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Abstract: In the present work, it is shown that the sequences obtained from cryptographic generators based on decimation are
just particular solutions of a kind of linear difference equations. Moreover, all these sequences are simple linear combinations of a
class of basic sequences (binomial sequences). Cryptographic parameters of decimated sequences, e.g. period, linear complexity or
balancedness, can be analyzed in terms of solutions to linear equations. In brief, difference equations are useful tools for the generation
of new cryptographic sequences with application in stream ciphers.
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1 Introduction

Confidentiality of sensitive information makes use of an
encryption function currently calledcipher that converts
the plaintext or original message into theciphertext.
Symmetric key ciphers are usually divided into two large
classes: stream ciphers and block-ciphers depending on
whether the encryption function is applied either to each
individual bit or to a block of bits, respectively. Stream
ciphers are the fastest among the encryption procedures
so they are implemented in many technological
applications e.g. the encryption algorithm RC4 [16] used
in Wired Equivalent Privacy (WEP) as a part of the IEEE
802.11 standards, the encryption function E0 in Bluetooth
specifications [1] or the recent proposals HC-128 or
Rabbit coming from the eSTREAM Project [17] and
included in the latest release versions of CyaSSL
(lightweight open source embedded implementation of
the SSL/TLS protocol) [18].

Stream ciphers try to imitate the mythicone-time pad
cipher or Vernam cipher [14] and are designed to
generate a long sequence (keystream sequence) of
pseudorandom bits [4]. This keystream sequence is
bit-wise added with the plaintext (in emission) in order to
obtain the ciphertext or with the ciphertext (in reception)
in order to recover the original plaintext. Most keystream
generators are based on maximal-length Linear Feedback
Shift Registers (LFSRs) [7] whose output sequences, the

so-called m-sequences, are combined by means of
nonlinear functions to produce pseudorandom sequences
of cryptographic application. Combinational generators,
nonlinear filters, clock-controlled generators or
irregularly decimated generators are just some of the most
popular keystream sequence generators [5], [8], [14].

Inside the family of irregularly decimated generators,
we can enumerate: a) theshrinking generatorproposed
by Coppersmith, Krawczyk and Mansour [2] that includes
two LFSRs, b) theself-shrinking generatordesigned by
Meier and Staffelbach [13] involving only one LFSR and
c) the generalized self-shrinking generatorproposed by
Hu and Xiao [9] that can be considered as a specialization
of the shrinking generator as well as a generalization of
the self-shrinking generator. Irregularly decimated
generators produce good cryptographic sequences
characterized by long periods, good correlation features,
excellent run distribution, balancedness [6], simplicity of
implementation, etc. The underlying idea of this kind of
generators is the irregular decimation of am-sequence
according to the bits of another one. The result of this
decimation process is a binary sequence that will be used
as keystream sequence in the cryptographic procedure.

In this work, it is shown that the sequences generated
by irregularly decimated generators are particular
solutions of binary coefficient homogeneous linear
difference equations. In fact, all those sequences are just
linear combinations of binomial sequences weighted by
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476 A. Fúster-Sabater: Generation of Sequences by means of Difference Equations

binary coefficients. Cryptographic parameters of such
sequences (e.g. period, linear complexity or
balancedness) can be analyzed in terms of solutions to
linear equations. It must be noticed that, although these
sequences are irregularly decimated, in practice they are
simple solutions to linear equations. This fact establishes
a subtle link between irregular decimation and linearity
that could be conveniently exploited in cryptanalytic
terms.

At the same time, other sequences that are equation
solutions but that are not included in the previous families
also exhibit good properties for their application in
cryptography. Thus, computing the solutions of linear
difference equations provides one with new binary
sequences whose cryptographic parameters can be easily
guaranteed. In brief, linear difference equations can
contribute very efficiently to the generation of keystream
sequences for stream ciphers.

2 Preliminaries

In this section, we provide some basic notation and
definitions that will be used throughout the paper.

Let p be a prime,q = pm, and letFq denote a finite
field with q elements. The order of an elementα ∈ Fq is
the smallest positive integerk such thatαk = 1, denoted
by ord(α). An elementα with order q− 1 is called a
primitive element inFq. The primitive elements are
exactly the generators ofF∗

q, the multiplicative group
consisting of the nonzero elements ofFq. Thus, a finite
field Fq consists of 0 and appropriate powers of a
primitive element.

Let {sn}= (s0,s1,s2, . . .) n≥ 0 be a sequence overFp
if sn ∈ Fp, ∀n. The sequence{sn} is periodic if and only if
there exists an integerT > 0 such thatsn+T = sn holds for
all n≥ 0.

Let r be a positive integer, and letc0,c1, . . . ,cr−1 be
given elements of the finite fieldFp. A sequence{sn} of
elements ofFp satisfying the relation

sn+r = c1sn+r−1+c2sn+r−2+ . . .+cr−1sn+1+crsn, (1)

is called arth-order linear recurring sequence inFp. The
terms s0,s1, . . . ,sr−1, which determine uniquely the rest
of the sequence, are referred to as the initial values. A
relation of the form given in (1) is called a rth-order
homogeneous linear recurrence relation. The monic
polynomial of degreer

f (x) = xr +c1xr−1+c2xr−2+ . . .+cr−1x+cr ∈ Fp[x] (2)

is called the characteristic polynomial of the linear
recurring sequence and the sequence{sn} is said to be
generated byf (x). The minimal polynomial of{sn} is the
polynomial of least degree whose linear recurrence
relation is satisfied by such a sequence. For a survey of
linear recurring sequences over finite fields, the reader is
referred to [11].

The generation of linear recurring sequences can be
implemented on Linear Feedback Shift Registers (LFSR).
These devices withr memory cells (stages) handle
information in the form of elements ofFp and they are
based on shifts and linear feedback. The output of the
LFSR is the string of elements(s0,s1,s2, . . .) received in
intervals of one time unit. If the characteristic polynomial
of the linear recurring sequence is primitive, then the
LFSR is called maximal-length LFSR and its output
sequence has period 2r −1, see [7]. This output sequence
is called PN-sequence (pseudo-noise sequence) or
m-sequence (maximal sequence).

The linear complexity (LC) of a sequence{sn} is
defined as the length of the shortest LFSR that can
generate such a sequence or equivalently the order of the
shortest linear recurrence relation satisfied by such a
sequence. In a general sense, linear complexity is related
with the amount of sequence that is needed to determine
the whole sequence. In cryptographic applications, linear
complexity must be as large as possible. The
recommended value is approximately half the period
LC≃ T/2.

In the remaining of this paper, we will consider
sequences defined exclusively over the binary field (p= 2
andq = 2m) denoted byGF(2) where the extension field
will be denoted byGF(2m). It should be noticed that the
analysis provided here can be extended to sequences over
any prime extension.

3 Cryptographic Generators Based on
Decimations

The most important examples of irregularly decimated
sequence generators are next introduced.

The shrinking generator is a binary sequence
generator [2] composed by two maximal-length LFSRs: a
control registerR1 that decimates the sequence produced
by the other registerR2. In fact, them-sequence{an}
generated byR1 controls the bits of them-sequence{bn}
generated byR2. The output sequence{zn} (the so-called
shrunken sequence) is obtained according to the
following decimation rule:

– If an = 1=⇒ zj = bn
– If an = 0=⇒ bn is discarded.

In brief, the output sequence{zn} produced by the
shrinking generator is an irregular decimation of{bn} in
terms of the bits of{an}. In addition, the sequence{zn} is
the keystream sequence in the stream cipher procedure.

The self-shrinking generator[13] was designed as a
variation of the shrinking generator for potential use in
stream cipher applications. This generator consists of a
maximal-length LFSR whosem-sequence{an} is self
decimated giving rise to theself-shrunken sequence{zn}
or output sequence of such a generator. The decimation
rule is quite simple. In fact, let(a2n,a2n+1) n≥ 0 be pairs

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 2, 475-484 (2014) /www.naturalspublishing.com/Journals.asp 477

of consecutive bits of the sequence{an}, then we proceed
as follows:

– If a2n = 1=⇒ zj = a2n+1
– If a2n = 0=⇒ a2n+1 is discarded.

In fact, period, linear complexity and statistical
properties of the self-shrunken sequence{zn} [13] make
such a sequence very adequate for their application in
stream cipher. In brief, the self-shrinking generator is a
simplified version of the shrinking generator that satisfies
the same decimation rule as before but includes only one
maximal-length LFSR.

Finally, the most representative element of the class
of irregularly decimated generators is thegeneralized self-
shrinking generator[9] that generates a family of binary
sequences for cryptographic purposes. This generator can
be described as follows:

–It makes use of two sequences: am-sequence{an} and
a shifted version of such a sequence denoted by{vn}.

–It relates both sequences by means of a simple
decimation rule to generate an output sequence.

In mathematical terms, the family of generalized self-
shrinking sequences can be defined as follows [9]:

Definition 1.Let {an} be a m-sequence over GF(2) with
period2r −1 generated from a maximal-length LFSR of r
stages. Let G be a r-dimensional binary vector defined as:

G= (g0,g1,g2, . . . ,gr−1) ∈ GF(2)r . (3)

The n-th element of the sequence vn is defined as:

vn = g0an+g1an+1+g2an+2+ . . .+gr−1an+r−1, (4)

where the sub-indexes of the sequence{an} are reduced
mod 2r − 1. For n ≥ 0 the following decimation rule is
applied:

– If an = 1, then vn is output.
– If an = 0, then vn is discarded and there is no output
bit.

In this way, an output sequence(b0,b1,b2, . . .) denoted by
{bn} or {b(G)} is generated. Such a sequence is called a
generalized self-shrinking sequence. We call the sequence
family B(a) = {{b(G)},G ∈ GF(2)r}, the family of
generalized self-shrinking sequences based on the
m-sequence{an}.

Remark that the sequence{vn} is nothing but a shifted
version of the sequence{an}. The 2r −1 nonzero choices
of G over GF(2)r result in the 2r − 1 distinct shifts of
{vn} regarding them-sequence{an}. For each new
sequence{vn} a new generalized self-shrinking sequence
is generated. Let us see a simple example.

Example 1: For the 4-degree and them-sequence
{an} = {011110101100100} whose characteristic
polynomial is x4 + x3 + 1, we get 16 generalized
self-shrinking sequences based on{an} (see [9]):

0. G= (0000),{b(G)}= 00000000∼
1. G= (1000),{b(G)}= 11111111∼
2. G= (0100),{b(G)}= 11100100∼
3. G= (0010),{b(G)}= 11011000∼
4. G= (0001),{b(G)}= 10101010∼
5. G= (1001),{b(G)}= 01010101∼
6. G= (1101),{b(G)}= 10110001∼
7. G= (1111),{b(G)}= 01101001∼
8. G= (1110),{b(G)}= 11000011∼
9. G= (0111),{b(G)}= 10010110∼

10.G= (1010),{b(G)}= 00100111∼
11.G= (0101),{b(G)}= 01001110∼
12.G= (1011),{b(G)}= 10001101∼
13.G= (1100),{b(G)}= 00011011∼
14.G= (0110),{b(G)}= 00111100∼
15.G= (0011),{b(G)}= 01110010∼

Recall that the generated sequences are not 16 different
sequences as some of them are shifted versions of a unique
sequence, e.g. sequences (3, 6, 12, 13) or sequences (2, 10,
11, 15).

It must be noticed that in the class of generalized
self-shrinking sequences there will always appear [9] the
identical zero sequence{000000· · ·} for G = (00· · · 00)
and the identical one sequence{1111· · ·} for
G= (10· · ·00) as well as the sequences{010101· · ·} and
{101010· · ·}. Moreover, apart from the identical zero and
identical one sequences, the rest of generalized
self-shrinking sequences are balanced, see [9].

Now an interesting relation between the sequences
{an} and{vn} can be pointed out.

Lemma 1.Let {sn} be a m-sequence over GF(2)
generated by a maximal-length LFSR of r stages. The
shift between the two decimated sequences{ci} = {s2i}
and{bi}= {s2i+1} for i ≥ 0 equalsτ = 2r−1.

Proof. The result follows from the fact that
ci+2r−1 = s2(i+2r−1) = s2i+2r = s2i+1+2r−1 = s2i+1 = bi . �

This result allows one to characterize the
self-shrinking generator as an element of the generalized
self-shrinking generator family.

Lemma 2.The self-shrunken sequence is an element of the
class of generalized self-shrinking sequences.

Proof. If {an} and {vn} are taken as{an} = {a2i} and
{vn} = {a2i+1} for i ≥ 0 respectively, then according to
Lemma1 the shift between both sequences is 2r−1. Thus,
if {vn} is shifted 2r−1 positions regarding{an}, then the
resulting generalized self-shrinking sequence is the
self-shrunken sequence. Consequently, the self-shrinking
generator is an element of the generalized self-shrinking
generator family for this particular value of shift between
both sequences. �

In the previous example, when{vn} is shifted 23

positions regarding {an} that is
{vn} = {110010001111010}, then the generalized
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self-shrinking sequence{b(0111)} corresponds to the
self-shrunken sequence.

As the generalized self-shrinking generator is the
most general among the irregularly decimated generators,
cryptographic parameters of the different sequences
obtained from this generator will be analyzed as solutions
of linear difference equations.

4 Linear Difference Equations

In this section, the kind of linear difference equations we
are dealing with will be introduced.

The linear recurrence relation given in (1) can be
expressed as a linear difference equation

(Er +
r

∑
j=1

c j Er− j) zn = 0, n≥ 0 (5)

wherezn ∈ GF(2) is then-th term of a binary sequence
{zn} that satisfies the previous equation,E is the shifting
operator which operates on the termszn of a solution
sequence, i.e.E jzn = zn+ j , the coefficientsc j are binary
coefficientsc j ∈ GF(2), r is an integer and the operations
of (5) are the defined operations overGF(2); namely,
addition and multiplication modulo 2. Ther-degree
characteristic polynomial of (5) is

f (x) = xr +
r

∑
j=1

c j xr− j , (6)

that coincides with the expression defined in (2). If f (x)
is an irreducible polynomial inGF(2)[x] of degreer, then
f (x) has a rootα in GF(2r). Furthermore, all the roots of
f (x) are simple and are given by ther distinct elements in
the extension field ([11], Th. 2.14, pp. 49-50):

α, α2, α22
, . . . , α2(r−1)

∈ GF(2r). (7)

In this case,A0αn is a solution of (5) whereA0 ∈ GF(2r)
is an arbitrary constant. Since the polynomial (6) has r
roots, there arer linearly independent solutions to (5),
and the general solution is a linear combination of these
solutions with r arbitrary constants
A0,A1, . . . ,Ar−1 ∈ GF(2r) determined by the initial
valuesz0,z1, . . . ,zr−1. Thus, the general solution can be
written as

zn =
r−1

∑
j=0

A j α2 j n, n≥ 0 (8)

whereA j = (A j−1)
2 ( j = 1,2, . . . , r − 1) for zn to be in

GF(2), see [3]. Therefore, the equation (8) is simplified to

zn =
r−1

∑
j=0

A2 j
α2 j n, n≥ 0 (9)

with A∈ GF(2r).

Let us generalize the previous linear difference
equation to a more complex kind of linear difference
equation whose roots have a multiplicity greater than 1. In
fact, we are going to consider difference equations of the
form

(Er +
r

∑
j=1

c j Er− j)p zn = 0, n≥ 0 (10)

p being an integerp > 1. The characteristic polynomial
fc(x) of this kind of equation is

fc(x) = f (x)p = (xr +
r

∑
j=1

c j xr− j)p. (11)

In this case, the roots offc(x) are the same as those of the

polynomial f (x), that isα,α2,α22
, . . . , α2(r−1)

, but with
multiplicity p. If α is a root of multiplicity p, then the
expression

(n
i

)

Ai αn with i = 0,1,2, . . . , p−1 provides the
p linearly independent solutions of (10) associated with
the rootα, where

(n
i

)

is a binomial coefficient reduced
modulo 2 and the arbitrary constantsAi ∈ GF(2r), see
[10]. Therefore, the general solution of the equation (10)
is a linear combination of thep · r independent solutions
that can be written as follows

zn =
p−1

∑
i=0

(

n
i

)

Ai αn+
p−1

∑
i=0

(

n
i

)

(Ai)
2 α2n+ . . . (12)

+
p−1

∑
i=0

(

n
i

)

(Ai)
2r−1

α2r−1n,

where each term corresponds to thep independent
solutions associated with the rootα2 j

( j = 0,1, . . . , r −1),
respectively. As before the same relation among arbitrary
constants applies here forzn to be in GF(2). In a more
compact way, the equation (12) can be written as

zn =
p−1

∑
i=0

(

(

n
i

) r−1

∑
j=0

A2 j

i α2 j n), n≥ 0 (13)

whereA0,A1, . . . ,Ap−1 ∈ GF(2r).
In brief, then-th term of a solution sequence{zn} of

(10) is the addition of then-th term of each one of thep

sequences{
r−1
∑
j=0

A2 j

i α2 j n} (0 ≤ i < p) weighted by

binomial coefficients.

4.1 Analysis of the Binomial Coefficients

Let us now analyze the binomial coefficients modulo 2 that
appear in (13).

It is a well known fact that the binomial coefficient
(n

i

)

is the coefficient of thexi term in the polynomial expansion
of the binomial power(1+ x)n. In addition, the binomial
coefficients satisfy:
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Table 1: Binomial coefficients, binomial sequences and periods
Ti

Bin. coef. Binomial sequences Ti
(n

0

)

S0 = {1,1,1,1,1,1,1,1∼} T0 = 1
(n

1

)

S1 = {0,1,0,1,0,1,0,1∼} T1 = 2
(n

2

)

S2 = {0,0,1,1,0,0,1,1∼} T2 = 4
(n

3

)

S3 = {0,0,0,1,0,0,0,1∼} T3 = 4
(n

4

)

S4 = {0,0,0,0,1,1,1,1∼} T4 = 8
(n

5

)

S5 = {0,0,0,0,0,1,0,1∼} T5 = 8
(n

6

)

S6 = {0,0,0,0,0,0,1,1∼} T6 = 8
(n

7

)

S7 = {0,0,0,0,0,0,0,1∼} T7 = 8
· · · · · · · · ·

Fig. 1: Binomial coefficients arranged to form Pascal’s triangle

(n
0

)

= 1 for all integersn≥ 0,
(n

i

)

= 0 for all integersn< i.

For n taking successive valuesn ≥ 0, each binomial
coefficient

(n
i

)

defines abinomial sequence{Si} with
constant periodTi . In Table 1, the first binomial
coefficients with their corresponding binomial sequences
and periods are depicted.

On the other hand, arranging the binomial coefficients
into rows for successive values ofn gives a triangular
array called Pascal’s triangle, see Figure1. The first
(leftmost) diagonal of the triangle is the sequence
identically 1, the second diagonal corresponds to the
natural counting numbers 1, 2, 3, 4,. . ., the third diagonal
corresponds to the triangular numbers 1, 3, 6, 10,. . . as
well as many other fascinating relations (tetrahedral
numbers, pentatope numbers, hexagonal numbers,
Finonacci sequence, etc) [15] that can be found into the
diagonals of Pascal’s triangle.

The pattern obtained by coloring only the odd
numbers in Pascal’s triangle and shading out all the other
spaces becomes the fractal called the Sierpinski’s triangle,
see Figure2. Coming back to the equation (13), we can
see that the binomial sequences{Si} correspond to the
diagonals of the Sierpinski’s triangle reduced modulo 2

Fig. 2: Sierpinski’s triangle with the numerical coefficients of
Pascal’s triangle

plus additional zeros at the beginning of each sequence
for the values

(n
i

)

with i > n.
In brief, the solution sequence{zn} obtained from

(13) is a linear combination of am-sequence weighted by
other sequences that are the successive diagonals of the
Sierpinski’s triangle reduced modulo 2. In an algebraic
way, the generation of such diagonals, sequences{Si},
follows a simple formation rule. Indeed, the{Si} binomial
sequence associated with

(n
i

)

for (2k ≤ i < 2k+1) (k being
an integer) has a periodTi = 2k+1 and its digits are:

1.The first 2k bits are 0’s.
2.The remaining 2k bits are the first 2k bits of the

binomial sequence{Si−2k}.

According to this rule, binomial sequences can be easily
generated.

5 Cryptographic Sequences as Solutions of
Linear Difference Equations

Now the main results concerning generalized
self-shrinking sequences and linear difference equations
are introduced.

Theorem 1.The family of generalized self-shrinking
sequences B(a) based on the m-sequence{an} are
particular solutions of the homogeneous linear difference
equation:

(E+1)p zn = 0, p= 2L−1 , (14)

whose characteristic polynomial is(x+ 1)p and L is the
degree of the characteristic polynomial of the m-sequence
{an}.
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Proof: According to [9], the periods of the
generalized self-shrinking sequencesB(a) are
T ∈ {1,2,2L−1}. Thus, the periodT of any generalized
self-shrinking sequence divides 2L−1, i.e. it is a power of
2. Hence overGF(2), xT + 1 = (x+ 1)T . On the other
hand, if f (x) is the characteristic polynomial of the
shortest linear recurrence relation satisfied by a
generalized self-shrinking sequence, then the condition
f (x)|xT +1 implies thatf (x) is of the form:

f (x) = (x+1)LC (15)

where LC is its linear complexity (the order of the
shortest linear recurrence relation satisfied by such a
sequence). At the same time, it is a well known fact that
the linear complexity of a periodic sequence is≤ its
period [7], [10]. Thus, for any generalized self-shrinking
sequenceLC ≤ 2L−1 and the polynomial of the shortest
linear recurrence relationf (x) divides the characteristic
polynomial of (14). Therefore, the generalized
self-shrinking sequences satisfied the equation (14) and
are particular solutions of this homogeneous linear
difference equation. �

Recall that the cryptographic sequences obtained from
a nonlinear procedure such as decimation turn to be
solutions of linear equations. Now the characteristics of
the sequences that satisfy the linear difference equation
(14) are analyzed in detail. In fact, the general solution
given in (13) particularized to the equation (14) can be
written as

zn =
p−1

∑
i=0

(

n
i

)

Ai =

(

n
0

)

A0+

(

n
1

)

A1+ . . . (16)

+

(

n
p−1

)

Ap−1, n≥ 0

whereα = 1 is the unique root offc(x) in the splitting
field of fc over GF(2). Thus, 1 is the unique root with
multiplicity p of the polynomial (x + 1) with r = 1,
p = 2L−1 andAi ∈ GF(2). Recall that the sequence{zn}
is just the addition of binomial sequences weighted by the
corresponding coefficientsAi .

It must be noticed that not all the solutions{zn} of
(14) are generalized self-shrinking sequences although all
the generalized self-shrinking sequences are solutions of
(14). From the equation (16), particular features of the
solution sequences and consequently of the generalized
self-shrinking sequences can be easily determined. All of
them are related with the choice of thep-tuple of binary
coefficients(A0,A1,A2, . . . ,Ap−1).

5.1 Periods of the Solution Sequences:

According to Table 1, the period of any binomial
sequencesSi is just a power of 2. Moreover, according to
(16) {zn} is the addition of binomial sequences with

different periods all of them being powers of 2. Thus, the
period of {zn} is the maximum period of the binomial
sequences included in (16), that is theTi corresponding to
the binomial sequence with the greatest indexi
(0≤ i < p) such thatAi 6= 0.

Analyzing the periods of the generalized self-shrinking
sequences in terms of the solutions of (14), we have:

–Two generalized self-shrinking sequences:

{b(G)}= 00000000∼
{b(G)}= 11111111∼

with period T = 1 corresponding to the coefficients
(Ai = 0, ∀ i) and (A0 = 1, Ai = 0 ∀ i > 0) in (16),
respectively.

–Two generalized self-shrinking sequences:

{b(G)}= 10101010∼
{b(G)}= 01010101∼

with period T = 2 corresponding to the coefficients
(A0 = A1 = 1, Ai = 0 ∀ i > 1) and
(A0 = 0,A1 = 1, Ai = 0 ∀ i > 1) in (16), respectively.

–The rest of generalized self-shrinking sequences with
periodT = 2L−1 correspond top-tuples of coefficients
Ai in (16) with anyAi 6= 0 in the interval(2L−2 ≤ i <
2L−1).

5.2 Linear Complexity of the Solution
Sequences:

As it has been previously seen, the linear complexity of a
sequence equals the number and multiplicity of the roots
of the characteristic polynomialf (x) in its shortest linear
recurrence relation. Therefore coming back to (16) and
analyzing the coefficientsAi , the linear complexity of
{zn} can be computed. In fact, we have a unique root 1
with maximal multiplicity p. Thus, if i is the greatest
index (0 ≤ i < p) for which Ai 6= 0, then the linear
complexityLC of the sequence{zn} will be:

LC= imax+1 (17)

as it will be the multiplicity of the root 1.
Concerning the generalized self-shrinking sequences,

the main result related to their linear complexity can be
stated as follows:

Theorem 2.The linear complexity LC of the generalized
self-shrinking sequences with period Ti = 2L−1 satisfies the
inequality:

2L−2 < LC≤ 2L−1. (18)

Proof: The result follows from the fact that those
generalized self-shrinking sequences withTi = 2L−1

include at least a binomial sequences
(n

i

)

for Ai 6= 0 with i
in the range 2L−2 ≤ i < 2L−1. Thus, according to (17) the
range of values of their corresponding linear complexity
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is given by the equation (18). �

According to Theorem2, the linear complexity of the
generalized self-shrinking sequences withT = 2L−1 is
adequate for cryptographic purposes. In the case of
generalized self-shrinking sequences withT = 1 or
T = 2, their correspondingLC are 1 and 2, respectively.

In brief, the handling of coefficientsAi allows one to
generate binary sequences with controllable period and
linear complexity.

5.3 An Illustrative Example

A simple example to clarify the results of the previous
sections is now introduced. In fact, according to (16) for a
maximal-length LFSR ofL = 4 stages andp = 23 = 8,
the different 8-tuples(A0,A1, . . . ,A7) determine the
characteristics not only of the generalized self-shrinking
sequences but also those of other solution sequences not
included in the previous family. Due to the size of this
example, all the possible choices can be analyzed.

In fact, for the 4-degreem-sequence introduced in
Section 3:

{an}= {011110101100100},

the family of generalized self-shrinking sequences
B(a) are solutions of the equation:

(E+1)pbn = 0, p= 23, (19)

whose general form is:

bn =

(

n
0

)

A0+

(

n
1

)

A1+ · · ·+

(

n
7

)

A7, n≥ 0 (20)

Different choices of the 8-tuple(A0,A1, . . . ,A7) can be
considered:

1.For the sequences {bn} = 00000· · · ,
{bn} = 11111· · · , {bn} = 10101010· · · and
{bn} = 01010101· · · , the choice of thep-tuple has
been explained in subsection (5.1).

2.For A2 6= 0, Ai = 0 ∀ i > 2, there is a unique and
balanced solution sequence{bn} with period T2 = 4
andLC2 = 3.
In this case, there is no generalized self-shrinking
sequence with such characteristics as there is no
generalized self-shrinking sequence withT = 4.

3.ForA3 6= 0, Ai = 0 ∀ i > 3, there are two non-balanced
different sequences with periodT3 = 4 andLC3 = 4.
In this case, there is not generalized self-shrinking
sequence with such characteristics neither.

4.For A4 6= 0, Ai = 0 ∀ i > 4, there are two balanced
different sequences with periodT4 = 8 andLC4 = 5.
For example, the 5-tuple
(A0 = 0,A1 = 0,A2 = 1,A3 = 0,A4 = 1) generates
{bn} = {00111100· · ·} that corresponds to the
generalized self-shrinking sequence:

G= (0110),{b(G)}= 00111100· · · .

Moreover, a shifted version of this sequence{bn} =
{11000011· · ·} for the 5-tuple (1,0,1,0,1) corresponds
to the generalized self-shrinking sequence:

G= (1110),{b(G)}= 11000011· · · .

The 5-tuple(A0 = 0,A1 = 1,A2 = 1,A3 = 0,A4 = 1)
generates{bn} = {01101001} that corresponds to the
generalized self-shrinking sequence:

G= (1111),{b(G)}= 01101001· · · .

Moreover, a shifted version of this sequence{bn} =
{10010110· · ·} for the 5-tuple (1,1,1,0,1) corresponds
to the generalized self-shrinking sequence:

G= (0111),{b(G)}= 10010110· · · .

The last two sequences are shifted versions of the self-
shrunken sequence associated with{an}.

5.For A5 6= 0, Ai = 0 ∀ i > 5, there are four not all
balanced different sequences with periodT5 = 8 and
LC5 = 6.
For example, the 6-tuple
(A0 = 0,A1 = 1,A2 = 1,A3 = 1,A4 = 0,A5 = 1)
generates the sequence{bn} = {01110010· · ·} that
corresponds to the generalized self-shrinking
sequence:

G= (0011),{b(G)}= 01110010· · · .

Moreover, shifted versions of this sequence correspond
to the generalized self-shrinking sequences:

G= (0101),{b(G)}= 01001110· · · ,
G= (0100),{b(G)}= 11100100· · · ,
G= (1010),{b(G)}= 00100111· · · .

The 6-tuple
(A0 = 1,A1 = 0,A2 = 1,A3 = 1,A4 = 0,A5 = 1)
generates{bn} = {11011000· · ·} that corresponds to
the generalized self-shrinking sequence:

G= (0010),{b(G)}= 11011000· · · .

Moreover, shifted versions of this sequence correspond
to the generalized self-shrinking sequences:

G= (1101),{b(G)}= 10110001· · · ,
G= (1011),{b(G)}= 10001101· · · ,
G= (1101),{b(G)}= 00011011· · · .

There are two other non-balanced solution sequences
{bn} = {00000101· · ·} and {bn} = {11111010· · ·}
that do not correspond to any generalized
self-shrinking sequences although they satisfy the
same cryptographic characteristics as far as period
and linear complexity are concerned.

6.For A6 6= 0 and A7 = 0, there are eight not all
balanced different sequences with periodT4 = 8 and
LC6 = 7. None of them corresponds to generalized
self-shrinking sequences.
There are four balanced solution sequences
{bn} = {01010110· · ·}, {bn} = {10101001· · ·},
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{bn} = {01011100· · ·} and {bn} = {10100011· · ·}
with the same period, the same autocorrelation values
and greater linear complexity than that of the
generalized self-shrink- ing sequences described in
choices (4) and (5).

7.ForA7 6= 0, there are sixteen different and unbalanced
solution sequences with periodT7 = 8 andLC7 = 8.
None of them corresponds to generalized self-
shrinking sequences. Nevertheless, it must be noticed
that any generalized self-shrinking sequence in
choices (4) and (5) becomes a solution sequence of
this class just by complementing the last digit, as the
binomial sequence corresponding toA7 = 1 is
00000001. For example, the sequence
{bn} = {00111101· · ·} corresponds to the one-bit
complementation ofG= (0110), {b(G)}= 00111100
or {bn} = {01101000· · ·} corresponds to the one-bit
complementation ofG= (1111), {b(G)}= 01101001
both described in choice (4). The same applies for the
generalized self-shrinking sequences in choice (5).

5.4 Generation of Cryptographic Sequences in
terms of Binomial Sequences

From the previous section, it can be deduced that the
addition modulo 2 of a correct choice of binomial
sequences (thep-tuple (A0,A1,A2, . . . ,Ap−1)) results in
the generation of sequences with controllable period and
linear complexity. Nevertheless, from a cryptographic
point of view balancedness must be taken into account.

In this sense, it must be noticed that the
complementation of the last bit of a generalized
self-shrinking sequence with period 2L−1 means that the
resulting sequence includes the binomial sequence

(

n
2L−1−1

)

(n≥ 2L−1−1) (21)

That is the identically null sequence except for the last
element that is 1. This implies that the obtained sequence
will have periodT = 2L−1, maximum linear complexity
LC = 2L−1 and quasi-balancedness as the difference
between the number of 1’s and 0’s will be just one. For a
cryptographic rangeL = 128, this difference is negligible.
In brief, the selection of coefficientsAi allows one to
control period, linear complexity and balancedness of the
solution sequences.

6 An Algorithm to Compute Period and
Linear Complexity of Cryptographic
Sequences

An efficient algorithm to determine the period and linear
complexity of any binary sequence obtained from a
generalized self-shrinking generator is now described.

Algorithm 1 Binomial Sequence Generation

01: procedureBinomial (...)
02: if num1=num2or num1=1then out=1;
03: else
04: if num1>num2then out=0;
05: else
06: if num2>2*halfperiodthen
07: c2=(num2-1) mod (2*halfperiod)+1;
08: Binomial(num1,c2);
09: else
10: if (num1<>2) then
11: c1=num1-halfperiod;
12: c2=num2-halfperiod;
13: Binomial(c1,c2);
14: end procedure

Algorithm 2 Binomial Sequence Composition

01: function Composition (...)
02: for i=1 to lseqdo
03: if seq[i]<>Sum[i] then
04: for j=i to lseqdo
05: Binomial(i,j);
06: Subseq[i][j]=out;
07: Sum[j]=(Sum[j]+Subseq[i][j])mod 2;
08: end function

The mathematical background of the proposal was
introduced in the previous sections.

Algorithm 1 finds recursively the binomial sequences
that are the components of any given generalized
self-shrin- king sequence by means of a bit-wise analysis
of the input sequence. In such an algorithm, the variable
halfperiod takes the value of half the period of the
corresponding binomial sequence.

The iterative Algorithm 2 computes the discrepancy
between the bit of the sequencebn and the corresponding
bit Σn of the addition of binomial sequences synthesized
with Algorithm 1 till then. If there is discrepancy, then it
calls Algorithm 1. In this way, Algorithm 2 takes as input
a generalized self-shrinking sequence of lengthlseq, calls
Algorithm 1 when it is necessary to synthesize binomial
sequences and produces as output the addition of such
binomial sequences.

A rough asymptotic analysis of Algorithm 2 shows
the following: each iteration of the inner loop takes a
constant amount of time. As there arelseq iterations in
the outer loop as well aslseq− i+1 iterations in the inner
loop, then the total runtime can be expressed by the sum
of terms of an arithmetic progression,lseq(lseq+ 1)/2,
plus lower order terms. Disregarding lower order terms,
we can conclude that the algorithm is efficient as its
runtime isO(lseq2).

Compared with the Berlekamp-Massey algorithm
[12], it is a well known fact that such an algorithm must
store 2· LC bits of the generalized sequence, while the
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Table 2: Average, maximal, minimalLC and Periods of
Generalized Sequences

L LCave LCmax LCmin T
3 3 3 3 4
4 5 5 5 8
5 12 13 10 16
6 27 28 25 32
7 57 59 54 64
8 120 122 118 128
9 246 249 243 256
10 501 504 498 512
11 1012 1015 1009 1024
12 2035 2038 2031 2048
13 4079 4085 4072 4096
14 8175 8180 8170 8192

algorithm here proposed allows one to compute period
and linear complexity with less amount of input sequence.
In addition, when the binomial sequence corresponding to
the binomial coefficient

(n
i

)

with i ≥ 2L−2 is achieved,
then the period of the sequence is guaranteed to be
T = 2L−1 and the linear complexity satisfies the
inequality (18). In this way, although not all the bits of the
generalized sequence have been processed a lower bound
on the linear complexity is already guaranteed. Moreover,
this lower bound is exponential in the lengthL of the
LFSR thus adequate for cryptographic purposes.

Table 2 shows the results obtained experimentally
when the previous algorithm is applied. More precisely, it
depicts the integer approximations of the average,
maximal and minimal linear complexities as well as
periods of all generalized self-shrinking sequences
produced with LFSR fromL = 3 till L = 14. Recall that
different maximal-length LFSR with the same number of
stages L can generate generalized self-shrinking
sequences with different linear complexities. The
complexity range is given by the previous equation (18)
but the numerical results are close to the upper bound. In
any case, the average linear complexity for eachL is near
the period. In brief, generalized self-shrinking sequences
have a linear complexity quite close to their periods what
means a good cryptographic quality to prevent
cryptanalytic attacks.

7 Conclusions

In this work, it is shown that the sequence obtained from
generators based on decimation are particular solutions of
homogeneous linear difference equations with binary
coefficients. At the same time, there are other many
solution sequences not included in the previous class that
can be used for cryptographic purposes. The choice of
tuples of coefficients allows one:

1.To get all the solutions of the above linear difference
equations, among them there are sequences with
application in stream cipher.

2.To obtain sequences with controllable period, linear
complexity and balancedness.

It must be noticed that, although generalized
self-shrinking sequences and self-shrinking sequences are
generated from LFSR by irregular decimation, in practice
they are simple solutions of linear equations. This subtle
paradox between irregular decimation as a procedure to
break linearity and linear equations that generate
sequences supposed nonlinear can be conveniently
exploited in the cryptanalysis of such keystream
generators. In fact, such a contradiction confirms the
cryptographically celebrated words: Linearity is the curse
of the cryptographer (J.L. Massey, Crypto89).

A natural extension of this work is the generalization
of this procedure to many other cryptographic sequences,
the so-called interleaved sequences, as they present very
similar structural properties to those of the sequences
obtained from irregular decimation generators.
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