphism ∂n : Hn(M•) → Hn−1K•.
Then the long exact sequence is in the form;

. . .→ Hn+1(M•) ∂−→Hn(K•)
g−→Hn(L•) h−→Hn+1(M•) ∂−→Hn−1(K•).

Now, we study the dihedral cohomology of L∞−algebra
as a form of graded algebra.

6 Graded Lie algebra

The L∞−algebra is a strong homotopy Lie algebra. M.
Gerstenhaber introduced the bracket structure on cochain
spaces of an associative algebra, demonstrating that the
bracket can be the co-derivations bracket [13].
In this section, the Lie algebra ([14], [21], [22], [23], and
[24]) and L∞−algebra with some examples ([2], [19],
[25], and [26]).
For the field K , let V be Lie algebra over K with
[−,−]. The linear map Λ n V −→ V gives the bracket
antisymmetry. If M is V − module, then the antisymmtry
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functions space is C n (V ,M ) = Hom(Λ nV ,M ) with
n-degree. We can define the coboundary operator d of V

since d : C n(V ,M )−→ C n+1 (V ,M ) as

dϕ (a1, . . . ,an+1) = ∑1≤i< j≤n+1 (−1)i+ j−1

ϕ([ai,a j] ,a1, . . . , âi, . . . , â j, . . . ,an+1)

+∑1≤i≤n+1 (−1)i
.ϕ (a1, . . . , âi, . . . ,an+1).

Then the cohomology of Lie algebra V is

H
n (V ,M ) =

ker
(
d : C n (V ,M )−→ C n+1 (V ,M )

)

Im(d : C n−1 (V ,M )−→ C n (V ,M ))
.

If M = V , then C n (V ,V ) = C n (V ) and H n (V ,V ) =
H n (V ) [13].
If we relate H n (V ) to the deformations of V , this relation
is given by H 2 (V ). If we consider ℓ as the bracket in V

and ℓt as the infinitesimally deformed product since ℓt =
ℓ+ tϕ such that t2 = 0, then we find that ϕ : Λ n V −→ V is
cocycle and thus we have:

ℓt (a1, ℓt (a2,a3)) = ℓt (ℓt (a1,a2) ,a3)+ ℓt (a2, ℓt (a1,a3)) .

Then
[a1,ϕ (a2,a3)]+ϕ (a1, [a2,a3])

= [ϕ (a1,a2) ,a3]+ϕ (a2, [a1,a3])

since dϕ = 0.
Consider the inner product of V ; 〈−,−〉 : V ⊗V −→ K

such satisfy that

〈[a1,a2],a3〉= 〈a1[a2,a3]〉

and the tensor ℓ̃ is given by

ℓ̃(a1,a2,a3) = 〈[a1,a2],a3〉,

since ℓ̃ ∈ Hom
(
Λ 3 V ,K

)
and we have

ℓ̃(a1,a2,a3) = ℓ̃(a3,a1,a2) .

Hence, we find that ℓ̃ is invariant under cyclic
permutations. The cohomology with trivial coefficients is
denoted by H 3 (V ,K ) ([14], and [21]).
If ϕ ∈ C n (V ) is the cyclic element of the following
formula:

〈ϕ(a1, ...,an),an+1〉= (−1)n〈a1,ϕ(a2, ...,an)〉

then ϕ is cyclic. If and only of ϕ̃ : V n −→ V is
anti-symmetric such that

ϕ̃(a1, ...,an+1) = 〈ϕ(a1, ...,an),an+1〉,

and we have also, ϕ̃ ∈ Hom
(
Λ n+1 V ,K

)
, then ϕ̃ is

cyclic, satisfying that

ϕ̃ (a1, . . . ,an+1) = (−1)n ϕ̃ (an+1,a1, . . . ,an) .

If the map ϕ 7−→ ϕ̃ is the isomorphism between CC n (V )
and C n+1 (V ,K ), then dϕ is cyclic if ϕ is cyclic, and thus
the cyclic cohomology of V is as follows:

H C
n (V ) =

ker
(
d : CC

n (V )−→ CC
n+1 (V )

)

Im
(
d : CC

n−1 (V )−→ CC
n (V )

) .

We notice that the isomorphism between C n+1 (V ,K )
and C C n (V ) is commutative with respect to the
coboundary operator [26], and thus that

H C
n (V )∼= H

n+1 (V ,K ) .

Definition (6-1):[26]

Assuming L is the graded vector space, the graded Lie
algebra can be defined as the vector space L with the map
[−,−] : L

⊗
L −→ L since this map is said to be Lie

bracket and satisfy the following formula for all ⊣,⌊,⌋ ∈
L :

[a, [b,c]] = [[a,b] ,c]+ (−1)|a||b| [b, [a,c]] = 0.

The graded Lie algebra is denoted by (L , [−,−]) .
For an example, if X is the graded associative algebra and
defined with the graded commutator [−,−] : X

⊗
X −→

X as;

[x1,x2] = x1x2 − (−1)|x1||x2|x2x1 ∀x1,x2 ∈ X,

then X is graded Lie algebra.
Definition (6-2): [11]

DGLA is an abbreviation of the differential graded Lie
algebra which is defined as DG algebra, since the algebra
is graded Lie algebra.
If L is graded Lie algebra and a ∈ L since 1

2
[a,a] = 0,

then d = [a,−] ;d2 = 0 and (L , [−,−] ,d) is DGLA.
Definition (6-3):

If (L , [−,−] ,d) is DGLA, then the Maurer-Cartan
element is a ∈ L satisfying the Maurer-Cartan equation:

d (a)+
1

2
[a,a] = 0.

For example, if (L, [−,−] ,d) is DGLA and b ∈ L , then

1

2
[a+b,a+b] = 0,

only if b satisfies the Maurer-Cartan equation.
Definition (6-4): [22]

For the graded vector space L , the L∞−algebra is L

with the maps lk : L
⊗

k −→ L , which are
anti-symmetric linear and |lk| = 2 − k since 1 ≤ k ≤ ∞,
satisfying the following:

∑i+ j=n+1 ∑σ∈sh−1
i,n−i

(−1)i( j−1) χ (σ)• l j (l j (a1, . . . ,ai) ,ai+1, . . . ,an) = 0,
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where a1, . . . ,an ∈ L , n ≥ 1. The set {lk : 1 ≤ k ≤ ∞} is
the L∞−structure of L .
Definition (6-5): [22]

For two L∞−algebras, L with the L∞−structure
{lk}k∈N and L ‘ with

{
l‘
k

}
k∈N, the strict homomorphism

of L∞−algebra is the degree to which the linear map
f : L −→ L ‘ preserved while satisfying that:

f◦ lk = l‘
k ◦f

⊗
k ∀1 ≤ k ≤ ∞.

Definition (6-6): [26]

If (g, [−,−]) is the graded Lie algebra and V is the vector
space, then the representation of g on V is the
homomorphism of (g, [−,−]) as ρ : g −→ gl(V ). Thus,
the Chevally-Eilenberg cohomology of the complex(⊕

n≥0 Hom(Λ ng,V ) ,δ
)

denotes the cohomology of

(g, [−,−]) where ω : g
⊗

n −→ V , and satisfying the
following

δω (⊣1, . . . ,an+1) = ∑n+1
i=1 (−1)i+1 ρ (ai)

(ω (a1, . . . , âi, . . . ,an+1))+∑1≤ j<k≤n+1 (−1) j+k×
ω ([a j,ak] ,a1 . . . , â j, . . . , ân, . . . ,an+1) .

All a1, . . . ,an+1 ∈ g and the element âi are deleted.
Definition (6-7):

If B is the polynomial algebra of the form:
B = B1 ⊃ B2 = B.B ⊃ . . . ⊃ Bn ⊃ . . ., since B̂ = lim B

Bn ,

then B̂ is also polynomial algebra. If natural mapping:
B → B̂ exists, then B is said to be perfect algebra.
Definition (6-8):

For L∞−algebra L and the Massy sequence
(
x2, . . . ,xn

)
,

where xi ∈ SL
⊗

i satisfies the following conditions:

(
π (2)

⊗
. . .

⊗
1+ 1

⊗
. . .

⊗
π (2)

)
(xn) = 0,

(π (3)
⊗

. . .
⊗

1+ . . .+ 1
⊗

. . .
⊗

π(3))(xn)
+π (2)

⊗
. . .

⊗
1+ . . .+ 1

⊗
. . .

⊗
π(2))(xn−1) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(π (n− 1)
⊗

1+ 1
⊗

π (n− 1)) (xn)
+(π (n− 2)

⊗
1+ 1

⊗
π (n− 2))(xn−1)+

. . .+ . . .(π (2)
⊗

1+ 1
⊗

π (2)) (x3) = 0,

the Massy product is defined as

µ
(
x2, . . . ,xn

)
= π (2)

(
x2
)
+ . . .+π (2)(xn) .

The decomposable element x ∈ L is similar to a massy
product, except JL that is considered indecomposable
elements.
Definition(6-9):

If K is L∞−algebra and F̂K is co-B-construction from
the short exact sequence:

0 → F̂1
K

i−→ F̂K
p−→ K → 0,

by using the connecting homomorphism we get the long
exact homology sequence:

. . .→ H∗
(
F̂K

) p−→ K
v−→ H∗

(
F̂1

K
)
→ . . . .

If x ∈ Ker v∗ : K → H∗
(
F̂1K

)
or

x ∈ Im √∗ : H∗
(
F̂K

)
→ K and PK is the module of

the primitive element of L∞co-algebra K , then the
element x ∈ K is called primitive.
Whereas in this research we have thoroughly studied two
important topics in the infinity algebras, which are the
A∞−algebras and L∞−algebras, so the next section will
review the results we obtained, which are explained as we
will explain now.

7 Main result

In the first and second parts of this section, we present the
of our study of A∞−algebras and L∞−algebras,
respectively.

7.1 Main result of A∞−algebras

After a thorough examination of A∞−algebras, we
present the relation between the cyclic and dihedral
homology, which is one of the most important
relationships in the homology theory, and we prove
several of them in the following theorems.
Theorem (7-1):

Consider the involutive A∞−algebra (A ,d,πn,∗), where
αH D (A ) is its dihedral homology and H C (A ) is the
cyclic homology. The relation between them is as follows:

· · · → −H Dn+1 (A )
∂−→ +H Dn (A )

j−→ H Cn (A )
i−→

−H Dn (A )
∂−→

+

H Dn−1 (A )→ . . .

where
in : H Cn (A )→ −H Dn (A ) ,
jn : +H Dn (A )→ H Cn (A ) ,

∂ : −H Dn (A )→ +H Dn−1 (A )

Proof:

By the short exact sequence;

0 → Tot −
D (A )→ Tot +

D (A )→ Tot C (A )→ 0,

then we get the required.
Theorem (7-2):

For the involutive A∞−algebra (A ,d,πn,∗), we have the
following:

H Cn (A )∼=
⊕

α
H Dn (A ), α =±1.
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Proof: If we define the morphisms:

µ : x → x+Rn.x, γ : x → x−Rn.x, Rn = (−1)
n(n+1)

2 rn,

then we get the required from the diagram:

It has been reported that the results for cyclic and
Hochschild cohomology of A∞−algebra can also be
applied to L∞−algebra [22]. Therefore, the following
section applies some results about the homology of
L∞−algebra and the dihedral cohomology of
A∞−algebra to the dihedral cohomology of L∞−algebra.

7.2 Main result of L∞−algebra

After a thorough examination of A∞−algebras, we
present the relation between the cyclic and dihedral
homology, which is one of the most important
relationships in the homology theory, and we prove
several of them in the following theorems.
Theorem (7-3):

Consider the perfect algebra L and the B-construction
BL . If H∗ (BL ) is the homology of BL , then for the
primitive element space PH∗ (BL ), we find that:

PH∗ (BL )∼= JL .

Proof: We obtain the following from the definitions (6-9):

PH∗ (BL ) = Im
(
H∗

(
F̂H∗ (BL )

)
→ H∗ (BL )

)
,

given that H∗
(
F̂BL

)∼= L exists, we obtain

PH∗ (BL )∼= Im(L → H∗ (BL ))∼= JL .

Theorem (7-4):

If K is the perfect co-algebra,FK is the
co-B-construction and H∗ (FK) is the homology of
FK , then we obtain the following for the
indecomposable elements space

JH∗ (FK ) : JH∗ (FK )∼= PK ,

where PK is the primitive element space.
Proof: We obtain the following from definitions (6-8):

JH∗ (FK ) = I (H∗ (FK )→ H∗ (BH∗ (FK ))) ,

since H∗ (BH∗ (FK )) = K , then

JH∗(FK )∼= Im(H∗ (FK )→ K )∼= PK .

The following theorem explains the relationship between
cyclic and dihedral cohomology of L∞−algebra.
Theorem (7-5):

For the L∞−algebra L with involutive, we obtain the
following:

H C
•(L )∼= H D

•
−(L )⊕H D

•
+(L ).

Proof: As we have that in A∞−algebra’s dihedral

cohomology:

H C
•(X )∼= H D

•
−(X )⊕H D

•
+(X ).

Then, similarly, we obtain in the dihedral cohomology of
L∞−algebra:

H C
•(L )∼= H D

•
−(L )⊕H D

•
+(L ).

The Mayer-Vietoris sequence relates between any
complex C n (L ) and its sub-complexes M n (L ) and
N n (L ) such that C = M ∪N .
Theorem (7-6):

For the L∞−algebra L , we denote C n (L ) for the chain
complex of L∞−algebra and M n (L ) , N n (L ) for the
sub-complexes of C n (L ), since their sequences are:

C n : · · · −→ C n−1 (L )
dn−1−−→ C n (L )

dn−→ C n+1 (L )→ ··· ,

M n : · · · −→ M n−1 (L )
dn−1−−→ M n (L )

dn−→ M n+1 (L )→ ··· ,

and

N n : · · · −→ N n−1 (L )
dn−1−−→ N n (L )

dn−→ N n+1 (L )→ ··· ,

Then, the Mayer-Vietoris sequence is:

· · · → H Dn (L )−→ k, lH Dn(M )
⊕

H Dn (N )
i, j−→ H Dn (M ∩N )

∂−→ H Dn−1 (L )→ ··· ,

Since i : M →֒ M ∩N , j : N →֒ M ∩N , k : L →֒
M , and l : L →֒ N .

Proof: If we relate the dihedral cohomology of three

sequences to the two sub-complexes M and N of C ,
then M ∪N = C , as shown in the following:

C n : · · · −→ C n−1 (L )
dn−1−−→ C n (L )

dn−→ C n+1 (L )→ ··· ,

M n : · · · −→ M n−1 (L )
dn−1−−→ M n (L )

dn−→ M n+1 (L )→ ··· ,

and

N n : · · · −→ N n−1 (L )
dn−1−−→ N n (L )

dn−→ N n+1 (L )→ ··· ,
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8 Conclusion

In the current study, the A∞−algebras and L∞−algebras
were investigated. The relations between Hochchild and
Cyclic homology of A∞−algebras and between Cyclic and
Dihedral homology of A∞−algebras were found, as shown
in the following:

· · · → −H Dn+1 (A )
∂−→ +H Dn (A )

j−→ H Cn (A )
i−→ −H Dn (A )

∂−→ +H Dn−1 (A )→ . . . .

The isomorphism between primitive and indecomposable
elements in the L∞−algebras was introduced. It has been
proved that

PH∗ (BL )∼= JL andJH∗ (FK )∼= PK

The relation between the Cyclic and Dihedral cohomology
of L∞−algebras was obtained as

H C
•(L )∼= H D

•
−(L )⊕H D

•
−(L ).

Finally the Mayer-Vietoris sequence of L∞−algebras was
studied in the form of

· · · → H Dn (L )
k,l−→ H Dn(M )

⊕
H Dn (N )

i, j−→ H Dn (M ∩N )
∂−→ H Dn−1 (L )→ ··· .
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