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Abstract: A new basis of interpolation points for the special case of the Newton twiablarpolynomial interpolation problem is
proposed. This basis is implemented when the upper bound of the totabdatd the degree in each variable is known. It is shown that
this new basis under certain conditions (that depends on the degreesimtetipolation polynomial), coincides either with the known
triangular/rectangular basis or it is a polygonal basis. In all casesstthsdeast interpolation points with further consequences to the
complexity of the algorithms that we use.
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1 Introduction The interpolating polynomial with the form
The problem of the approximation of a complicated nonoi .
function f by a simple functiorg is calledinterpolation p(x.y) = i; J;)aj,jx'yl @)

A few distinct known data points from the original
fL_Jnction can _be used to create an interpolation b_ased ON Rastotal degree n= dedp(x,y)] and definecuniquelyin
simpler function. When the functmgus_a polynor_mal_we the following set of N — (n+2) interpolation points
call the methodpolynomial interpolation The bivariate (triangular basig n

polynomial interpolation is today a basic subject of

Approximation Theory and Numerical Analysid,P] n . .
with applications to many mathematical problen3s4]. S(A> =10y [ jeN,i+j<n}

The problem of multivariate interpolation has been the(l) can be rewritten as follows:

concern of many scientist$,[6,7,8,9]. Some of the most

known multivariate interpolation methods are: a) the use p(x,y) = XT.P.Y 2)
of a multivariate Vandermode matrix and its LU
factorization P], b) the Lagrange interpolatiori(,11] c) where
the Hermite-Birkhoff interpolation 12 and d) the

Newton-form interpolation§, 10,13]. Poo Poi Poz " Pon-1 Pon
An interpolation problem is defined to peisedif it has a p(l) p(l) p(2) . p<nfl) 0
) . . . : 10 P11 P12 1n-1

unique solution. The two-variable interpolation problem ?) @ 2
is not always poised. It is poised when we use the known p_| Pao P21 P22 0 0
triangular/rectangular basis of interpolation poini€][ : : :
In particular, the two-variable Newton interpolation can (n',1> n',l)
be implemented in two bases of interpolation poirif3 [ Pr-10 Pn-11 O 0 0
triangular and rectangular as we see below. pE{'()) 0 O 0 O
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and
1
X—Xo
X — (X—Xo) (X—X1)
(X—X0) (X—=X2) - (X—Xn_1)
1
Y—Yo
Y — (Y=Yo) (Yy—Y1)

(Y= Y0) (Y= Y1) (Y Yn_1)

with P € RMDx(041) % ¢ Rx|(™D andY e R[y] ™.
Additionally, the interpolating polynomial with the form

p(xy) = ii}ia,jxiy" (3)

hastotal degree in terms of fesp. in terms of) k; =
deg[p(x,y)] (resp.kzdeg,[p(x,y)]) and definecduniquely

in the following set ofNl = (k; + 1) (k2 + 1) interpolation
points (rectangular basis)

§1 = {(xy)) [ j €N < kg, ] <k}
(3) can be rewritten as
p(xy) =X"-P-¥ (4)

where (in casé; > k)

0 (1) (2 K
oo
s
P20 P21 P2zt Pag,
P=| : @ :
ko) (ko) (K K
Pl Plo Plo2 Pl
W )k N
Pl Pl Plg2 Pty
and
1
X—Xo
K — (X—Xo) (X—X1)
(X—X0) (X—X1) -+ (X—Xi,—1)
1
Y—Yo
V= (Y=Yo) (Y—Y1)

(Y=Yo) (Y=Y1) - (Y= Yip—1)
with B € Rk Dx(et1) % ¢ R[x|(katD) and¥ € Rly] ke

where pi(ﬁkj) in P andP are known adlivided differences

and are computed irLB] by using the following recursive
formula

plkD_ )
i —PRiiij if (i i
pr—— if (j <kAi>Kk)
(D) _ kD)
B R if (i <kAj>K)
P
K . Yi—Yj—k
P =
k-1 k—1 k—1 k—1
pi<,j )+pi(—1‘j)—17pi(—l,j)7pi(‘j—)

Lif (i>knj>K)

061 (¥j—Yj—«)

pls Y if (i<knj<k)
®)

There are many problems in applied mathematics
where the functiorf that we need to interpolate is already
a two-variable polynomial or a two-variable polynomial
matrix with known upper bounds both of the total degree
and the degree for each variable. For the computation of
the interpolating polynomial of we use the technique
“evaluation-interpolatioh That means, in the first step
we calculate the values of on a set of interpolation
points(x;,yj) whereas in the second step we compute the
interpolating polynomial with interpolation techniques.
Such kind of problems are the following the
computation of the determinant of a two-variable
polynomial matrix [L3], the computation of the greatest
common divisor of two-variable polynomialsl4] the
computation of the inverse matrix of a two variable
polynomial matrix [L5], [1€], [13] etc.. To make that clear
we give the following example.

Example 1Let the two-variable polynomial matrix

Xty? 2 3 x3—xyp
X¥—y? x+y Xy x40
Yy R4+x¥ x Y4y
1 -y y 33

Alxy) = [aij(xy)] =

We know that an upper bound of the total degree of the
polynomial p(x,y) = det(A(x,y)) is given by the sum of
the greatest total degrees in each column or row of all
polynomials in matrixA(x,y) i.e.

4
n=min {Z (1@,%{‘169[6“*" (x,y)] }) :
74
]Zl <1@i3>§1{deqa4,j (*,Y)] }) }

= min{6+9+10+6,9+3+5+10} = 27
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Similarly, an upper bound of the degr&e (resp.kp) in polynomial with specific upper bound on the total degree

terms ofx (resp.y) of p(x,y) is given by and the degree in terms of each variable. As we shall see,
the proposed basis will use less interpolation points than
4 the ones of triangular/rectangular basis. We start by a
klzmin{z\(max {deg([a;.j(x,y)]}), simple example, in order to make clear why all the
is1 \1=si=4 interpolation points in triangular/rectangular basis roe

4
> <1r2_ax {dega;,j(x,y)]} interpolating polynomial.
1 <i<4

)} needed for the evaluation of the coefficients of the

) Example 2_et the function
=min{4+9+4+4+3,94+3+3+4} =19
f(x,y) = 3+ 24y +xy? —y?

Suppose that the only things we know is tHak,y) is a
polynomial with:

4
ko = min{ <1rl1ja<>§1{deq,[au (X, Y)]}) —upper bound of the total degree= 3,
o —and upper bound of degree for the variablgesp.y),
k1 =2 (respks =2)

max { deg,[a; (X

le <1<i<4{ glaii(xy)] }> } and we know its values at any interpolation poifxsy; ).
. _ Triangular basis

=min{5+9+8+3,2+3+2+9} =16 Let the set ofN = ("/?) = 10 interpolating points of the

Therefore, either we find an interpolating polynomial triangular basis
; _ ; _ (N2
with total degreen = 27 by usingN = (") = 406 ¥ =iy =)|i=0123,=0123,i+j<3}

interpolation points on a triangular basis ?)r we find an™
interpolating polynomial with total degrdg = 19 (resp.
ko, = 16) in terms of x (resp. y) by using

N = (ki +1) (ko +1) = 340 interpolation points on a

and

4

and the initial valuespf? = f(x,yj) given by the
following table

rectangular basis. Note that k; + ko < 2-n. 0 0 0 0
g LT Pop="0 Py =1 piy=—4 pis= -9

In order to compute the determinant of the polynomial 0O _3 g0 _g5 p0_7

e _ | P1o P11 P12
matrix in the above example, we need to compute the Ry =| (g )
determinants ofA(x,y) at the interpolation point$x,y;) Pop=12py; =21
of either a triangular or a rectangular basis. The less pg()):27
interpolation points that we get, the less computational ’ .
cost will have the solution to our problem. Therefore, Fork = 1(1)n, compute the tables of ordkiy using the

certain questions still remaining as concerns the set of théecursive formulag) [13]. o _
interpolation points that we shall use. In the above The Newton interpolating polynomial is the following:
example, it is easily seen that by selecting the rectangular T 2 2

basis we shall have the least computational cost due to P(xY) = XT-Ps-Y =3¢ + 2y +xy? -y

less interpolation points (340 instead of 406 for thewhere

triangular basis). Is there any other basis with less

interpolation points for the above example and the 1 1
specific upper bound conditions given ? As we propose in X — X Y — y
Section 2, in that kind of problems we can always select a X(x—1) ’ y(y—1)
new polygonal basis, which in certain cases coincides X(x—=1)(x—2) yly—1)(y—2)

with the ones of triangular/rectangular basis and in the

most of the cases use less interpolation points from botr?nd

of them. Furthermore, in Section 3 we present a formula D 9 _p D ) _1 p(Z) -1 p<3) -0
that help us to select the appropriate basis according to ) %) °5) 03
the known upper bounds in the total degree and the p _ Pio=3 P1=3 po=1

degree of each variable of the interpolating polynomial. P =3 p =2

The whole theory is illustrated by specific examples. péég, —0 ’

Rectangular basis

2 Bivariate interpolation on a polygonal basis  Letthe setofN = (k; + 1) (k2 + 1) = 9 interpolating points
of the rectangular basis

The aim of this section, is to propose a new polygonal .

basis, for the Newton interpolation of a two-variable S(AZ’Z) ={(x=iyj=j)]i=0,1,2, j=0,1,2}
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and the initial valueSpi(f}> =
following table

f(x,yj) given by the

Pap=0 Pyt =—1pos=—4
Po=| p=3 pl=5 pR=7
o) =12 p% =21 p% =32

Fork = 1(1)A, wherer’'= max{ks, ko} = max{2,2} = 2,
compute the tables of orddc by using the recursive
formula 6) [13].

The Newton interpolating polynomial is the following:

p(x,y) = X" -B-Y = 3+ 2%y 4+ xy* — y?
where
i 1 i 1
X = X 5 Y - y
X(x—1) yly—1)
and o . )
Poy =0 Py = —1 p=—1
B=|pp=3 pPi=3 p3=1
Pro=3 Py =2 pyy=0

From the above example we observe that :

—the elementsp30 and p03 when we use the triangular

This is the reason Wh}b(z?% is equal to zero in the
above example when we use the rectangular basis .
Similarly, someone can show the following lemma.

Lemma 2Let a Newton interpolating polynomial(xy)
with degree K (resp. k) in terms of x (resp. y). Then, the

divided difference ﬂ « With k= 0,1,...,n defined in §)
with either k> k; orn—k > ky is equal to zero.

This is the reason whygi)) andpé?% are becoming zero
when we use the triangular basis.

Theorem 1The set of interpolation points given by the
polygonal basis

é(AnakLKZ) _ S(An) mg(Akl-kz) _
= {(Xi,yj)|i =01,...,ki, j=0,1,...

are enough in order to evaluate uniquely the coefficients
of a Newton interpolating polynomial(p,y) with total
degree n, and total degreeg kresp. k) in terms of x (resp.

y).

ProofAccording to Lemmal thefinal divided differences
p,max{' ) with i + | > n are equal to zero since the total
degree ofp(x,y) is equal ton. As we can see fronbj the
computation ofp;’ (max{ii}) s pased on the values qq‘k
with k < max{i, j} | <iandm< j. Although the values

(6)
ko, i+j<n}

basis are equal to zero because we do not have thef p,( 1) for k < maxi,j} may not be zero, their

termsx® or y°. Similarly, the elemen'pz2 when we
use the rectangular basis is equal to zero because
do not have the term?y?

computation are not necessary since they have impact
W%nly on the evaluation of divided differences of the form

pM@1) with | > i andm > j which gives rise to zero

—the interpolating polynomial can be calculated either coefficients of the Newton interpolating polynomial since

by using the seS‘A”) (triangular basis) or by using the

seté(ﬁ\kl’k2> (rectangular basis). However, although the

setsS,” and$/**? have common interpolation points,
the one is not a subset of the other.

The aim of the following lemma is to prove our first
observation in the previous example.

Lemma 1Let a Newton interpolating polynomial(xy)

with total degree n. Then, the divided diﬁeren{;ﬁfﬁ{m’k})
defined in(5) with m+k > n is equal to zero.

max{m k})

ProofNote that p, with m+k > n, is the

coefficient of the term

k—1

I:!)(X M)D)(y—yi)

k})
S

[+m>i+j>n.

According to Lemma2 the divided dif'ferencepi(f:])_i
withi=0,1,...,ndefined in b) with eitheri > k; orn—i >
ko is equal to zero. The computation pﬁ?])_i with i > kg
andn—i > ky is based on the values pﬁk) withk<n,| <i

andm< n—i. Although the values qb, n_i With k < nmay

not be zero, their computation are not necessary since they
have impact only on the evaluation of divided differences
of the formpl(ﬁl with | >iandm> n—iwhich givesrise to
zero coefficients of the Newton interpolating polynomial
sincel > i >k andm>n—i > ko.

From the above we conclude, that the Newton
interpolating polynomialp(x,y) can be computed by
using only the initial valuep(x;,y;j) = pf? wherei < ki,

j < ko andi + j < nwhich verifies the Theorem.

Due to @) the number of interpolation points that we

in (4) and thus creates the powgF - y¥ of total degree need for the polygonal basis é(A”’kl’k2> is
m+k > n. Sincep(x,y) has total degree we have that [ — ("?) — (S &, + S k,). The recursive formula for
prTfX{m’k}) = 0 which verifies the lemma. the calculation of divided differences5)( and the
@© 2014 NSP
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algorithm for the calculation of the Newton interpolating Table 1: The number of interpolation points in all bases wimen
polynomial given in 13 can now be used in this is constant (10) ankh (resp.ky) gets values from 0 to 10

polygonal basis as we can see in the following Example. (n,k;,k;) N N N

Example onsider the Exampl2 Denote the set of (10,2,8) 66 27 27
~ 5 312 (10,3,8) 66 36 35
N= (") = (S +Sk) =) - (S1+S)=8 (1049 66 50 44
. . . . . (10,5,9) 66 60 50
interpolating points given by the set (polygonal basis) (10,6,9) 66 70 55
a(3.2.2) . s . o (10,7,9) 66 80 59
&% = {(x=iyj=1)i=012,j=012,i+]<3} (10,89) 66 90 62

10,9,9 66 100 64
and the values of the functiofi(x,y) on that points as Elo 10 23) 66 110 65

given by the table (10,10,10) 66 121 66

f(6,y)|yo=0y1=1y,=2

X=0| O -1 -9

X]_:]. 3 5 7 140
Xp=21| 12 21

Step I Construction of the table with initial values

Pop =0 Pyt =—1pys=—4
Po=| pip=38 p1=5 p3=7
Pl =12 pi) = 21 :
Step 2 For k =1(1)A, where

i = max{ky, ko} = max{2,2} = 2, compute the tables of
orderk, wherepi("(j) are given by the recursive formuta

For k = 1, the first order table of divided differences is
given by

Degree respect to y

Degree respect to x

pé?(), =0 péﬂ =-1 pég =-3 Fig. 1: The number of interpolation points in all bases (red:
Sy p(l) -3 p( ) _ 3 p( ) _ g triangular, green: rectangular and blue: polygonal) wheis
%i()) (11% 12 constant (10) an#; (resp.kp) gets values from 0 to 10
P20=9 Pr1=7
Fork = 2, the second order table of divided differences is
given by 3 An optimal basis for the evaluation of the
(0) (1) () Newton two-variable interpolating
Poo=0Pg1=—-1pyo=-1 | ial
s 1 1 2 polynomia
Po=|po=3 pj1=3 pr=1
P2 =3 pZl =2 We consider as dptimal basig the set with the least

’ ’ number of interpolation points for the computation of the
Step 3 The Newton interpolating polynomial in polygonal coefficients of a Newton two variable interpolating
basis is the following: polynomial of a polynomialf with the the following
KT B =Ryt yP known characteristics:
POxY) = =XExys —upper bound of the total degree= ded f (x,y)]
whereP = P, with zero at the positiof8, 3) and —upper bound of degree for the variatl@resp.y), ky =
deg[f(x,y)] (resp.kz = deg,[p(x.y)])
- 1 ~ 1 As far as we know, from the previous section, we have
X= X , Y= three choices for the selection of this set : a) triangular
X(x~1) yly—1) basis, b) rectangular basis and c) polygonal basis. Since
the polygonal basis is coming from the intersection of the
triangular and the rectangular basis, is always a subset of
The main advantage of polygonal basis is that it useghese two bases and therefore has the least interpolation
less interpolation points when< k; + ks < 2-n(see Table  points. As we shall see below, under certain conditions the
1 and Figurel). polygonal base coincide with one of these two bases.

which coincides with the results given in Examgle

© 2014 NSP
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Lemma 3Let the Newton two-variable interpolating

polynomial [§x,y) has total degree n, upper bound degree "' |

for variable x (resp. y), k(resp. k). Then, it holds that

n<k+k<2-n

ProofThe polynomialp(x,y) has total degres, when the

maximum value of the summation of the exponents of theus

term x™y™ is equal ton, namely,n; +ny = n. Since the
greatest power of (resp.y) in p(x,y) is ky (resp.k2) we
have that

ki1 <n

k2<n}:>k1+k2§2'n

and

ki >m

k22n2}2>k1+k22n1+n2:n

From these inequalities we conclude that

n<k+k<2-n

Based on the above we conclude that the selection oy
the appropriate base depends on the structure of thy,
polynomial and more specifically, on the connection

betweem, k; andk,. We distinguish three possible cases:
If ks + ko = nthen we have

N = N+2\  (N+1)(N+2) (k+ke=n)
= (M) = ) e
k2 3k K3 3k
=g thket g5l
N = (ki +1) (kg +1) =k +ko+kikp+1

N n+2 ki+ko=n
N:( . )*(Sq,lirSn,kz)(l:Z kot Ko+ kiko 4 1
with a consequence
- Kok Kok R
N—N—E E+E+§>O and N=N

Thus, the optimal basis is the rectangular basis (Figure
If k1 + ko = 2-nthen from Lemma we have thak; =k, =n
and

N = (n:Z) _ (n+1)2(n+2)

R = (ki +1) (ko +1) 2" (04 1)2

R = (n:z) (S +Si) (ka=ko=n) (n+ 1)2(n+2)

with a consequence

2
~ n
N—-N=

n N
2+§>0 and N=N

thus, the optimal basis is the triangular basis (Fi@)re
Finally, if n < k; +kps < 2-n then the optimal basis is the
polygonal basis (Figuré).

[
Yo e o
Ys e o o
yr e o o o
Yo e o o o o
Ys HE B B B B B
Y4 H B B B B BB o
H B B B B B o o
Y2 HE B B B B B e o o
Y HE B B B B B e o o o
Yo HE B B B B B e o o o o

Tg Ty X2 T3 Ty Ts T

Fig. 2: The set§(An) (red circles) an(i(Akl'k2> (blue squares) where
ki+ko=n

Yo
Yo

Ys
Ya
Ys
Y2
Y

i §E B E E B EEER®
0 B B E BB R EERBEO
H B B B B EEEEOO
H B B BB EEEOOAO
B B B EEEEOOOAO
HE B BB EEOOOOAO
B BE B EEOOOOOAO
B B B EO0OO0O0O0O0OAO
B B B 0OO0O0O0O0DO0OAO
B BEO0OO0O0OOODOODO
B O0OO0O0O0OOOODOOOa~ O

Yo

To T
Fig. 3: The set§(An) (red circles) antﬁ(Akl"k2> (blue squares) where
ki+ky=2-n

Therefore, the optimal number of required interpolation points
is given by the following formula
N = (n+2)

n whenk; +ky =2-n

No N=(k+1)(kp+1) whenk; + ko =n
N = (”KZ) = (Si—k +Si-k,) Whenn < ki +kp < 2-n
)
or equivalently as we already expected

= <n+ 2) — (S + ko)

No = N
° n

wheren <k; +ky, <2-n.

In the following two examples we present the application of the

formula (7) and polygonal basis in problems of applied
mathematics where the technique “evaluation-interpolation”is

used.
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Yo
Yo+
Ys o+
Yr -
Y
Ys +
Ya o+
Ys
Y2

Yoo [

H B B E R EE EH o @ o
i B B BB B EE o o
i B B E B BEEHEO
H B B E B E W

H B B BB EEO

H B B B EREEOAO

H BB B EREOOAO

HE B B BEO00O0O0AO

Yo e o

o 1 X2 T3 Ty Ty T Ty Ty T9 T10

Fig. 4: The setsS(Am (red circles),é(Akl’k2> (blue squares) and
é(A”’kl’kZ) (red circles and blue squares) where k; +k, < 2-n

Example 4(Computation of GCD)Let the two-variable
polynomials
fxy) =x2 —x* —x3yP 1 yb
and
gxy) =X 20— +y°
The total degree of the greatest common divisor

p(x,y) = gcd{f(x,y),9(x,y)} has as an upper bound the
greatest total degree in each polynomial i.e.

n=min{deg[f(x,y)],deg[g(x,y)]} = min{11,14} = 11

Let k; (resp.kp) be the upper bound of the degreexafresp.y)
in p(x,y) =gcd{f(x,y),g(x,y)}. Then

ky = mln{deg([f(xy)] 7deg( [g(xvy)}} = min{97 11} =9
and

ko = min{deg,[f(x,y)],deg,[g(x,y)]} = min{6,9} =6

Therefore, we need to find a Newton two-variable interpolating

polynomial with total degre@ = 11 and degree for variabbe
(resp.y), k; = 9 (respky = 6) withn < k; + ko < 2-n. The least
number of interpolation points that we need is

(”*2) (S Srk) = 60

No =N
© n

on polygonal basis instead kb= 78 for the triangular basis and
N = 70 for the rectangular basis. An algorithm for the solution

of this problem based on DFT interpolation techniques can be

found in [14].

Example 5(Computation of the determinantfonsider the
two-variable polynomial matriA(x,y) of the Examplel with
determinantp(x,y) = detA(x,y), having an upper bound of the
total degreen = 27 and upper bounkh = 19 (respk, = 16) of
the degree ok (resp.y). Sincen < ki + ko < 2-n, we can use a
polygonal basis with

- (””) ~ (S S k) = 304

n

Nofﬂ

interpolation points instead of a triangular basis with= 406
interpolation points or a rectangular basis with = 340
interpolation points. The number of interpolation points is
significantly important on the computation of the determinant of
a two-variable matrix, since for its solution a respective number
of computations of constant determinants is need&t [

4 Conclusions

In certain types of Newton two-variable interpolation problems,
we already have an estimation of the upper bound of the total
degreen of the interpolating polynomiap(x,y) and the total
degree of its variablek{ (resp.ky) in terms ofx (resp.y)). In

that cases, it was shown that it is less expensive in computational
cost and memory, to use a basis of interpolation points that
comes from the interconnection of the well known triangular
and rectangular basis. This new polygonal base, use less
interpolation points and under certain conditions between the
degrees of the polynomial, coincides with either the triangular
basis ki + ko = 2-n) or the rectangular basigy(+ k, = n). This

new polygonal basis can be used in many problems of applied
mathematics such as a) the greatest common divisor of
two-variable polynomials and b) the determinant of a
two-variable matrix e.t.c. by using the Newton interpolation
algorithm proposed in1[3]. Although, we study here the specific
case where the function that we would like to approximate is
already a polynomial, this polygonal basis can also be used for
the approximation of any function if the pre-specified properties
for the Newton bivariate interpolating polynomial are satisfied.
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