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Abstract: In this work, the theoretical study of steady flow for lift and drainage of Power law MHD fluid on a vertical cylinder is
presented. The governing nonlinear differential equation has been derived from the momentum equation. The resulting equation is then
solved using Perturbation method. Series solutions have been obtained for velocity, flow rate and average velocity in both cases. The
graphical results for velocity profile is discussed and examined for different parameters of interest. Without MHD our problem reduces
to well known Newtonian and Power law problem.
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1 Introduction

In recent years, the flow of non-Newtonian fluids has
gained considerable attention because of its applications
in various branches of science, engineering, and
technology: particularly in material processing, chemical
industries, and bioengineering. It is an established fact
that the flow characteristics of non-Newtonian fluids are
quite different when compared with the linearly viscous
fluids. Therefore, the well known Navier-Stokes
equations are not suitable to explain the behavior of
non-Newtonian fluids. Similar to linearly viscous fluids it
is difficult to recommend a single model which exhibits
all properties of non-Newtonian fluids. Therefore a
number of models have been proposed to characterize the
non-Newtonian fluid behavior [1,4].
In the category of non-Newtonian fluids the power law
model have been extensively studied because of
mathematical simplicity and wide spread industrial
applications. During the last four decades significant
progress has been made in the development of analytical
solution and numerical algorithms of power law fluid flow
problems [5,8].
Our main focus in this work is on the study of thin film

flow for a non-Newtonian fluid with MHD fluid
properties. In a thin film flow, the fluid is partially
bounded by a solid wall while the other surface is free to
interact with another fluid, e.g., air. There are three main
conditions which form basis for the formulation of thin
films, namely, surface tension, centrifugal forces and
gravitational forces. The analysis of thin film flow is
important for designing chemical processing equipment.
Probably the most striking daily life examples are rain
water running down along a window and the flow of a
paint down a wall. Study of thin film flows have
established significant interest because of its realistic
applications in physical and biological sciences [9,10].
There are many engineering applications where thin film
flow shows the viscoelastic effects and MHD was
originally applied to astrophysical and geophysical
problems, where it is still very important, but more
recently to the problem of fusion power, where the
application is the creation and containment of hot plasmas
by electromagnetic forces, since material walls would be
destroyed. Astrophysical problems include solar
structure, especially in the outer layers, the solar wind
bathing the earth and other planets, and interstellar
magnetic fields. The primary geophysical problem is
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planetary magnetism, produced by currents deep in the
planet, a problem that has not been solved to any degree
of satisfaction.
Here, in this paper, fluid is considered visco-inelastic with
the viscosity function conforming to power law MHD
fluid. We examine the thin film flow of a Power law MHD
fluid for lift and drainage problems on a vertical cylinder.
Two cases are discussed, namely, Newtonian and
non-Newtonian respectively. To the best of our knowledge
the analytical solution has not been reported elsewhere.
This letter is organized as follows. Section 2 contains the
governing equation of power law fluid model. In section 3
the problem under consideration is formulated and
solution for the lifting case is given section 4 is reserved
for the solution of the drainage case and section 5 results
and discussion. In Section 6 concluding remarks are
given.

2 Basic Equations

The basic equations, governing the flow of
incompressible power law MHD fluid neglecting the
thermal effects, are:

∇.V = 0. (1)

ρ
DV
Dt

= ρf−∇p+divS+(J×B), (2)

wheref is the body force,p is the dynamic pressure,S is
the extra stress tensor. The termDV

Dt denotes the
substantial acceleration consisting of the local derivative
∂V
∂ t and the convective derivative∇.V andJ is the electric
current density, B is the total magnetic field and
B = B0 + b (whereB0 represents the imposed magnetic
field and b denotes the induced magnetic field). In the
absence of displacement currents, the modified Ohm’s
law and Maxwell’s equations [11,15] are,

J = σ [E+V×B]. (3)

divB = 0, ∇×B = µmJ, curlE =−
∂B
∂ t

. (4)

whereσ is the electrical conductivity,E the electric field
and µm the magnetic permeability. From Ohm’s law and
Maxwell’s equations an evolution for the magnetic fluxB
can be obtained easily. This is known as the magnetic
induction equation which shows that the motion of an
electrically conducting fluid in an applied magnetic field
induces a magnetic field in the medium. We assume that
the total magnetic fieldB is perpendicular to the velocity
field V and the induced magnetic fieldb is negligible
compared to the applied magnetic fieldB0 so that
magnetic Reynolds number is small. Since no external
electric field is applied, and the effect of polarization of
the ionized fluid is negligible, the fluid flow region is
assumed to be free of electric field. Under these

assumptions, the magneto-hydrodynamics force involved
in equation (2) can be put into the form,

J×B =−σB2
0V. (5)

As discussed in [5,8], the stress tensor defining a Power
law fluid is given by:

S = µe f fA1, (6)

µe f f = η

∣

∣

∣

∣

∣

∣

√

tr(A1
2)

2

∣

∣

∣

∣

∣

∣

n−1

, (7)

and whereη is the coefficient of viscosity andn is the
Power law index. The Rivilin-Ericksen tensor,A1 is
defined by:

A1 = ∇V+(∇V)T
. (8)

Remark: On behalf of consequent model forn < 1 the
fluid is ”pseudoplastic” for model or ”shear thinning” for
n> 1 the fluid is ”dilatant” or ”shear-thickening” and for
n= 1 the Newtonian fluid is recovered.

3 Formulation of the problem and solution
for lifting case

Consider a container filled with Power law MHD fluid. A
wide cylinder moves vertically upward through container
with constant velocityU0. Since the cylinder moves
upward, it picks up a thin fluid film of thicknessδ . Due to
gravity, the fluid film tends to drain down the cylinder. we
choose anrz− coordinate system such thatr − axis is
normal to the cylinder andz− axis along the axis of
cylinder in upward direction as shown inFigure1. We
assume that the cylinder is non-conducting and the
magnetic field is applied along ther − axis. Assuming
that the flow is steady, laminar and uniform and surface
tension effects are negligible, the only nonzero velocity
component is inz− direction. For the reasons mentioned
here we assume that,

V = [0,0,w(r)] , S = S(r). (9)

Using equation (9), the continuity equation (1) is
identically satisfied and by using equation (5) the
momentum equation (2) reduces to

Fig.1. Geometry of the flow of moving cylinder through a
power law MHD fluid.
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r-component

0=−
∂ p
∂ r

, (10)

θ -component

0 =−
∂ p
∂θ

, (11)

z-component

∂ p
∂z

=
η
r

∂
∂ r

(

r

∣

∣

∣

∣

∂w
∂ r

∣

∣

∣

∣

n−1 ∂w
∂ r

)

−ρg−σB2
0w(r). (12)

Equations (10) and (11) imply thatp = p(z) only.
Imagine that pressurep is atmospheric pressure i.e.,p is
zero (gauge pressure) everywhere. As we are discussing
the flow problem, we take∂w

∂ r positive [16]. Thus equation
(12) reduces to,

0=
η
r

d
dr

(

r

(

dw
dr

)n)

−ρg−σB2
0w(r), (13)

which is a nonlinear differential equation. The associated
boundary conditions are:

dw
dr

= 0 at r = R+δ , (14)

w = U0 at r = R. (15)

Introducing dimensionless parameters,

r∗ =
r
R
, w∗ =

w
U0

, (16)

in equation (13) and boundary conditions (14) and (15),
we achieve after dropping ”∗”

1
r

d
dr

(

r

(

dw
dr

)n)

− εw(r) = St , (17)

and associative boundary conditions will be

dw
dr

= 0 at r = M, (18)

w = 1 at r = 1. (19)

whereSt =
ρgR2

µe f fU0
is the Stoke’s number,µe f f =

η
(

R
U0

)n−1

is power law fluid parameter,ε =
σB2

0Rn+1

ηUn
0

andM = 1+ δ
R.

Perturbation solution
We assumeε be a small parameter and velocity profile
w(r,ε) can be expressed as a power series given by,

w(r,ε)≈ w0+ εw1+ ε2w2+ ... (20)

Using equation (20) into (17) and (18) - (19) and equating
like power ofε we obtain the following set of problems
along with their corresponding boundary conditions:
zeroth order problem

ε0 :
1
r

d
dr

(

r

(

dw0

dr

)n)

= St , (21)

with boundary conditions,

dw0

dr
= 0 at r = M, (22)

w0 = 1 at r = 1. (23)

First order problem

ε1 :
1
r

d
dr

(

rn

(

dw0

dr

)n−1 dw1

dr

)

−w0 = 0, (24)

with boundary conditions,

dw1

dr
= 0 at r = M, (25)

w1 = 0 at r = 1. (26)

Here two cases arise:
Case-I:n= 1 (Newtonian fluid)
Case-II:n 6= 1 (Power law fluid)

3.1 Solution for the Newtonian MHD fluid

3.1.1 Velocity Profile

Zeroth order solution:
The solution of equation (21) by using boundary
conditions (22) and (23) is,

w0 = 1−
St

4

[(

1− r2)+2M2 ln r
]

. (27)

First-order solution:
Making use of zeroth order solution (27) into (24) and
subject to conditions (25) and (26) is given by,

w1 =
(r2−1−2M2lnr)

4
−

St

64

[

4
(

1−2M2) r2− r4

− 3+8M2+
(

12M4−8M2−16M4lnM
)

lnr

+ 8M2r2lnr
]

. (28)

Thus the perturbation solution correct up to first order:

w(r) = 1−
St

4

[(

1− r2)+2M2 ln(r)
]

+
ε(r2−1−2M2lnr)

4
−

εSt

64

[

4
(

1−2M2) r2− r4

− 3+8M2+
(

12M4−8M2−16M4lnM
)

lnr

+ 8M2r2lnr
]

. (29)

The solution for simple case of Newtonian fluid without
MHD effects cab be obtained by puttingε = 0 in (29).
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3.1.2 Volume Flow Rate

In dimensionless form, the volume flow rateQ, is given by,

Q=
∫ 2π

0

∫ M

1
rw(r)drdθ = 2π

∫ M

1
rw(r)dr. (30)

By making use of equation (29) in equation (30), we
obtain,

Q = π
(

M2−1
)

−
Stπ
8

[

4M4 ln(M)−
(

M2−1
)2

− 2M2(M2−1
)]

+
επ
8

[(

3M4−4M2+1−4M4lnM
)

−
St

24

(

60M4−34M6−30M2+4+72M6lnM

− 48M4lnM−48M6(lnM)2
)]

(31)

3.1.3 Average velocity

The average film velocitȳV is then given by,

V̄ =
Q

π (M2−1)
, (32)

Using equation (31) in equation (32), we obtain,

V̄ = 1−
St

8

[

4M4 ln(M)

(M2−1)
−3M2+1

]

+
ε

8(M2−1)

[(

3M4−4M2+1−4M4lnM
)

−
St

24

(

60M4−34M6−30M2+4

+ 72M6lnM−48M4lnM−48M6(lnM)2
)]

. (33)

Equation (33) gives the net upward flow of fluid. For̄V >

0,

1 >
St

8

[

4M4 ln(M)

(M2−1)
−3M2+1.

]

−
ε

8(M2−1)

[(

3M4−4M2+1−4M4lnM
)

−
St

24

(

60M4−34M6−30M2+4

+ 72M6lnM−48M4lnM−48M6(lnM)2
)]

. (34)

3.2 Solution for power law MHD fluid

3.2.1 Velocity Profile

Zeroth order solution:
By using binomial series and applying boundary

conditions (22) and (23), solution of equation (21) will
be,

w0 = 1−

(

St

2

) 1
n
(

∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1

(

r2k− 1
n+1

− 1)) . (35)

First-order solution:
Making use of zeroth-order solution (35) into (24), after
using equations (25) and (26), we obtain,

w1 =
1
n

(

St

2

) 1−n
n
[

∞

∑
l=0

(1−n
n

l

)

(−1)l M−2l+ 2
n−2

2
{(

r2l− 1
n+3−1

2l − 1
n +3

)

−
M2

2

(

r2l− 1
n+1−1

2l − 1
n +1

)}

−

(

St

2

) 1
n ∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1







(

r2k+2l− 2
n+4−1

)

(2k− 1
n +3)(2k+2l − 2

n +4)
−

(r2l− 1
n+3−1)

2(2l − 1
n +3)

−
M2k− 1

n+3(r2l− 1
n+1−1)

(2k− 1
n +3)(2l − 1

n +1)

+
M2(r2l− 1

n+1−1)

2(2l − 1
n +1)

}]

. (36)

Inserting equations (35, 36) in to series (20), one get the
solution of equation (17) of the form:

w = 1−

(

St

2

) 1
n
(

∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1

(

r2k− 1
n+1

− 1))+
ε
n

(

St

2

) 1−n
n
[

∞

∑
l=0

(1−n
n

l

)

(−1)l M−2l+ 2
n−2

2
{(

r2l− 1
n+3−1

2l − 1
n +3

)

−
M2

2

(

r2l− 1
n+1−1

2l − 1
n +1

)}

−

(

St

2

) 1
n ∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1







(

r2k+2l− 2
n+4−1

)

(2k− 1
n +3)(2k+2l − 2

n +4)
−

(r2l− 1
n+3−1)

2(2l − 1
n +3)

−
M2k− 1

n+3(r2l− 1
n+1−1)

(2k− 1
n +3)(2l − 1

n +1)
+

M2(r2l− 1
n+1−1)

2(2l − 1
n +1)

}]

(37)

3.2.2 Volume Flow Rate

By making use of equation (37) in equation (30), we
obtain,

Q = π
(

M2−1
)

−2π
(

St

2

) 1
n ∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1
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



(

M2k− 1
n+3−1

)

2k− 1
n +3

−

(

M2−1
)

2



+
2πε

n

(

St

2

) 1−n
n

[

∞

∑
l=0

(1−n
n

l

)

(−1)l M−2l+ 2
n−2

2

{

1

2l − 1
n +3





(

M2l− 1
n+5−1

)

2l − 1
n +5

−
M2−1

2



−
M2

2
(

2l − 1
n +1

)

(

M2l− 1
n+3−1

2l − 1
n +3

−
M2−1

2

)}

−

(

St

2

) 1
n ∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1

{

1

(2k− 1
n +3)(2k+2l − 2

n +4)

(

M2k+2l− 2
n+6−1

2k+2l − 2
n +6

−
M2−1

2

)

−
M2k− 1

n+3

(2k− 1
n +3)(2l − 1

n +1)

(

M2l− 1
n+3−1

2l − 1
n +3

−
M2−1

2

)

−
1

2(2l − 1
n +3)

(

M2l− 1
n+5−1

2l − 1
n +5

−
M2−1

2

)

+
M2

2(2l − 1
n +1)

(

M2l− 1
n+3−1

2l − 1
n +3

−
M2−1

2

)}]

. (38)

3.2.3 Average Velocity

By using equation (38) in equation (32) we obtain,

V̄ = 1−2

(

St

2

) 1
n ∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1





(

M2k− 1
n+3−1

)

(2k− 1
n +3)(M2−1)

−
1
2



+
2ε
n

(

St

2

) 1−n
n

[

∞

∑
l=0

(1−n
n

l

)

(−1)l M−2l+ 2
n−2

2

{

1

2l − 1
n +3





(

M2l− 1
n+5−1

)

(2l − 1
n +5)(M2−1)

−
1
2



−
M2

2
(

2l − 1
n +1

)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)}

−

(

St

2

) 1
n ∞

∑
k=0

∞

∑
l=0

(1
n
k

)(1−n
n
l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1

{

1

(2k− 1
n +3)(2k+2l − 2

n +4)
(

M2k+2l− 2
n+6−1

(M2−1)(2k+2l − 2
n +6)

−
1
2

)

−
M2k− 1

n+3

(2k− 1
n +3)(2l − 1

n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)

−
1

2(2l − 1
n +3)

(

M2l− 1
n+5−1

(M2−1)(2l − 1
n +5)

−
1
2

)

+
M2

2(2l − 1
n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)}]

.(39)

Equation (39) gives the net upward flow of fluid. ForV̄ >

0,

1 > 2

(

St

2

) 1
n ∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1





(

M2k− 1
n+3−1

)

(2k− 1
n +3)(M2−1)

−
1
2



+
2ε
n

(

St

2

) 1−n
n

[

∞

∑
l=0

(1−n
n

l

)

(−1)l M−2l+ 2
n−2

2

{

1

2l − 1
n +3





(

M2l− 1
n+5−1

)

(2l − 1
n +5)(M2−1)

−
1
2



−
M2

2
(

2l − 1
n +1

)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)}

−

(

St

2

) 1
n ∞

∑
k=0

∞

∑
l=0

(1
n
k

)(1−n
n
l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1

{

1

(2k− 1
n +3)(2k+2l − 2

n +4)
(

M2k+2l− 2
n+6−1

(M2−1)(2k+2l − 2
n +6)

−
1
2

)

−
M2k− 1

n+3

(2k− 1
n +3)(2l − 1

n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)

−
1

2(2l − 1
n +3)

(

M2l− 1
n+5−1

(M2−1)(2l − 1
n +5)

−
1
2

)

+
M2

2(2l − 1
n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)}]

.(40)

4 Solution for drainage case

Consider steady, parallel, laminar flow of an
incompressible Power law MHD fluid down an infinite
vertical cylinder. As a result, a thin uniform fluid film of
thicknessδ is formed in contact with stationary air. The
geometry of the problem is shown inFigure2. We choose
an rz−coordinate system such thatr − axis is normal to
cylinder andz−axisalong the cylinder axis in downward
direction. We assume that the fluid is non-conducting and
the magnetic field is applied along ther −axis, there is no
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applied (force) pressure driving the flow and fluid falls
under the action of gravity, so the governing equation
equation (17) becomes,

Fig.2. Geometry of the thin film flow down a vertical
cylinder.

1
r

d
dr

(

r

(

dw
dr

)n)

− εw(r) =−St (41)

dw
dr

= 0 at r = M. (42)

w = 0 at r = 1, (43)

Using Perturbation series method to this problem, we get,
different problems each corresponding to different order
of ε.
zeroth order problem

ε0 :
1
r

d
dr

(

r

(

dw0

dr

)n)

=−St (44)

with boundary condition,

dw0

dr
= 0 at r = M. (45)

w0 = 0 at r = 1, (46)

First order problem

ε1 :
1
r

d
dr

(

rn

(

dw0

dr

)n−1 dw1

dr

)

−w0 = 0 (47)

with boundary conditions,

dw1

dr
= 0 at r = M. (48)

w1 = 0 at r = 1, (49)

Here two cases arise:
Case-I:n= 1 (Newtonian fluid)
Case-II:n 6= 1 (Power law fluid)

4.1 Solution for Newtonian MHD fluid

4.1.1 Velocity Profile

Zeroth order solution:
The solution of equation (44) after application of boundary
conditions (45) and (46) is,

w0 =
St

4

[(

1− r2)+2M2 ln r
]

. (50)

First-order solution:
Introducing zeroth order solution (50), into (47) and
subject to the boundary conditions (48) and (49) the first
order solution is given by:

w1 =
St

64

[

4
(

1−2M2) r2− r4−3+8M2+
(

12M4

− 8M2−16M4lnM
)

lnr +8M2r2lnr
]

. (51)

Thus the perturbation solution correct up to first order inε
is given by,

w(r) =
St

4

[(

1− r2)+2M2 ln r
]

+
εSt

64
[

4
(

1−2M2) r2− r4−3+8M2+
(

12M4

− 8M2−16M4lnM
)

lnr +8M2r2lnr
]

. (52)

4.1.2 Volume Flow Rate

By making use of equation (52) in equation (30), we
obtain,

Q =
Stπ
8

[

4M4 ln(M)−
(

M2−1
)2

−2M2(M2−1
)

]

+
Stπε
192

[

60M4−34M6−30M2+4+72M6lnM

− 48M4lnM−48M6(lnM)2
]

. (53)

4.1.3 Average Velocity

Using equation (53) in equation (32), we obtain

V̄ =
St

8

[

4M4 ln(M)

(M2−1)
−3M2+1

]

+
Stε

192(M2−1)

[

60M4−34M6−30M2+4

+ 72M6lnM−48M4lnM−48M6(lnM)2
]

. (54)

4.2 Solution for power law MHD fluid

4.2.1 Velocity Profile

Zeroth order solution:
By using binomial series and applying boundary
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conditions (45) and (46), solution of equation (44) will
be,

w0 =

(

St

2

) 1
n
(

∞

∑
k=0

(1
n
k

)

(−1)k M−2k+ 2
n

2k− 1
n +1

(

r2k− 1
n+1−1

)

)

.

(55)
First-order solution:
Introducing the zeroth-order solution (55) into (47) and
solving for first order solution, we obtain,

w1 =
1
n

(

St

2

) 2
n−1
[

∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1







(

r2k+2l− 2
n+4−1

)

(2k− 1
n +3)(2k+2l − 2

n +4)
−

(r2l− 1
n+3−1)

2(2l − 1
n +3)

−
M2k− 1

n+3(r2l− 1
n+1−1)

(2k− 1
n +3)(2l − 1

n +1)
+

M2(r2l− 1
n+1−1)

2(2l − 1
n +1)

}]

. (56)

Thus perturbation solution correct up to first order is given
by,

w =

(

St

2

) 1
n
(

∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1

(

r2k− 1
n+1−1

)

)

+
ε
n

(

St

2

) 2
n−1
[

∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1







(

r2k+2l− 2
n+4−1

)

(2k− 1
n +3)(2k+2l − 2

n +4)
−

(r2l− 1
n+3−1)

2(2l − 1
n +3)

−
M2k− 1

n+3(r2l− 1
n+1−1)

(2k− 1
n +3)(2l − 1

n +1)

+
M2(r2l− 1

n+1−1)

2(2l − 1
n +1)

}]

. (57)

here setting the perturbation parameter equal to zero in
(57), we retrieve the solution of the same problem with
Power law fluid without MHD.

4.2.2 Volume Flow Rate

By making use of equation (57) in equation (30), we
obtain,

Q = 2π
(

St

2

) 1
n ∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1





(

M2k− 1
n+3−1

)

2k− 1
n +3

−

(

M2−1
)

2

]

+
2πε

n

(

St

2

) 2−n
n
[

∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1

{

1

(2k− 1
n +3)(2k+2l − 2

n +4)

(

M2k+2l− 2
n+6−1

2k+2l − 2
n +6

−
M2−1

2

)

−
M2k− 1

n+3

(2k− 1
n +3)(2l − 1

n +1)
(

M2l− 1
n+3−1

2l − 1
n +3

−
M2−1

2

)

−
1

2(2l − 1
n +3)

(

M2l− 1
n+5−1

2l − 1
n +5

−
M2−1

2

)

+
M2

2(2l − 1
n +1)

(

M2l− 1
n+3−1

2l − 1
n +3

−
M2−1

2

)}]

. (58)

4.2.3 Average Velocity

Using equation (58) in equation (32), we obtain,

V̄ = 2

(

St

2

) 1
n ∞

∑
k=0

(1
n

k

)

(−1)k M−2k+ 2
n

2k− 1
n +1





(

M2k− 1
n+3
)

(2k− 1
n +3)(M2−1)

−
1
2

]

+
2ε
n

(

St

2

) 2
n−1
[

∞

∑
k=0

∞

∑
l=0

(1
n

k

)(1−n
n

l

)

(−1)l+k M−2k−2l+ 4
n−2

2k− 1
n +1

{

1

(2k− 1
n +3)(2k+2l − 2

n +4)
(

M2k+2l− 2
n+6−1

(M2−1)(2k+2l − 2
n +6)

−
1
2

)

−
M2k− 1

n+3

(2k− 1
n +3)(2l − 1

n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)

−
1

2(2l − 1
n +3)

(

M2l− 1
n+5−1

(M2−1)(2l − 1
n +5)

−
1
2

)

+
M2

2(2l − 1
n +1)

(

M2l− 1
n+3−1

(M2−1)(2l − 1
n +3)

−
1
2

)}]

. (59)

Fig.3. Effect ofε on velocity profile for Newtonian MHD
fluid for lift in thin film flow, when St = 0.7,M = 1.1.
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Fig.4. Effect ofM on velocity profile for Newtonian MHD
fluid for lift in thin film flow, when ε = 0.3,St = 0.7.

Fig.5. Effect ofSt on velocity profile for Newtonian MHD
fluid for lift in thin film flow, when ε = 0.3,M = 1.1.

Fig.6. Effect ofn on velocity profile for Power law MHD
fluid for lift in thin film flow, when

ε = 0.005,St = 2.5,M = 1.1.

Fig.7. Effect ofε on velocity profile for Power law MHD
fluid for lift in thin film flow, when

n= 1.2,St = 2.5,M = 1.1.

Fig.8. Effect ofM on velocity profile for Power law MHD
fluid for lift in thin film flow, when

ε = 0.005,St = 2.5,n= 1.2.

Fig.9. Effect ofSt on velocity profile for Power law MHD
fluid for lift in thin film flow, when

ε = 0.005,n= 1.2,M = 1.1.

Fig.10. The effect ofε on velocity profile for Newtonian
MHD fluid for drainage in thin film flow, when

St = 2.9,M = 1.1A.

Fig.11. The effect ofM on velocity profile for Newtonian
MHD fluid for drainage in thin film flow, when

ε = 0.3,St = 0.7.
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Fig.12. The effect ofSt on velocity profile for Newtonian
MHD fluid for drainage in thin film flow. when

ε = 0.3,M = 1.1.

Fig.13. The effect ofn on velocity profile for Power law
MHD fluid for drainage in thin film flow, when

ε = 0.005,St = 2.5,M = 1.1.

Fig.14. The effect ofε on velocity profile for Power law
MHD fluid for drainage in thin film flow, when

n= 1.2,St = 2.5,M = 1.1.

Fig.15. The effect ofM on velocity profile for Power law
MHD fluid for drainage in thin film flow, when

ε = 0.005,St = 2.5,n= 1.2.

Fig.16. The effect ofSt on velocity profile for Power law
MHD fluid for drainage in thin film flow, when

ε = 0.005,n= 1.2,M = 1.1.

Fig.17. The effect ofε on flow rate for Newtonian MHD
fluid for drainage in thin film flow, whenSt = 1.2

Fig.18. The effect ofSt on flow rate for Newtonian MHD
fluid for drainage in thin film flow, whenε = 0.001.

Fig.19. The effect ofε on flow rate for Power law MHD
fluid for drainage in thin film flow, when

St = 1.2,M = 1.1.
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Fig.20. The effect ofε on flow rate for Power law MHD
fluid for drainage in thin film flow, whenSt = 1.2,n= 1.1.

Fig.21. The effect ofSt on flow rate for Power law MHD
fluid for drainage in thin film flow, when

ε = 0.001,n= 1.5.

Fig.22. The effect ofε on flow rate for Power law MHD
fluid for lift in thin film flow, when St = 1.2,M = 1.1.

5 Results AND Discussion

The dependence of flow quantities under the value of
Power law indexn, magnetic parameterε, parameterM
and Stokes’ numberSt are observed physically through
figures (3) - (21). The variation of axial velocity for
n,ε ,M and St for both Newtonian and Power law MHD
fluid in case of lift is displayed in figures (3) - (9). In
figures (3) - (9), we observed that, with an increase in
n,ε ,M and St , velocity profile decreases. The difference
of n,ε ,M andSt for drainage of fluid film in figure (10) -
(16) have been plotted, in which it is observed that
velocity of fluid film increase for all significant changes
in the flow parameters but decreases for magnetic

parameter. Dissimilarity is also observed forn,ε ,M and
St for flow rate of Newtonian and Power law fluid in
figures (17) - (22), in which we observed that flow rate
increases for all significant parameters without theε.

6 Concludung Remarks

We have presented results for the thin film flow field of a
fluid called the Power law MHD fluid, on a vertical
cylinder for lift and drainage problem. The resulting
nonlinear differential equation has been solved by
Perturbation method, which is affective and reliable
method for the proposed problem. The velocity profile,
flow rate and average velocity have been derived
analytically.
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