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Abstract: In this paper, authors introduce a new fractional differential order operator given as a combination between the usual

derivative and a fractional differential operator without singular kernel. The new approach is defined through a fractional integral

order and based on the Caputo viewpoint. Some properties are given to illustrate the results. Also calculus of integral of an interesting

function is illustrated.
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1 Introduction

A fractional differential operator is an integral operator
which generalizes the ordinary derivative, such that if the
fractional derivative is represented by Dα then, when
α = n, it coincides with the usual differential operator Dn

[1]. Its origin dates back to 1695 when L’Hopital raised
by a letter to Leibniz the question of how the expression

Dnu(t) =
dn

dtn
u(t),

should be understood if n was a real number [1]. Since
then, this new branch turned out to be very attractive to
mathematicians such as Euler, Laplace, Fourier,
Liouville, Riemann, Laurent, Weyl and Abel who first
applied it in physics to solve the integral equation arising
from the tautochron problem [2]. Since then, Fractional
Calculus has become popular and useful due to its ability
to describe some natural phenomena in numerous fields
of engineering such as theory of viscoelasticity [3,4,5],
study of the anomalous diffusion phenomenon [6,7,8],
circuit theory [9,10,11] and image processing [12,13],
among other applications. Various definition of fractional
derivatives have been introduced [14]-[20]. In fact, the
Grunwald-Letnikov fractional derivative, defined as a

limit of a fractional order backward difference, is one of
the first introduced fractional operators. Other definition
which also plays a major role in Fractional Calculus is the
Riemann-Liouville fractional derivative. The Caputo
fractional derivative, which is useful for the formulation
and solution of applied problems, has also been defined
via a modified Riemann-Liouville fractional derivative. In
2015, Caputo and Fabrizio introduced a new fractional
differential approach without singular kernel [20]. The
interest for this new approach was born from the prospect
that there is a class of non-local systems, which have the
ability to describe the material heterogeneities and the
fluctuations of different scales, which cannot be well
described by classical local theories or by fractional
models with singular kernel [20,21]. The propose of this
paper is to suggest a new fractional differential operator
which is given as a combination between the usual
derivative and a fractional differential operator without
singular kernel. We think that this way of defining a
fractional derivative may be helpful in describing the real
world problems which cannot be well described by
traditional calculus theory or by models involving
fractional operators with singular kernel only. The new
approach is defined through a fractional integral order.
The paper also contains some properties concerning the
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behavior of this new derivative. Finally, we have also
calculated primitives of an interesting function.

2 Definitions

Here, we give some definitions which will be needed in
our subsequent discussions.

Definition 2.01A function f : [a,b] −→ R is said to be

absolutely continuous, denoted by f ∈ AC[a,b], on [a,b]
if, given ε > 0 there exist some σ > 0 such that

n

∑
k=1

| f (yk)− f (xk)|< ε.

whenever {[xk,yk] : i = 1, ...,n} is a finite collection of

mutully disjoint subintervals of [a,b] with

n

∑
k=1

|yk − xk|< σ .

Definition 2.02Let n ∈ N := 1,2,3, · · · and

k = 1,2, · · · ,n− 1, the space ACn[a,b] is defined as

ACn[a,b]

= { f : [a,b]−→R, f k(t) ∈C[a,b], f n−1(t) ∈ AC[a,b]}.

Definition 2.03Let u(t) ∈ L1
loc(R) and

f (t) = 0, t ∈ (0,+∞). The Laplace transform of f (t) is

defined by

L{ f (t)}(s) = lim
A−→∞

∫ A

0
e−st f (t)dt,

for those numbers s for which this limit exists.

3 A new fractional differential operator

To achieve the goal outlined above, we propose the
following definitions.

Definition 3.01Let a ≥ 0 and f ∈ AC[a,b]. The new

fractional integral of order α > 0 is given by

Iα
at f (t) = (1−α) f (t)+

1

Γ (α)

∫ t

a
(t + τ)α−1 f (τ)dτ. (1)

In the case of f ∈ L1(a,b), the operator Iα
at f (t) ∈ L1(a,b).

For α = 0, we define I0
at f (t) = f (t). This definition is

motivated by the following reasoning. Suppose that
f ∈ C1([a,b]). Then, after integration by parts, from (1),
we obtain

Iα
at f (t) = (1−α) f (t)+

1

Γ (α + 1)

[

(at)α f (t)

− (t +α)α f (a)
]

− 1

Γ (α + 1)

∫ t

a
(t + τ)α f ′(τ)dτ.

So that

lim
α−→0

Iα
at f (t) = f (t)+ f (t)− f (a)− f (t)+ f (a) = f (t).

That is, when α is zero we recover the initial function and
if also α is 1, we obtain the ordinary integral.

Definition 3.02Let a ≥ 0, n − 1 < α ≤ n ∈ N and

f ∈ ACn[a,b]. The new fractional derivative of order α is

given by

D
α ,n
at f (t) = In−α

at

(

dn

dtn
f (t)

)

= [(α + 1)− n] f (n)(t)

+
1

Γ (n−α)

∫ t

a
(t + τ)n−(α+1) f (n)(τ)dτ. (2)

Taking α −→ n, we obtain

lim
α−→n

D
n,α
at f (t) = I0

at

(

dn

dtn
f (t)

)

= f (n)(t).

4 Some properties of the proposed operator

In this section, we study some properties related to the new
proposed fractional differential operator.

Theorem 4.01Let a ≥ 0, β ,µ ∈ R such that n− 1 < α ≤
n ∈N. Then

D
α ,n
at (µ f (t)+β g(t)) = µ ·Dα ,n

at f (t)+β ·Dα ,n
at g(t).

Proof: From Definition 3.02, we obtain

D
α ,n
at (µ f (t)+β g(t)) =

= [(α + 1)− n] ·
(

µ f (n)(t)+β g(n)(t)
)

+
1

Γ (n−α)

∫ t

a
(t + τ)n−(α+1)

(

µ f (n)(τ)+β g(n)(τ)
)

dτ

= [(α + 1)− n] ·µ f (n)(t)

+
µ

Γ (n−α)

∫ t

a
(t + τ)n−(α+1) f (n)(τ)dτ

+[(α + 1)− n] ·β g(n)(t)

+
β

Γ (n−α)

∫ t

a
(t + τ)n−(α+1)g(n)(τ)dτ

= µ ·Dα ,n
at f (t)+β ·Dα ,n

at g(t)

Theorem 4.02Let a ≥ 0 and n− 1 < α ≤ n ∈ N. Then

D
α ,n
at f (t) =

= [(α + 1)− n] f (n)(t)

+
n−1

∑
k=0

1

Γ (n−α − k)

[

(−1)k(2t)n−1−k−α f (n−1−k)(t)

+ (−1)k+1(t + a)n−1−k−α f n−1−k(a) ]

+
(−1)n

Γ (n−α)

[

Π n−1
k=0 (k−α)

]

∫ t

a
(t + τ)−(α+1) f (τ)dτ (3)
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Proof.Performing repeatedly the method of integration by
parts n times, we obtain
∫ t

a
(t + τ)n−(α+1) f (n)(τ)dτ =

=
n−1

∑
k=0

Γ (n−α)

Γ (n−α − k)

[

(−1)k(2t)n−1−k−α f (n−1−k)(t)

+ (−1)k+1(t + a)n−1−k−α f n−1−k(a) ]

+ (−1)n
[

Π n−1
k=0 (k−α)

]

∫ t

a
(t + τ)−(α+1) f (τ)dτ. (4)

Combining (2) with (4), we obtain (3).

Theorem 4.03Let a ≥ 0 and n− 1 < α ≤ n ∈ N. Then

Iα
at

(

D
α ,n
at f (t)

)

= (1−α)Dα ,n
at f (t)+ (α + 1− n)Iα

at f (n)(t)

− (1−α)(α + 1− n) f (n)(t). (5)

Proof: We obtain

Iα
at

(

D
α ,n
at f (t)

)

=

= (1−α)Dα ,n
at f (t)+

1

Γ (α)

∫ t

a
(t + τ)α−1D

α ,n
aτ f (τ)dτ

= (1−α)Dα ,n
at f (t)+

α + 1− n

Γ (α)

∫ t

a
(t + τ)α−1 f (n)(τ)dτ

+
1

Γ (α)

∫ t

a
(t + τ)α−1

{

∫ τ

a
(τ + s)α−1 f (n)(s)ds

}

dτ

(6)

Adding and resting terms, (6) can be written as

Iα
at

(

D
α ,n
at f (t)

)

=

= (1−α)Dα ,n
at f (t)+ (1−α)(α + 1− n) f (n)(t)

+
α + 1− n

Γ (α)

∫ t

a
(t + τ)α−1 f (n)(τ)dτ

x− (1−α)(α + 1− n) f (n)(t)

+
1

Γ (α)

∫ t

a
(t + τ)α−1

{

(α + 1− n)Γ (n−α) f (n)(τ)

+
Γ (n−α)

Γ (n−α)

∫ τ

a
(τ + s)n−(α+1) f (n)(s)ds

− (α + 1− n)Γ (n−α) f (n)(τ)

}

dτ (7)

From (7), yields Formula (6) can be rewritten as

Iα
at

(

D
α ,n
at f (t)

)

=

= (1−α)Dα ,n
at f (t)+ (α + 1− n)Iα

at f (n)(t)

− (1−α)(α + 1− n) f (n)(t)

+
Γ (n−α)

Γ (α)

∫ t

a
(t + τ)α−1D

α ,n
aτ f (τ)dτ

− (α + 1− n)Γ (n−α)

Γ (α)

∫ τ

a
(t + τ)α−1 f (n)(τ)dτ.

By adding and resting again, we get

Iα
at

(

D
α ,n
at f (t)

)

=

= (1−α)Dα ,n
at f (t)+ (α + 1− n)Iα

at f (n)(t)

− (1−α)(α + 1− n) f (n)(t)

+Γ (n−α)

{

(1−α)Dα ,n
at f (t)+

1

Γ (α)
·

·
∫ t

a
(t + τ)α−1D

α ,n
aτ f (τ)dτ − (1−α)Dα ,n

at f (t)

}

− (α + 1− n)Γ (n−α)

{

(1−α) f (n)(t)+
1

Γ (α)
·

·
∫ t

a
(t + τ)α−1 f (n)(τ)dτ − (1−α) f (n)(t)

}

. (8)

From (8), we obtain

Iα
at

(

D
α ,n
at f (t)

)

=

= (1−α)(1−Γ (n−α))Dα ,n
at f (t)

+Γ (n−α)Iα
at

(

D
α ,n
at f (t)

)

+(α + 1− n)(1−Γ(n−α))Iα
at f (t)

− (1−α)(α + 1− n)(1−Γ(n−α)) f (n)(t). (9)

Equality (5) follows from (9).

Theorem 4.04Let a ≥ 0 and n− 1 < α ≤ n ∈ N. Then

D
α ,n
at (Iα

at f (t))

= (1−α)Dα ,n
at f (t)+

[

α + 1

− n− (1−α)Γ (α)

Γ (n−α)

]

dn

dtn
(Iα

at f (t))

+

[

(1−α)2Γ (α)

Γ (n−α)
− (α

+ 1− n)(1−α)

]

f (n)(t)

− (1−α)Γ (α)

Γ (n−α)
Iα
at f (n)(t)

+
Γ (α)

Γ (n−α)
Iα
at

(

dn

dtn
(Iα

at f (t))

)

(10)
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Proof: We have

D
α ,n
at (Iα

at f (t))

= D
α ,n
at

[

(1−α) f (t)+
1

Γ (α)
·

·
∫ t

a
(t + τ)α−1 f (τ)dτ

]

= (1−α)Dα ,n
at f (t)+

1

Γ (α)
·

·Dα ,n
at

[

∫ t

a
(t + τ)α−1 f (τ)dτ

]

+(1−α)Dα ,n
at f (t)+

α + 1− n

Γ (α)
· dn

dtn

∫ t

a
(t + τ)α−1 f (τ)dτ

+
1

Γ (α)Γ (n−α)

∫ t

a
(t + τ)α−1·

·
{

dn

dτn

∫ τ

a
(τ + ξ )α−1 f (ξ )dξ

}

dτ. (11)

Equality (11) can be rewritten as

D
α ,n
at (Iα

at f (t))

= (1−α)Dα ,n
at f (t)+ (α + 1− n)

dn

dtn
(Iα

at f (t))

− (1−α)(α + 1− n) f (n)(t)

− 1−α

Γ (n−α)

∫ t

a
(t + τ)α−1 f (n)(τ)dτ

+
1

Γ (n−α)

∫ t

a
(t + τ)α−1

(

dn

dτn
Iα
at f (t)

)

dτ. (12)

From (12), we obtain

D
α ,n
at (Iα

at f (t))

= (1−α)Dα ,n
at f (t)+ (α + 1− n)

dn

dtn
(Iα

at f (t))

− (1−α)(α + 1− n) f (n)(t)

+
Γ (α)

Γ (n−α)
Iα
at

(

dn

dtn
Iα
at f (t)

)

− (1−α)Γ (α)

Γ (n−α)

(

dn

dtn
Iα
at f (t)

)

− (1−α)Γ (α)

Γ (n−α)
Iα
at f (n)(t)+

(1−α)2Γ (α)

Γ (n−α)
f (n)(t).

(13)

The result (10) follows from (13).

5 Integral of an interesting function

This section contains a set of statements in the form of
theorem and lemmas according to the standard calculus

for undergraduate courses. The main gaol is to prove the
following theorem:

Theorem 5.01Let b,C ∈R, n∈N, n> 1, i=
√
−1, θ given

by (23) and

α =−
√

n+ 1

n
i− n+ 1

n
− b.

Then
∫

x
n
√

x+ bexdx

=
n

2αn+(θ + b)n+ 2n+ 1

[

(x−θ ) n

√

(x+ b)n+1

−
(

x−θ −α +

√

n+ 1

n
i− 1

)

·
(

x−θ −α −
√

n+ 1

n
i

− n+ 1

n

)

n

√

x−θ −α −
√

n+ 1

n
i− n+ 1

n

]

ex +C. (14)

To prove theorem 5.01, we need the following lemmas:

Lemma 5.01Let n ∈N, n > 1, i =
√
−1 and C ∈ R. Then

∫

(

x+

√

n+ 1

n
i

)2

n

√

x− n+ 1

n
exdx

=

(

x+ 2

√

n+ 1

n
i− 1

)

·
(

x− n+ 1

n

)

n

√

x− n+ 1

n
ex +C.

(15)

Proof: We obtain

∫

(

x+ 2

√

n+ 1

n
ix− n+ 1

n

)

n

√

x− n+ 1

n
exdx

=

(

x+ 2

√

n+ 1

n
i− 1

)

·
(

x− n+ 1

n

)

n

√

x− n+ 1

n
ex
,

(16)

by using the method of integration by parts. Since

x2 + 2

√

n+ 1

n
ix− n+ 1

n
=

(

x+

√

n+ 1

n
i

)2

,

then, the formula (15) follows from (16).

Lemma 5.02Let n ∈N(n > 1), i =
√
−1 and C ∈ R. Then

∫

x2 n

√

x−
√

n+ 1

n
i− n+ 1

n
· exdx

=

(

x+

√

n+ 1

n
i− 1

)

·
(

x−
√

n+ 1

n
i

− n+ 1

n

)

n

√

x−
√

n+ 1

n
i− n+ 1

n
ex +C. (17)
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Proof:From the change of variable

x = t +

√

n+ 1

n
i,

we obtain

∫

x2 n

√

x−
√

n+ 1

n
i− n+ 1

n
· exdx

= e

√

n+1
n i
∫

(

t +

√

n+ 1

n
i

)2

n

√

t − n+ 1

n
etdt. (18)

Formula (17) follows from combining the lemma 5.01
with the equality (18).

Lemma 5.03Let n ∈ N, n > 1, i =
√
−1 and b,C ∈ R and

α =−
√

n+ 1

n
i− n+ 1

n
− b.

Then
∫

(x−α)2 n
√

x+ bexdx

=

(

x−α +

√

n+ 1

n
i− 1

)

·
(

x−α −
√

n+ 1

n
i

− n+ 1

n

)

n

√

x−α −
√

n+ 1

n
i− n+ 1

n
ex +C. (19)

Proof: Using the change of variable x = α + t, we obtain

∫

(x−α)2 n
√

x+ bexdx

= eα
∫

t2 n

√

t −
√

n+ 1

n
i− n+ 1

n
etdt. (20)

Formula (19) is obtained by combining (20) with the
lemma 5.02.

Lemma 5.04Let b, C ∈ R, n ∈N, n > 1, i =
√
−1 and

α =−
√

n+ 1

n
i− n+ 1

n
− b

then

∫

[

x+
(b−α2)n

2αn+ bn+ 2n+ 1

]

n
√

x+ bexdx

=
n

2αn+ bn+ 2n+ 1

[

x n

√

(x+ b)n+1ex

−
(

x−α +

√

n+ 1

n
i− 1

)

·
(

x−α −
√

n+ 1

n
i

− n+ 1

n

)

n

√

x−α −
√

n+ 1

n
i− n+ 1

n
ex

]

+C. (21)

Proof: Integrating by parts, we obtain

∫

[

x+
(b−α2)n

2αn+ bn+ 2n+1

]

n
√

x+ bexdx

=
n

2αn+ bn+ 2n+1

[

x
n

√

(x+ b)n+1ex

−
∫

(x−α)2 n
√

x+ bexdx

]

(22)

Combining (22) with Lemma 5.03, we obtain (21).

Lemma 5.05Let b, C ∈ R, n ∈ N, n > 1, i =
√
−1 and

α =−
√

n+ 1

n
i− n+ 1

n
− b,

∆ = (1+ b2+ 4α + 4bα + 6b)n2 +(4α + 2+ 2b)n+ 1.

Then the two following equalities are equivalent:

θ =
(θ + b−α2)n

2αn+(θ + b)n+ 2n+ 1

θ =
−(bn+ n+ 1+2αn)±

√
∆

2n
. (23)

Proof: Formula

θ =
(θ + b−α2)n

2αn+(θ +β )n+ 2n+ 1
,

is equivalent to equality

nθ 2 +(bn+ n+ 1+2αn)θ− (b−α2)n = 0, (24)

which again can be rewritten as

θ =
−(bn+ n+ 1+2αn)±

√
∆

2n
,

where

∆ = (1+ b2+ 4α + 4bα + 6b)n2 +(4α + 2+ 2b)n+ 1.

Now we are in conditions to prove Theorem 5.01.

Proof: Let θ given by (23). Using the change of variable
x = t +θ , we obtain

∫

x
n
√

x+ bexdx

=

∫

(t +θ )
n
√

t +θ + bet+θ dt.

Combining Lemma 5.05 with the previous equality, we get
∫

x
n
√

x+ bexdx

= eθ
∫

(

t +
(θ + b−α2)n

2αn+(θ + b)n+ 2n+ 1

)

n
√

t +(θ + b)etdt.

(25)

Formula (14) is obtained by combining (25) with Lemma
5.04.
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6 Conclusion

The aim of this paper was to suggest a new fractional
differential operator by combining the usual derivative
with an integral operator without singular kernel. The
fractional differential operator term is based upon the
Caputo viewpoint. Some properties have been obtained to
illustrate the results. Also primitives of an interesting
function have been calculated.
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