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Abstract: In the present work, it is shown that the sequences obtained frontogrgphic generators based on decimation are
just particular solutions of a kind of linear difference equations. Mogeaall these sequences are simple linear combinations of a
class of basic sequences (binomial sequences). Cryptographingtars of decimated sequences, e.g. period, linear complexity or
balancedness, can be analyzed in terms of solutions to linear equatibnief] difference equations are useful tools for the generation
of new cryptographic sequences with application in stream ciphers.
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1 Introduction so-called msequences, are combined by means of
nonlinear functions to produce pseudorandom sequences
of cryptographic application. Combinational generators,
nonlinear filters, clock-controlled generators or

the plaintext or original message into theiphertext irregularly decimated generators are just some of the most

Symmetric key ciphers are usually divided into two large POPUlar keystream sequence generatoks g, [14].
classes: stream ciphers and block-ciphers depending on Inside the family of irregularly decimated generators,
whether the encryption function is applied either to eachwe can enumerate: a) trghrinking generatorproposed
individual bit or to a block of bits, respectively. Stream by Coppersmith, Krawczyk and Manso@ fhat includes
ciphers are the fastest among the encryption procedure@o LFSRs, b) theself-shrinking generatodesigned by
so they are implemented in many technological Meier and Staffelbachlf] involving only one LFSR and
applications e.g. the encryption algorithm RQ4#J[used  €) the generalized self-shrinking generatproposed by
in Wired Equivalent Privacy (WEP) as a part of the IEEE Hu and Xiao P] that can be considered as a specialization
802.11 standards, the encryption function EO in Bluetoothof the shrinking generator as well as a generalization of
specifications I] or the recent proposals HC-128 or the self-shrinking generator. Irregularly decimated
Rabbit coming from the eSTREAM Projecii]] and  generators produce good cryptographic sequences
included in the latest release versions of CyaSSLcharacterized by long periods, good correlation features,
(lightweight open source embedded implementation oféxcellent run distribution, balancednes} [simplicity of
the SSL/TLS protocol)18]. implementation, etc. The underlying idea of this kind of
Stream ciphers try to imitate the mythome-time pad ~ 9enerators is the irregular decimation ofmasequence
Cipher or Vernam Cipher [14] and are designed to aCC(')rd”'.]g to the bItS Of Q.nother one. The l‘eSL!|t Of thIS
generate a long sequenckeystream sequenceof ~ decimation process is a binary sequence that will be used
pseudorandom bits4]. This keystream sequence is as keystream sequence in the cryptographic procedure.
bit-wise added with the plaintext (in emission) in order to In this work, it is shown that the sequences generated
obtain the ciphertext or with the ciphertext (in reception) by irregularly decimated generators are particular
in order to recover the original plaintext. Most keystream solutions of binary coefficient homogeneous linear
generators are based on maximal-length Linear Feedbadttifference equations. In fact, all those sequences are just
Shift Registers (LFSRs)7] whose output sequences, the linear combinations of binomial sequences weighted by

Confidentiality of sensitive information makes use of an
encryption function currently calledipher that converts
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binary coefficients. Cryptographic parameters of such The generation of linear recurring sequences can be
sequences (e.g. period, linear complexity orimplemented on Linear Feedback Shift Registers (LFSR).
balancedness) can be analyzed in terms of solutions tdhese devices withr memory cells (stages) handle
linear equations. It must be noticed that, although thesénformation in the form of elements df, and they are
sequences are irregularly decimated, in practice they arbased on shifts and linear feedback. The output of the
simple solutions to linear equations. This fact estabfishe LFSR is the string of elemen{®o, s1,S,...) received in
a subtle link between irregular decimation and linearity intervals of one time unit. If the characteristic polynomia
that could be conveniently exploited in cryptanalytic of the linear recurring sequence is primitive, then the
terms. LFSR is called maximal-length LFSR and its output
At the same time, other sequences that are equatiosequence has period 2 1, see ¥]. This output sequence
solutions but that are not included in the previous familiesis called PN-sequence (pseudo-noise sequence) or
also exhibit good properties for their application in m-sequence (maximal sequence).
cryptography. Thus, computing the solutions of linear  The linear complexity I(C) of a sequence{s,} is
difference equations provides one with new binary defined as the length of the shortest LFSR that can
sequences whose cryptographic parameters can be easignerate such a sequence or equivalently the order of the
guaranteed. In brief, linear difference equations canshortest linear recurrence relation satisfied by such a
contribute very efficiently to the generation of keystream sequence. In a general sense, linear complexity is related
sequences for stream ciphers. with the amount of sequence that is needed to determine
the whole sequence. In cryptographic applications, linear
complexity must be as large as possible. The

2 Preliminaries recommended value is approximately half the period
LC~T/2.

In this section, we provide some basic notation and In the remaining of this paper, we will consider

definitions that will be used throughout the paper. sequences defined exclusively over the binary fiple- 2

Let p be a prime,g = p™, and letFy denote a finite  andq = 2™) denoted byGF(2) where the extension field
field with g elements. The order of an elementc Fq is  will be denoted byGF(2™). It should be noticed that the
the smallest positive integérsuch thata = 1, denoted ~ analysis provided here can be extended to sequences over
by ord(@). An elementa with orderq— 1 is called a  any prime extension.
primitive element inFq. The primitive elements are
exactly the generators dfy, the multiplicative group
consisting of the nonzero elements&f. Thus, a finite 3 Cryptographic Generators Based on
field Fq consists of O and appropriate powers of a Decimations
primitive element.

Let {sh} = (S0,51,%,...) N> 0 be a sequence ovEy,
if sn € Fp, Vn. The sequencés, } is periodic if and only if
there exists an integdr > 0 such that,,t = $, holds for
alln>0.

Let r be a positive integer, and lep,c1,...,c_1 be
given elements of the finite field,. A sequencgs,} of
elements off, satisfying the relation

The most important examples of irregularly decimated
sequence generators are next introduced.

The shrinking generatoris a binary sequence
generator 2] composed by two maximal-length LFSRs: a
control registeR; that decimates the sequence produced
by the other registeRy. In fact, the m-sequence{a,}
generated byr; controls the bits of thensequenceby}

Shir = C1Smir—1+CoShir_2+ ...+ G181+ Gy, (1)  9enerated byR,. The output sequencizn} (the so-called
shrunken sequence) is obtained according to the
is called arth-order linear recurring sequencelif3. The  following decimation rule:
terms sy, Sy, - .., -1, Which determine uniquely the rest
of the sequence, are referred to as the initial values. A —!f an=1=2z; =bn
relation of the form given in ¥) is called arth-order —If &y = 0 = by is discarded.
homogeneous linear recurrence relation. The moni

polynomial of degree 9n brief, the output sequencé¢z,} produced by the

shrinking generator is an irregular decimation{tf} in

F(X) =X +eX L eX 2 GX G € FplX (2) terms of the bits ofa,}. In addition, the sequenden} is

the keystream sequence in the stream cipher procedure.

is called the characteristic polynomial of the linear The self-shrinking generatof13] was designed as a
recurring sequence and the sequefisg is said to be variation of the shrinking generator for potential use in
generated by (x). The minimal polynomial of s,} isthe  stream cipher applications. This generator consists of a
polynomial of least degree whose linear recurrencemaximal-length LFSR whosensequence{a,} is self
relation is satisfied by such a sequence. For a survey oflecimated giving rise to thself-shrunken sequende,}
linear recurring sequences over finite fields, the reader i®r output sequence of such a generator. The decimation
referred to 11]. rule is quite simple. In fact, I€f@zn, azn1) N> 0 be pairs
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of consecutive bits of the sequeni }, then we proceed 0. G= (0000, {b(G)} = 00000000~
as follows: 1. G= (1000, {b(G)} = 11111111~
_ o 2.G=(0100,{b(G)} = 11100100~

it o= 0— oo s & dhscarde 3.G— (0010, {b(C) — 11011000~
n = 2+l ' 4. G = (0001),{b(G)} = 10101010~

In fact, period, linear complexity and statistical 5. G = (1001, {b(G)} = 01010101~
properties of the self-shrunken sequereg} [13] make 6. G= (1101, {b(G)} = 10110001~
such a sequence very adequate for their application in 7.G= (1111, {b(G)} = 01101001~
stream cipher. In brief, the self-shrinking generator is a 8. G = (1110, {b(G)} = 11000011~
simplified version of the shrinking generator that satisfies 9.G=(0111),{b(G)} = 10010110~
the same decimation rule as before but includes only one 10.G = (1010, {b(G)} = 00100111~
maximal-length LFSR. 11.G = (0102),{b(G)} = 01001110~
Finally, the most representative element of the class 12.G=(1011),{b(G)} = 10001101~

of irregularly decimated generators is theneralized self- 13.G = (1100, {b(G)} = 00011011~
shrinking generatof9] that generates a family of binary 14.G = (0110, {b(G)} = 00111100~
sequences for cryptographic purposes. This generator can 15.G = (0011),{b(G)} = 01110010~

be described as follows: .
Recall that the generated sequences are not 16 different

—It makes use of two sequencesnssequencdan} and  sequences as some of them are shifted versions of a unique

a shifted version of such a sequence denote{\hy. sequence, e.g. sequences (3, 6, 12, 13) or sequences (2, 10,
—It relates both sequences by means of a simplei1, 15).
decimation rule to generate an output sequence. It must be noticed that in the class of generalized

self-shrinking sequences there will always app&htte
identical zero sequenc®00000 - -} for G = (00--- 00)
and the identical one sequencgl11l.--} for
Definition 1.Let {a,} be a m-sequence over GB with G = (10---00) as well as the sequenc§810101 -- } and
period2" — 1 generated from a maximal-length LFSR of r {101010-- }. Moreover, apart from the identical zero and
stages. Let G be a r-dimensional binary vector defined asidentical one sequences, the rest of generalized
self-shrinking sequences are balanced, Sge [
G=1(00,01,02,---,0r1) € GF(2)". (3) Now an interesting relation between the sequences
{an} and{v,} can be pointed out.

In mathematical terms, the family of generalized self-
shrinking sequences can be defined as foll®is [

The n-th element of the sequengesvdefined as:
Lemmallet {s,} be a m-sequence over GF
Vi = 00@n+ 01841+ U28ni2+ ...+ Gr_18nr—1, (4)  generated by a maximal-length LFSR of r stages. The
shift between the two decimated sequeniags = {s;i}
where the sub-indexes of the sequefiag} are reduced and{bi} = {sy+1} fori > 0equalst = 2r-1,
mod 2" — 1. For n > 0 the following decimation rule is
A Proof. The result follows from the fact that
applied:
] Ciyor-1 = Syjyor-1y = Rit+2" = Ni+14+2'-1 = K41 = bi. O
—Ifap = 1, then v is output.
—If an =0, then v, is discarded and there is no output This result allows one to characterize the
bit. self-shrinking generator as an element of the generalized

In this way, an output sequentiy, b1, by, ...) denoted by self-shrinking generator family.

{bn} or {b(G)} is generated. Such a sequence is called a emma 2 The self-shrunken sequence is an element of the
generalized self-shrinking sequence. We call the sequencgass of generalized self-shrinking sequences.
family B(a) = {{b(G)},G € GF(2)'}, the family of
generalized self-shrinking sequences based on th&roof. If {a;} and{v,} are taken agan} = {az} and
m-sequencéan}. {vn} = {azi+1} for i > O respectively, then according to
Lemmal the shift between both sequences'is’2 Thus,
Remark that the sequenée, } is nothing but a shifted if {v,} is shifted 2~ positions regardinda,}, then the
version of the sequende,}. The 2 — 1 nonzero choices resulting generalized self-shrinking sequence is the
of G over GF(2)" result in the 2— 1 distinct shifts of  self-shrunken sequence. Consequently, the self-shgnkin
{vn} regarding them-sequence{a,}. For each new generator is an element of the generalized self-shrinking
sequence vy} a new generalized self-shrinking sequencegenerator family for this particular value of shift between
is generated. Let us see a simple example. both sequences. O
Example 1 For the 4-degree and thersequence
{an} = {011110101100100 whose characteristic In the previous example, whefv,} is shifted 2
polynomial is x* + x3 + 1, we get 16 generalized positions regarding {an} that is
self-shrinking sequences based{en} (see P): {wa} = {11001000111101Q then the generalized
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self-shrinking sequencéb(0111)} corresponds to the
self-shrunken sequence.

Let us generalize the previous linear difference
equation to a more complex kind of linear difference

As the generalized self-shrinking generator is theequation whose roots have a multiplicity greater than 1. In
most general among the irregularly decimated generatordact, we are going to consider difference equations of the
cryptographic parameters of the different sequencegorm

obtained from this generator will be analyzed as solutions

of linear difference equations.

4 Linear Difference Equations

In this section, the kind of linear difference equations we

are dealing with will be introduced.
The linear recurrence relation given id)(can be
expressed as a linear difference equation

n>0

(E+iﬁE“UmQ (5)

wherez, € GF(2) is then-th term of a binary sequence
{z,} that satisfies the previous equati@hijs the shifting
operator which operates on the termsof a solution
sequence, i.eE!z, = z,,j, the coefficientx; are binary
coefficientscj € GF(2), r is an integer and the operations
of (5) are the defined operations ov&F(2); namely,
addition and multiplication modulo 2. The-degree
characteristic polynomial obj is

r .
f(x)=x + z ci X, (6)
=1

that coincides with the expression defined 2. (f f(x)
is an irreducible polynomial iGF(2)[X] of degreer, then
f(x) has a rootr in GF(2"). Furthermore, all the roots of
f(x) are simple and are given by thelistinct elements in
the extension field (1], Th. 2.14, pp. 49-50):

a,a2 a?,... a?"" cGF(2). 7
In this caseApa" is a solution of §) whereAy € GF(2")
is an arbitrary constant. Since the polynomi@) fasr
roots, there are linearly independent solutions té&)(

r .
(Er+ZCj E'HPz =0, n>0 (10)
=1
p being an integep > 1. The characteristic polynomial
fe(x) of this kind of equation is

r .
X+ cpxHP.
2

In this case, the roots dt(x) are the same as those of the
polynomial f (x), that isa,a?,a?,..., a®", but with
multiplicity p. If a is a root of multiplicity p, then the
expressior(}) Aja" withi =0,1,2,..., p— 1 provides the

p linearly independent solutions ol@) associated with
the roota, where (1) is a binomial coefficient reduced
modulo 2 and the arbitrary constams € GF(2"), see
[10]. Therefore, the general solution of the equati@f)(

is a linear combination of the - r independent solutions
that can be written as follows

=§<i)Aa+z<> o
3, (5 e

where each term corresponds to time independent

solutions associated with the rom’ (j=0,1,...,r=1),
respectively. As before the same relation among arbitrary
constants applies here fas to be in GF(2). In a more
compact way, the equatiod?) can be written as

= E:((?) :z;A?j a?"),

whereAg,Aq,...,Ap_1 € GF(2").
In brief, then-th term of a solution sequende,} of

fo(X) = f(X)P = (11)

12)

n>0 (13)

and the general solution is a linear combination of these(10) is the addition of then-th term of each one of thp

solutions with r arbitrary constants
Ag,A1,...,A_1 € GF(2") determined by the initial
valueszy,zi,...,z 1. Thus, the general solution can be

written as
r—1 J.
Zn = ZOAJ- a®n,
J:

whereAj = (Aj—1)? (j = 1,2,...,r — 1) for z, to be in
GF(2), see B]. Therefore, the equatiol)is simplified to

1o i
Zn: Z)AZ az n7
j:

with A€ GF(2').

n>0

8)

n>0

©)

sequences{ Z AZ a2 (0 < i < p) weighted by

binomial coefﬂuents

4.1 Analysis of the Binomial Coefficients

Let us now analyze the binomial coefficients modulo 2 that
appear in{3).

Itis a well known fact that the binomial coefficie(ft)
is the coefficient of the&' term in the polynomial expansion
of the binomial power1+ x)". In addition, the binomial
coefficients satisfy:
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Table 1: Binomial coefficients, binomial sequences and periods
Ti

Bin. coef. Binomial sequences Ti
§ S$={1,1111111~} | To=1
1 $={0,1,0,1,0,1,0,1~} | Ty =2
2 $={0,0,1,1,0,0,1,1~} | T, =4
2 $3=1{0,0,0,1,0,0,0,1~} | Ts3=4
4 $={0,0,0,0,1,1,1,1~} | T4,=8
e S ={0,0,0,0,0,1,0,1~} | T5=38
& S =1{0,0,0,0,0,0,1,1~} | Tg=38
7) S, ={0,0,0,0,0,0,0,1~} | T, =8

(o)

(i) Fig. 2: Sie_rpinski's triangle with the numerical coefficients of
( 2) (2) (2) Pascal’s triangle
0 1
@ @O G G
0 1 2 3
In brief, the solution sequencéz,} obtained from

Fig. 1: Binomial coefficients arranged to form Pascal's triangle other sequences that are the successive diagonals of the
Sierpinski’'s triangle reduced modulo 2. In an algebraic
way, the generation of such diagonals, sequerd&},
follows a simple formation rule. Indeed, tlﬁi binomial

)

(4) plus additional zeros at the beginning of each sequence
4 for the valueg!") with i > n.

sequence associated wiff) for (X<i<?2 (k being
(%) = 1 for all integers > 0, an integer) has a perioll = 2" and its digits are:
(") = 0 for all integers < i. 1.The first % bits are 0's.
_ _ o 2.The remaining % bits are the first % bits of the
For n taking successive values> 0, each binomial binomial sequencéS ).

coefficient (}) defines abinomial sequenceS} with _ , o ,
constant periodT,. In Table 1, the first binomial According to this rule, binomial sequences can be easily
coefficients with their corresponding binomial sequencesdenerated.
and periods are depicted.

On the other hand, arranging the binomial coefficients . .
into rows for successive values ofgives a triangular 2 Cryptographic Sequences as Solutions of
array called Pascal’s triangle, see Figute The first  Linear Difference Equations
(leftmost) diagonal of the triangle is the sequence
identically 1, the second diagonal corresponds to theNow the main results concerning generalized
natural counting numbers 1, 2, 3,.4,, the third diagonal self-shrinking sequences and linear difference equations
corresponds to the triangular numbers 1, 3, 6,.10as  are introduced.
\évfr[:\b&é?s,ma;)ngntgzgg{a fa:ifgggpg rﬁgg)gnsnaﬂt etLauhrigglsTheorem 1The family of generalized self-shrinking
Finonacci sequence, etc)d that can be found into the SZ?tL'jce TSEZOIB?anbng ter?e r?gmt()heeng]c-)sesﬁynee{z%'ffaerr?ance
diagonals of Pascal’s triangle. 2 u;tlijon' utt 9 ust !

The pattern obtained by coloring only the odd q ’
numbers in Pascal’s triangle and shading out all the other (E4+1)Pz =0, p=2-1, (14)
spaces becomes the fractal called the Sierpinski’s trgangl
see Figure2. Coming back to the equatiold), we can  whose characteristic polynomial ix+ 1)P and L is the
see that the binomial sequencgS} correspond to the degree of the characteristic polynomial of the m-sequence
diagonals of the Sierpinski’s triangle reduced modulo 2{a,}.
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Proof: According to P], the periods of the different periods all of them being powers of 2. Thus, the
generalized  self-shrinking sequencesB(a) are period of {zy} is the maximum period of the binomial
T € {1,2,2"71}. Thus, the periodl of any generalized sequences included id§), that is theT; corresponding to
self-shrinking sequence divide$2, i.e. it is a power of the binomial sequence with the greatest indéex
2. Hence ovelGF(2), x" +1 = (x+1)T. On the other (0<i < p) such thaty # 0.
hand, if f(x) is the characteristic polynomial of the Analyzing the periods of the generalized self-shrinking
shortest linear recurrence relation satisfied by asequences interms of the solutions ) we have:
generalized self-shrinking sequence, then the condition

f(x)|X" + 1 implies thatf (x) is of the form: —Two generalized self-shrinking sequences:
Lc {b(G)} = 00000000~
f(x) = (x+1) (15) {b(G)} = 11111111~
where LC is its linear complexity (the order of the with period T = 1 corresponding to the coefficients

shortest linear recurrence relation satisfied by such a (A =0,Vi)and(Ac=1 A =0 Vi>0)in (16),
sequence). At the same time, it is a well known fact that  respectively.

the linear complexity of a periodic sequence <sits —Two generalized self-shrinking sequences:
period [7], [10]. Thus, for any generalized self-shrinking _

sequencd.C < 241 and the polynomial of the shortest %BE%% _ 3%2(1)(1)38:

linear recurrence relatiori(x) divides the characteristic -
polynomial of (@4). Therefore, the generalized with period T = 2 corresponding to the coefficients

self-shrinking sequences satisfied the equatibf) and A=A =1 A =0V i>1 and
are particular solutions of this homogeneous linear (Ag=0,A1=1 A =0 Vi>1)in(16), respectively.
difference equation. O —The rest of generalized self-shrinking sequences with

periodT = 2-1 correspond tg-tuples of coefficients
Recall that the cryptographic sequences obtained from A in (16) with any A; # 0 in the interval(2-—2 <i <
a nonlinear procedure such as decimation turn to be 2.1,
solutions of linear equations. Now the characteristics of
the sequences that satisfy the linear difference equation

(14) are analyzed in detail. In fact, the general solution 5.2 Linear Comp|ex|ty of the Solution
given in (13) particularized to the equatiori4) can be

written as Sequences:
P~ /n n n As it has been previously seen, the linear complexity of a
= iZO <i)A‘ - (0> Ao+ <1> At (16) sequence equals the number and multiplicity of the roots

of the characteristic polynomidl(x) in its shortest linear
+( n ) A n>o0 recurrence relation. Therefore coming back 16)(and
p,l, - . .. . .
-1 analyzing the coefficientgy, the linear complexity of
{z»} can be computed. In fact, we have a unique root 1

field of f. over GF(2). Thus, 1 is the unique root with With maximal multiplicity p. Thus, ifi is the greatest
multiplicity p of trge) polynomial (x + 1) with r = 1, index (O.§ | < p) for which A 7é.0’ then the linear
p=2-"1 andA € GF(2). Recall that the sequende, } complexityLC of the sequencéz,} will be:

is just the addition of binomial sequences weighted by the LC— it 1 (17)
corresponding coefficients. oomax

It must be noticed that not all the solutiofg,} of

(14) are generalized self-shrinking sequences although al
the generalized self-shrinking sequences are solutions O[Be
(14). From the equationl@), particular features of the
solution sequences and consequently of the generaliz
self-shrinking sequences can be easily determined. All ofrheorem 2The linear complexity LC of the generalized

them are related with the choice of thetuple of binary  self-shrinking sequences with periqd=T2- 1 satisfies the
coefficients(Ag, Ar, Az, ..., Ap-1). inequality:

wherea = 1 is the unique root off¢(x) in the splitting

?S it will be the multiplicity of the root 1.

Concerning the generalized self-shrinking sequences,
main result related to their linear complexity can be
e%tated as follows:

22<Lc< 2t (18)

5.1 Periods of the Solution Sequences: Proof: The result follows from the fact that those
generalized self-shrinking sequences with = 241

According to Table 1, the period of any binomial include atleast a binomial sequendgfor A 0 withi
sequences is just a power of 2. Moreover, according to in the range 22 < i < 2--1. Thus, according tol(7) the
(16) {z} is the addition of binomial sequences with range of values of their corresponding linear complexity
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is given by the equatiori@). O
According to Theoren®, the linear complexity of the
generalized self-shrinking sequences with= 21 is
adequate for cryptographic purposes. In the case of
generalized self-shrinking sequences with= 1 or
T = 2, their correspondingC are 1 and 2, respectively.

In brief, the handling of coefficient4; allows one to
generate binary sequences with controllable period and
linear complexity.

5.3 An lllustrative Example

A simple example to clarify the results of the previous
sections is now introduced. In fact, according16)(for a
maximal-length LFSR of. = 4 stages ang = 23 = 8,
the different 8-tuples(Ag,As,...,A7) determine the
characteristics not only of the generalized self-shrigkin

G = (0110, {b(G)} = 00111100- -.

Moreover, a shifted version of this sequend®s} =
{11000011%. -} for the 5-tuple (1,0,1,0,1) corresponds
to the generalized self-shrinking sequence:

G =(1110,{b(G)} = 11000011 -.
The 5-tuple(Ag = 0,A1 =1L, A, =1 A3 =0,As = 1)

generategb,} = {01101002 that corresponds to the
generalized self-shrinking sequence:

G = (1111),{b(G)} = 0110100% - - .

Moreover, a shifted version of this sequend®n} =
{10010110- -} for the 5-tuple (1,1,1,0,1) corresponds
to the generalized self-shrinking sequence:

G = (0111),{b(G)} = 10010110--.

The last two sequences are shifted versions of the self-
shrunken sequence associated Wah}.

sequences but also those of other solution sequences nots.For As # 0, A; =0 Vi > 5, there are four not all

included in the previous family. Due to the size of this
example, all the possible choices can be analyzed.

In fact, for the 4-degreamsequence introduced in
Section 3:

{an} ={011110101100100
the family of generalized self-shrinking sequences
B(a) are solutions of the equation:

(E+1)Pby=0, p=25, (19)

whose general form is:

b = <8>A0+ <:>A1+---+ (;)Av, n>0 (20)

Different choices of the 8-tuplg®g, A4, ..., A7) can be
considered:

1.For  the sequences {bn} 00000 - -,
{bn} = 11112, {b,} = 10101010-- and
{bn} = 0101010%--, the choice of thep-tuple has
been explained in subsectidh.9).

2.ForA; #0, A =0 Vi> 2, there is a unique and
balanced solution sequengb,} with period T, = 4
andLC, = 3.
In this case, there is no generalized self-shrinking
sequence with such characteristics as there is no
generalized self-shrinking sequence with- 4.

3.ForAz #£0, A, =0 Vi > 3, there are two non-balanced
different sequences with peridd = 4 andLCsz = 4.
In this case, there is not generalized self-shrinking
sequence with such characteristics neither.

4.ForAs #0, A =0 Vi> 4, there are two balanced
different sequences with peridd = 8 andLC4 = 5.
For example, the 5-tuple
(Ao = 0,A1 = 0,A) = 1,A3 = 0,A; = 1) generates
{bn} = {00111100--} that corresponds to the
generalized self-shrinking sequence:

balanced different sequences with peri= 8 and
LCs = 6.

For example, the 6-tuple
(Ao =0A =1A =1A3= LA =0A; = 1)
generates the sequen¢b,} = {01110010--} that
corresponds to the generalized self-shrinking
sequence:

G = (0011),{b(G)} = 01110010- -.

Moreover, shifted versions of this sequence correspond
to the generalized self-shrinking sequences:

G = (0101),{b(G)} = 01001110- -,
G = (0100, {b(G)} = 11100100- - ,
G = (1010, {b(G)} = 00100111 - .

The 6-tuple
(AO = 17Al = O7A2 = 17A'3 = 11A4 = 07A5 = 1)
generategb,} = {11011000- -} that corresponds to
the generalized self-shrinking sequence:

G = (0010, {b(G)} = 11011000 - .

Moreover, shifted versions of this sequence correspond
to the generalized self-shrinking sequences:

G = (1101), {b(G)} = 10110001 - ,
G = (1011),{b(G)} = 10001101 - ,
G = (1101),{b(G)} = 00011011 - .

There are two other non-balanced solution sequences
{bn} = {0000010%--} and {b,} = {11111010--}
that do not correspond to any generalized
self-shrinking sequences although they satisfy the
same cryptographic characteristics as far as period
and linear complexity are concerned.

6.For Az # 0 and A; = 0, there are eight not all
balanced different sequences with peribd= 8 and
LCs = 7. None of them corresponds to generalized
self-shrinking sequences.
There are four balanced solution sequences
{bn} = {01010110--}, {b,} = {1010100%.-},

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

482 A. Flster-Sabater: Generation of Sequences by means of Differenegi&ts

Algorithm 1 Binomial Sequence Generation

{bn} = {01011100--} and {b,} = {1010001%--}
with the same period, the same autocorrelation values
and greater linear complexity than that of the

01: procedure Binomial (...)
02: if numl=numar numl=1then out=1;

) . . . . 03: else
gengrallzed self-shrink- ing sequences described in 04 if num>num2then out=0:
choices (4) and (5). 05: else

7.ForA7 # 0, there are sixteen different and unbalanced 06: if num2>2*halfperiodthen

solution sequences with peridg = 8 andLC; = 8.
None of them corresponds to generalized self-
shrinking sequences. Nevertheless, it must be noticed g
that any generalized self-shrinking sequence in 1q:
choices (4) and (5) becomes a solution sequence of 11:
this class just by complementing the last digit, as the 12:
binomial sequence corresponding #;, = 1 is 13:
00000001. For example, the sequence 14:
{bn} = {0011110%--} corresponds to the one-bit
complementation o6 = (0110, {b(G)} = 00111100

¢2=(num2-1) mod (2*halfperiod)+1;
Binomial(num1,c2);
else

if (numl<>2)then
cl=numl-halfperiod;
c2=num2-halfperiod;
Binomial(c1,c2);

end procedure

or {bn} = {01101000- -} corresponds to the one-bit

Algorithm 2 Binomial Sequence Composition

complementation o6 = (1111, {b(G)} = 01101001

both described in choice (4). The same applies for the (.

generalized self-shrinking sequences in choice (5).

01: function Composition (...)

for i=1to Iseqdo

03: if seq[il<>Suml[i] then
04: for j=i to Iseqdo
05: Binomial(i,j);
5.4 Generation of Cryptographic Sequences in 06: Subseq[i][j]=out;
terms of Binomial Sequences 07: Sum[jl=(Sum[jl+Subseq(il[inod 2;
08: end function

From the previous section, it can be deduced that the

addition modulo 2 of a correct choice of binomial

sequences (the-tuple (Ag,A1,Az,...,Ap_1)) results in

the generation of sequences with controllable period andrhe mathematical background of the proposal was

linear complexity. Nevertheless, from a cryptographicintroduced in the previous sections.

point of view balancedness must be taken into account. A|gor|thm 1 finds recursive|y the binomial sequences
In this sense, it must be noticed that the that are the components of any given generalized

complementation of the last bit of a generalized self-shrin- king sequence by means of a bit-wise analysis

self-shrinking sequence with period 2 means that the  of the input sequence. In such an algorithm, the variable

resulting sequence includes the binomial sequence halfperiod takes the value of half the period of the

n

corresponding binomial sequence.
( n>2--1_1)
21 1) (nz

The iterative Algorithm 2 computes the discrepancy
between the bit of the sequeniagand the corresponding
That is the identically null sequence except for the last
element that is 1. This implies that the obtained sequenc

(21)

6 An Algorithm to Compute Period and
Linear Complexity of Cryptographic

Ralls Algorithm 1. In this way, Algorithm 2 takes as input
between the number of 1's and 0's will be just one. For aAlgonthm 1 when it is necessary to synthesize binomial
control period, linear complexity and balancedness of the A rough asymptotic analysis of Algorithm 2 shows

the outer loop as well dseq—i + 1 iterations in the inner

plus lower order terms. Disregarding lower order terms,
Sequences
An efficient algorithm to determine the period and linear ~ Compared with the Berlekamp-Massey algorithm

bit 2, of the addition of binomial sequences synthesized
with Algorithm 1 till then. If there is discrepancy, then it

will have periodT = 2--1, maximum linear complexity : chrinli

LC = 21 and quasi-balancedness as the differencea generalized self-shrinking sequence of lerigdy calls

cryptographic range = 128, this difference is negligible. E?nqounf{;ﬁeszqaunéjngégduces as output the addition of such

In brief, the selection of coefficientd; allows one to '

solution sequences. the following: each iteration of the inner Ioop takes a
constant amount of time. As there dseqiterations in
loop, then the total runtime can be expressed by the sum
of terms of an arithmetic progressiolseqlseg+ 1)/2,
we can conclude that the algorithm is efficient as its
runtime isO(Ised?).

complexity of any binary sequence obtained from a[12], it is a well known fact that such an algorithm must

generalized self-shrinking generator is now describedstore 2 LC bits of the generalized sequence, while the
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Table 2: Average, maximal, minimalLC and Periods of 1.To get all the solutions of the above linear difference

Generalized Sequences equations, among them there are sequences with
L | LCave | LCmax | LCmin | T application in stream cipher.
3] 3 3 3 4 2.To obtain sequences with controllable period, linear
4 > > > 8 complexity and balancedness.
5 12 13 10 16
6 27 28 25 32 It must be noticed that, although generalized
7 57 59 54 64 self-shrinking sequences and self-shrinking sequenees ar
8 120 122 118 | 128 generated from LFSR by irregular decimation, in practice
9 | 246 | 249 | 243 | 256 they are simple solutions of linear equations. This subtle
10| 501 | 504 | 498 | 512 paradox between irregular decimation as a procedure to
11} 1012 | 1015 | 1009 | 1024 break linearity and linear equations that generate
12| 2035 | 2038 | 2031 | 2048 sequences supposed nonlinear can be conveniently
13| 4079 | 4085 | 4072 | 4096 exploited in the cryptanalysis of such keystream
14 | 8175 | 8180 | 8170 | 8192 generators. In fact, such a contradiction confirms the

cryptographically celebrated words: Linearity is the eurs
of the cryptographer (J.L. Massey, Crypto89).

A natural extension of this work is the generalization
lqorithm h d all ¢ i . of this procedgre to many other cryptographic sequences,
algorithm here proposed allows oné 10 COmpute peroGy,q, o _cqjled interleaved sequences, as they present very
ﬁ}ngégzggcsvngggemgg\i’ggrﬁzls;mqﬁggzgfc'gﬁ:;;%%‘é?:;;similar structural properties to those of the sequences
the binomial coefficient(”) with i > 2.2 is achieved, obtained from irregular decimation generators.
then the period of the sequence is guaranteed to be
T = 241 and the linear complexity satisfies the
inequality (L8). In this way, although not all the bits of the Acknowledgement

generalized sequence have been processed a lower bound

on the linear complexity is already guaranteed. Moreover VOrk supported by Ministry of Science and Innovation
and European FEDER Fund under Project

this lower bound is exponential in the lengthof the
LFSR thus adequate for cryptographic purposes. T|N2011'25452/TS|-

Table 2 shows the results obtained experimentaIIyThe. author wishes to thank.the anonymous referegs for
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depicts the integer approximations of the average,thIS manuscript,
maximal and minimal linear complexities as well as
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produced with LFSR froni. = 3 till L = 14. Recall that
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