2022

Asymptomatic and Pre-Symptoms Transmission of COVID-19 in Heterogeneous Epidemic Network

H. A. A. El-Saka
Mathematics Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt, mmlashin@pnu.edu.sa

Ayman Al-Dmour
Department of Computer Science, Applied Science University, Bahrain, mmlashin@pnu.edu.sa

Ibrahim Obaya
Basic Science Department, Nile Higher Institute for Engineering & Technology, Mansoura, Egypt
Department of Mathematics, Faculty of Science, Mansoura University, P.O. Box 64, Mansoura 35516, Egypt, mmlashin@pnu.edu.sa

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl

Recommended Citation

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo, u.murad@aaru.edu.jo.
Asymptomatic and Pre-Symptoms Transmission of COVID-19 in Heterogeneous Epidemic Network

H. A. A. El-Saka¹, Ayman Al-Dmour² and Ibrahim Obaya³,⁴

¹Mathematics Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
²Department of Computer Science, Applied Science University, Bahrain
³Basic Science Department, Nile Higher Institute for Engineering & Technology, Mansoura, Egypt
⁴Department of Mathematics, Faculty of Science, Mansoura University, P.O. Box 64, Mansoura 35516, Egypt

Received: 19 Jun. 2021, Revised: 2 Aug. 2021; Accepted: 29 Sep. 2021
Published online: 1 Jan. 2022.

Abstract: The diversity of the spread pattern of the Corona virus is one of the most important reasons for the seriousness of the virus. Therefore, in this paper, we present a fractional mathematical SEIAS model that studies many ways of spreading (asymptomatic and pre-symptoms transmission) with the hypothesis of the spread of the virus in a heterogeneous network of individuals. The system consists of nonlinear equations which formed in fractional order. And it turns out that the system has two equilibrium positions (free and endemic positions). We also calculated the disease prevalence threshold ($R_0$) within the network. The condition for the existence of the epidemiological situation has been determined. The stability of the free equilibrium position has been studied. The numerical part has been added to explain the proved theorems of the system in addition to clarifying the role of the heterogeneous network on the value of the virus spread threshold within the network.

Keywords: Complex Networks, Novel Coronavirus (COVID-19), Asymptomatic and Pre-Symptoms Transmission, Basic Reproductive Number and Fractional Calculus.

1 Introduction

After the announcement in January 2020 of the beginning of the spread of coronavirus (COVID-19) in the Chinese city of Wuhan, which quickly spread in China and all countries of the world until it became a global epidemic threatening the lives of many [21-22]. Since then, many government agencies and international organizations concerned with the spread of epidemics have sought to study the outbreak of the COVID-19. From the medical side, we find the continuous search for a vaccine against COVID-19, as virologists seek to know the nature of the virus, which helps to know the pattern of its spread and also how to confront it [18-20]. And we cannot exclude the role of mathematical modeling as a tool and a means in order to predict the pattern of the spread of virus and determine the basic reproductive number of the spread of virus. Mathematical models differ from one another due to the assumptions used in creating the mathematical model. In this regard, we present a mathematical model simulating the current situation based on the attained and announced characteristics of COVID-19.

After the novel corona virus was considered a global epidemic that invaded most of the countries of the world, we find that the nature of the spread of the virus is different from one region to another, which appears in the numbers of infected people. And when focusing on the method of spreading, we find that it is recognized that the transmission of infection occurs from a person with COVID-19 to an uninfected person. What is meant by a person infected with COVID-19 here is a person who shows and develops the common symptoms that characterize the infection of COVID-19 [8-11]. The infection is transmitted by many methods, such as close contact with an infected person, through the droplets that comes out of the infected person when coughing, sneezing or speaking and by touching the surfaces on which the injured person's droplets has fallen [1-7].

On the other hand, the transmission of infection is not
limited to infected persons who show complete symptoms of the disease. It is possible to transmit infection in the period before the symptoms (incubation period), which is the period from the beginning of exposure to the virus until the onset of symptoms. The transmission of infections from people in the incubation period appeared in a number of reports and medical studies. And those studies were based on the fact that some tests that were done for some people to detect the virus show positive results, and that is 1-3 days before the symptoms appear [6-16].

And not only that, some laboratory cases have been confirmed as having COVID-19 but without any symptoms (Asymptomatic) [12-17]. Such cases can help to transmit infection between individuals, while it is difficult to determine its source. And such cases are not counted among the infected numbers in addition to that they do not enter between the cases of health isolation. Such phenomena have an effective role on the spread of infection, as we need to take more precautionary and preventive measures not similar to the one taken if the infection is caused by a person with confirmed symptoms. Also, the transmission of the disease through an asymptomatic person or pre-symptoms one can lead to a continuous spread of the infection that prevents it from being controlled.

During the formation of mathematical models, society is divided into several groups, according to the nature of the infection caused by the virus. According to the data issued by the Korea Centers for Disease Control and prevention, positive cases of COVID-19 were discovered again after a complete recovery. On April 9, 2020, this number was 74 cases before it doubled within one week and reached 163 positive cases, which caused a state of panic and intense fear of the possibility of reinfection again. Accordingly, the SEIAS type was chosen to be appropriate to the prevalence of the virus with the addition of a new class that expresses the asymptomatic individuals.

The heterogeneous nature of daily interactions between individuals requires us to use heterogeneous network models.

because of their preference and accuracy in expressing the status of an infected community [31]. Where the infected community is represented by an epidemiological network in which the individuals are the network nodes and the connections (links) between those nodes represent the communication between the members of the community. In addition, we will use a fractional order for the system that used to describe infection transmission instead of using the integer order [23-30]. Where fractional orders are distinguished when used in differential equations with several features, among them they have the effect of nonlocality, as well as the memory in the definition of fractional order. We will use the definition of Caputo which is defined as [23].

\[
\frac{\alpha}{\partial t} f(t) = \frac{1}{\Gamma(1-\alpha)} \int_{a}^{t} (t-s)^{-\alpha} f'(s)ds,
\]

where \(0 < \alpha \leq 1\).

### 2 Dynamical Models

In this modeling study, the population is divided into four compartments susceptible, exposed, infected and asymptomatic. The susceptible individuals can be exposed due to interacting with infected, asymptomatic and pre-symptoms one. The exposed person becomes asymptomatic at rate \(\mu\) and infected at rate \((1-\mu)\) after the incubation period \(\sigma\). The infected and the asymptomatic persons become susceptible again after the infectious period at rates \(\gamma_1\) and \(\gamma_2\) respectively. The population size is variant due to births and the deaths.

The dynamical model is defined as follows:

\[
\frac{\alpha}{\partial t} S_k(t) = A - \frac{k\beta_1S_k(t)\Theta_1(t)}{N_k(t)} - \frac{k\beta_2S_k(t)\Theta_2(t)}{N_k(t)}
- \frac{k\beta_3S_k(t)\Theta_3(t)}{N_k(t)} + \gamma_1I_k(t) + \gamma_2A_k(t) - BS_k(t),
\]

\[
\frac{\alpha}{\partial t} E_k(t) = \frac{k\beta_1S_k(t)\Theta_1(t)}{N_k(t)} + \frac{k\beta_2S_k(t)\Theta_2(t)}{N_k(t)}
- B E_k(t),
\]

\[
\frac{\alpha}{\partial t} I_k(t) = (1-\mu)\sigma E_k(t) - \gamma_1I_k(t) - dI_k(t) - BI_k(t).
\]

### Table 1: The definitions of the parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Birth rate.</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>The infectious rate from infected individual.</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>The infectious rate from asymptomatic individual.</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>The infectious rate from pre-symptoms individual.</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>Recovery rate of infected individual and be susceptible again.</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>Recovery rate of asymptomatic individual and be susceptible again.</td>
</tr>
<tr>
<td>(B)</td>
<td>Natural death rate.</td>
</tr>
<tr>
<td>(d)</td>
<td>Death rate due to disease.</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Rate of becoming infectious after latency.</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Rate of becoming asymptotically infected.</td>
</tr>
</tbody>
</table>
\(\frac{\partial}{\partial t} A_k(t) = \mu \sigma E_k(t) - \gamma_2 A_k(t) - BA_k(t),\)  
\hspace{1cm} (4)

where, \(S_k(t), E_k(t), I_k(t)\) and \(A_k(t)\) are the number of susceptible, exposed, infected and asymptomatic persons at time \(t\) with degree \(k\) \((1 \leq k \leq n)\), \(n\) is the maximum degree of a node. \(\Theta_1(t), \Theta_2(t)\) and \(\Theta_3(t)\) are the probability to be linked with an infected, asymptomatic and exposed node respectively, which are defined as

\[
\Theta_1(t) = \frac{\sum_k kP(k)I_k(t)}{\langle k \rangle},
\]

\[
\Theta_2(t) = \frac{\sum_k kP(k)A_k(t)}{\langle k \rangle},
\]

\[
\Theta_3(t) = \frac{\sum_k kP(k)E_k(t)}{\langle k \rangle},
\]

where \(\langle k \rangle = \sum_k kP(k)\), \(P(k)\) is the degree distribution of the population and \(N_k(t)\) is the total population of degree \(k\).

**Fig. 1:** The dynamical behavior of system (1)-(4).

### 2.1 Existence of Steady States

The next theorem explains the existence of the equilibrium points.

**Theorem 1.** Define

\[
R_0 = \frac{(k^2) [\gamma_1 (1 - \mu) \sigma (y_2 + B) + \beta_1 \mu \sigma (y_1 + d + B) + \beta_2 (y_1 + d + B) (y_2 + B)]}{\langle k \rangle (\sigma + B) (y_1 + d + B) (y_2 + B)}
\]

\hspace{1cm} (5)

If \(R_0 < 1\) then the system (1)-(4), has a unique free disease equilibrium point \(P_0 = \left\{ \frac{A}{B}, 0, 0, 0 \right\}_{1 \leq k \leq n}\), and if \(R_0 > 1\), the free disease equilibrium point \(P_0\) is existing in addition to a unique endemic point \(P_* = \{S_k, E_k, I_k, A_k\}_{1 \leq k \leq n}\), where,

\[
S_k^* = \frac{(\sigma + B)(y_1 + d + B) I_k^* (A - d I_k)}{k\phi B (1 - \mu) \sigma},
\]

\[
E_k^* = \frac{(y_1 + d + B) I_k^*}{(1 - \mu) \sigma},
\]

\[
A_k^* = \frac{\mu (y_1 + d + B) I_k^*}{(\gamma_2 + B) (1 - \mu)}.
\]

\[
l_k^* = \frac{1}{2d(y_2 + B)(y_1 + d + B)(\sigma + B)} \left[ k\phi B (1 + \mu) \sigma + \gamma_2 \right.
\]

\[
+ \left. (B + d) (B (B + d) + \gamma_2 (B + (1 - \mu) \sigma)) \right] + A(y_2 + B) (y_1 + d + B)(\sigma + B) - \sqrt{D}.
\]

**Proof.** After some algebraic calculations \([33-37]\), we find the disease-free steady state is \(P_0 = \left\{ \frac{A}{B}, 0, 0, 0 \right\}_{1 \leq k \leq n}\).

For the existence of the endemic steady state, we have

\[
S_k = \frac{(\sigma + B)(y_1 + d + B) I_k (A - d I_k)}{k\phi B (1 - \mu) \sigma},
\]

\[
E_k = \frac{(y_1 + d + B) I_k}{(1 - \mu) \sigma},
\]

\[
A_k = \frac{\mu (y_1 + d + B) I_k}{(\gamma_2 + B) (1 - \mu)}.
\]

\[
h(I_k) = r_2 I_k^2 - r_1 I_k + r_0 = 0,\]

\hspace{1cm} (6)

where,

\[
r_2 = d(y_2 + B)(y_1 + d + B)(\sigma + B) > 0,
\]

\[
r_1 = k\phi B (1 + \mu \sigma + \gamma_2) + (B + d) (B (B + d) + \gamma_2 (B + (1 - \mu) \sigma)) + A(y_2 + B) (y_1 + d + B)(\sigma + B) > 0,
\]

\[
r_0 = A(1 - \mu) \sigma k\phi (y_2 + B) > 0,
\]

\[
\phi(t) = \beta_1 \Theta_1(t) + \beta_2 \Theta_2(t) + \beta_3 \Theta_3(t).
\]

Thus, the existence of the endemic equilibrium depending on solving equation (5) with respect to \(I_k\) where the solution \(I_k \in \left[ 0, \frac{A}{B} \right] \). By solving the second-degree polynomial, we get two solutions as follow
\begin{equation}
I_k^2 = \frac{1}{2d(y_2 + B)(y_1 + d + B)(\sigma + B)} \left[ k\phi [B\gamma_1 (B + \mu \sigma + \gamma_2) + (B + d)(B(B + d) + \gamma_2 (B + (1 - \mu)\sigma))] + A(y_2 + B)(y_1 + d + B)(\sigma + B) + \sqrt{D} \right],
\end{equation}

where, \( D = r_1^2 - 4r_2r_0 \).

We have \( I_k^2 \times I_k^2 \geq \frac{r_0}{r_2} > 0 \) and \( I_k^2 > 0 \). So, we get
\[ \text{As the basic reproductive number, where} \]
\[ (k^2) = \sum k^2 P(k). \]

\section{2.2 The Threshold Value with Next Generation Method and Local Stability}
By using the next generation method \cite{32}, we present the following theorem.

\textbf{Theorem 2.} The disease-free equilibrium point \( P_0 \) of model \((1)-(4)\) is locally asymptotically stable if \( R_0 < 1 \) and unstable if \( R_0 > 1 \).

\textbf{Proof.} We take only the three equations of exposed, infected and asymptomatic persons \( E_k(t), I_k(t) \) and \( A_k(t) \) as follow:
\begin{equation}
\begin{aligned}
\frac{d}{dt}E_k(t) &= \frac{kS_k(t)\phi(t)}{N_k(t)} - \sigma E_k(t) - BE_k(t), \\
\frac{d}{dt}I_k(t) &= (1 - \mu)\sigma E_k(t) - \gamma_1 I_k(t) - dI_k(t) - BI_k(t), \\
\frac{d}{dt}A_k(t) &= \mu \sigma E_k(t) - \gamma_2 A_k(t) - BA_k(t).
\end{aligned}
\end{equation}

The matrix
\begin{equation}
F = \begin{pmatrix}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{pmatrix}_{3n \times 3n}
\end{equation}
referred to the new infected cases entering \( E_k(t), I_k(t) \) and \( A_k(t) \) compartments and evaluated at the disease-free equilibrium point \( P_0 \). We have
\begin{equation}
\begin{aligned}
F_{11} &= \begin{pmatrix}
P(1) & 2P(2) & \cdots & nP(n) \\
\vdots & \vdots & \ddots & \vdots \\
nP(1) & 2nP(2) & \cdots & n^2P(n)
\end{pmatrix}_{n \times n}, \\
F_{12} &= \begin{pmatrix}
P(1) & 2P(2) & \cdots & nP(n) \\
\vdots & \vdots & \ddots & \vdots \\
nP(1) & 2nP(2) & \cdots & n^2P(n)
\end{pmatrix}_{n \times n}, \\
F_{13} &= \begin{pmatrix}
P(1) & 2P(2) & \cdots & nP(n) \\
\vdots & \vdots & \ddots & \vdots \\
nP(1) & 2nP(2) & \cdots & n^2P(n)
\end{pmatrix}_{n \times n}, \\
F_{21} &= F_{22} = F_{23} = F_{31} = F_{32} = F_{33} = 0
\end{aligned}
\end{equation}

referred to the transmission between and out of exposed, infected and asymptomatic compartments and evaluated at the disease-free equilibrium point \( P_0 \). We get
\begin{equation}
\begin{pmatrix}
V_{11} & V_{12} & V_{13} \\
V_{21} & V_{22} & V_{23} \\
V_{31} & V_{32} & V_{33}
\end{pmatrix}_{3n \times 3n}
\end{equation}

\begin{align*}
\phi(0) &= 0, \quad 0 < \phi(t) < \beta_1 + \beta_2 + \beta_3.
\end{align*}

We have \( g(0) = 0, \lim_{\phi \to \infty} g(\phi) > 0, \frac{dg}{d\phi} > 0 \) and \( \frac{d^2 g}{d\phi^2} < 0 \)
then, a non-trivial solution exists if and only if \( \frac{d^2 \phi}{d\phi^2} \phi = 0 > 1 \).

Therefore,
\begin{equation}
R_0 = \left( \frac{k^2}{(k)} \left[ \phi(1) \sigma \gamma_2 + \phi(1) \sigma \gamma_2 + \beta \phi(1) \sigma \gamma_2 + \beta \phi(1) \sigma \gamma_2 \right] \right)_{3n \times 3n}.
\end{equation}
\[ V_{11} = (\sigma + B) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}, \]
\[ V_{21} = (-(1 - \mu)\sigma) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}, \]
\[ V_{22} = (y_1 + d + B) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}, \]
\[ V_{31} = (-\mu \sigma) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}, \]
\[ V_{33} = (y_2 + B) \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{n \times n}, \]
\[ V_{12} = V_{13} = V_{23} = V_{32} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{n \times n}. \]

Then, the matrix \( FV^{-1} \) has the characteristic equation

\[ x^n \left( k^2 \left[ \beta_1(1 - \mu)\sigma(y_2 + B) + \beta_2\mu \sigma(y_1 + d + B) + \beta_3(y_1 + d + B)(y_2 + B) \right] \right) \frac{(\sigma + B)(y_1 + d + B)(y_2 + B)}{(k^2)} - x^n = 0. \]

It has \( 2n \) eigenvalues equal to zero and \( n \) eigenvalues equal to

\[ \left( k^2 \left[ \beta_1(1 - \mu)\sigma(y_2 + B) + \beta_2\mu \sigma(y_1 + d + B) + \beta_3(y_1 + d + B)(y_2 + B) \right] \right) \frac{(\sigma + B)(y_1 + d + B)(y_2 + B)}{(k^2)} \]

which represents the basic reproductive number \( R_0 \).

### 3 Numerical Simulations

Obviously, from equation (5) the value of \( R_0 \) depends on an important parameter \( \frac{k^2}{k} \) which represent the heterogeneity of the network. Figures 2 explain the change in \( R_0 \) value with respect the value of maximum degree \( k \).

In table (2) we have the parameters values for three countries (USA, South Korea and Italy). We used the Adams-type Predictor-Corrector method [27-29] for solving the system (1)-(4) and showing the prediction curve of infected individuals.

Considering our network is a scale free network with \( p(k) = \rho k^{-\nu} \), where \( \rho \) is a constant satisfies \( \sum_k p(k) = 1 \) and \( 2 < \nu < 3 \) is the exponent of the power law distribution. Choosing \( \nu = 2.3 \) and \( n = 100 \) [37, 38].

**Fig. 2(a):** The change in \( R_0 \) value with respect the value of maximum degree \( k \) (South Korea).

**Fig. 2(b):** The change in \( R_0 \) value with respect the value of maximum degree \( k \) (Italy).

**Fig. 2(c):** The change in \( R_0 \) value with respect the value of maximum degree \( k \) (USA).
Table (2-a): Parameters values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>South Korea</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>980</td>
<td>1244</td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>$\beta_2$</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>$\beta_3$</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>$\gamma_1$</td>
<td>0.4349</td>
<td>0.4349</td>
</tr>
<tr>
<td>$\gamma_2$</td>
<td>0.4349</td>
<td>0.4349</td>
</tr>
<tr>
<td>$B$</td>
<td>0.005573</td>
<td>0.0107</td>
</tr>
<tr>
<td>$d$</td>
<td>0.0000048</td>
<td>0.00046</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>0.2657</td>
<td>0.2657</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>$N_0$</td>
<td>51640000</td>
<td>60480000</td>
</tr>
<tr>
<td>$S_0$</td>
<td>51639556</td>
<td>60479556</td>
</tr>
<tr>
<td>$E_0$</td>
<td>84</td>
<td>9</td>
</tr>
<tr>
<td>$I_0$</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>$A_0$</td>
<td>22</td>
<td>2</td>
</tr>
</tbody>
</table>

Table (2-b): Parameters values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>USA</th>
<th>NYC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>3481608</td>
<td>300</td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>0.3813</td>
<td>0.1813</td>
</tr>
<tr>
<td>$\beta_2$</td>
<td>0.7065</td>
<td>0.2065</td>
</tr>
<tr>
<td>$\beta_3$</td>
<td>0.7065</td>
<td>0.1065</td>
</tr>
<tr>
<td>$\gamma_1$</td>
<td>0.4349</td>
<td>0.0149</td>
</tr>
<tr>
<td>$\gamma_2$</td>
<td>0.4349</td>
<td>0.049</td>
</tr>
<tr>
<td>$B$</td>
<td>6.7063×10^-8</td>
<td>0.000037596</td>
</tr>
<tr>
<td>$d$</td>
<td>0.00019</td>
<td>0.0000011975</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>0.2657</td>
<td>0.2657</td>
</tr>
<tr>
<td>$\mu$</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>$N_0$</td>
<td>328.2 million</td>
<td>8202000</td>
</tr>
<tr>
<td>$S_0$</td>
<td>328199856</td>
<td>82000000</td>
</tr>
<tr>
<td>$E_0$</td>
<td>45</td>
<td>500</td>
</tr>
<tr>
<td>$I_0$</td>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>$A_0$</td>
<td>12</td>
<td>500</td>
</tr>
</tbody>
</table>

Figure 3 for South Korea, figure 4 for Italy and figure 5 for USA for different $\alpha$ and $k$.

Also we used the transmission rates $\beta_1$, $\beta_2$ and $\beta_3$ as a function of time

$$
\beta_1(t) = \frac{\beta_1 - \beta_{101}}{1 + ct} + \beta_{01},
$$

$$
\beta_2(t) = \frac{\beta_2 - \beta_{202}}{1 + ct} + \beta_{02},
$$

$$
\beta_3(t) = \frac{\beta_3 - \beta_{303}}{1 + ct} + \beta_{03},
$$

Fig. 3(a): $\alpha = 0.7$.

Fig. 3(b): $\alpha = 0.85$.

Fig. 3(c): $\alpha = 0.95$.

Fig. 3: $R_0 = 9.1724$ (South Korea).
0 ≤ c ≤ 1, is a parameter that reflect the extent of adherence to the preventive instructions, $\beta_{91}, \beta_{02}$ and $\beta_{03}$ are the least value of transmission rates of infection due to infected, asymptomatic and pre-symptoms individual respectively.

Fig. 4:

- Fig. 4(a): $\alpha = 0.7$.
- Fig. 4(b): $\alpha = 0.85$.
- Fig. 4(c): $\alpha = 0.95$.

Fig. 4: $R_0 = 12.8568$ (Italy).

Fig. 5:

- Fig. 5(a): $\alpha = 0.7$.
- Fig. 5(b): $\alpha = 0.85$.
- Fig. 5(c): $\alpha = 0.95$.

Fig. 5: $R_0 = 46.8750$ (USA).

We assumed $\beta_{01} = 0.03, \beta_{02} = 0.009$ and $\beta_{03} = 0.009$.

In this case the value of $R_0$ becomes a function in time and taking the form.
\[ R_0(t) = \frac{(k^2)\{\beta_1(t)(1 - \mu)\sigma(y_2 + B) + \beta_2(t)\mu\sigma(y_1 + d + B) + \beta_3(t)(y_1 + d + B)(y_2 + B)\}}{(\sigma + B)(y_1 + d + B)(y_2 + B)} \]

The effect of parameter \( c \) appears in figures 6-11. A high value of \( c \) makes the peak of the infected individuals lower.

**Fig. 6(a):** \( c = 0.2 \) (South Korea).

**Fig. 6(b):** \( c = 0.2 \) (South Korea).

**Fig. 7(a):** \( c = 0.9 \) (South Korea).

**Fig. 7(b):** \( c = 0.9 \) (South Korea).

**Fig. 8(a):** \( c = 0.2 \) (Italy).

**Fig. 8(b):** \( c = 0.2 \) (Italy).

**Fig. 9(a):** \( c = 0.9 \) (Italy).
In figures (12), we plot the actual data collected from the beginning of the outbreak in New York city with light blue curve. At plotting the prediction curves for different $k$, we choose $\beta_1$, $\beta_2$ and $\beta_3$ as a function of time that defined in Eqs. (9). We take $c = 0.92$, $\beta_{01} = 0.001$, $\beta_{02} = 0.001$, $\beta_{03} = 0.001$ and the parameters value defined in table (2) for different values $\alpha$. We observed that, the actual data curve agreed with the prediction curve (yellow curve) when $k = 20$ and $\alpha = 0.75$ but after $t = 50$ see figure (12-a). In figure (12-b), with $\alpha = 0.85$ the prediction curve (red curve) at $k = 5$ matches more with the actual data. Changing the value of $\alpha = 0.9$, the actual curve does not match with any curve see figure (12-c). For another value for $\alpha = 0.98$, the actual data agree with the prediction curve (blue curve) at $k = 1$ see figure (12-d). From this comparison with the actual data, we can summarize that the fractional order $\alpha$ and the degree $k$ of the node in the network give us more possible cases that could be agree with the real data.
4 Conclusions

In this paper, a fractional SEIAS model is presented in heterogeneous network. The nodes of the network are chosen to be varying. The transmission due to asymptomatic and pre-symptoms persons plays an important role in the outbreak of COVID-19 so, we take into account its effect. We proved the existence of the disease-free equilibrium point and the endemic point. Also, we calculated the threshold value of system (1)-(4) in addition we studied the local stability of the disease-free equilibrium point. In the numerical section, the role of the heterogeneity and the degree of the node in the network is illustrated. We observed that when the maximum degree \( k \) of a node is increasing the value of \( R_0 \) increases see Fig. 2. On another hand, we supposed the transmission rates \( \beta_1, \beta_2 \) and \( \beta_3 \) as a function of time, it leads to the value of \( R_0 \) becomes a function of \( t \). This means that the \( R_0 \) value may be greater or less than unity during the change of time see figures 6-11. It also depends directly on the definition of transmission functions and the parameter \( c \). See Figs. 6-11 for Korea, Italy and the United States of America. When studying the impact of adherence to social distancing instructions, we found that the higher rate of commitment, the fewer number of infected individuals i.e., when parameter \( c \) takes a high value, it makes the peak of infectious lower.

Acknowledgements
We thank Prof. H. N. Agiza (Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt) for his support and comments.

Competing interests
The author declares that she has no competing interests.

Funding
Not applicable.

References


[21] https://www.who.int/westernpacific/emergencies/covid-19


Applications., 448, 41-56(2016).


