
Appl. Math. Inf. Sci.8, No. 1, 117-125 (2014) 117

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080114

An Optimal Bivariate Polynomial Interpolation Basis
for the Application of the Evaluation-Interpolation
Technique

Dimitris Varsamis1,∗, Nicholas Karampetakis2 and Paris Mastorocostas1

1 Department of Informatics & Communications, Technological Educational Institute of Serres, 62124 Serres, Greece
2 Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Received: 31 May. 2013, Revised: 14 Sep. 2013, Accepted: 15 Sep. 2013
Published online: 1 Jan. 2014

Abstract: A new basis of interpolation points for the special case of the Newton two variable polynomial interpolation problem is
proposed. This basis is implemented when the upper bound of the total degree and the degree in each variable is known. It is shown that
this new basis under certain conditions (that depends on the degrees of the interpolation polynomial), coincides either with the known
triangular/rectangular basis or it is a polygonal basis. In all cases it uses the least interpolation points with further consequences to the
complexity of the algorithms that we use.
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1 Introduction

The problem of the approximation of a complicated
function f by a simple functiong is calledinterpolation.
A few distinct known data points from the original
function can be used to create an interpolation based on a
simpler function. When the functiong is a polynomial we
call the methodpolynomial interpolation. The bivariate
polynomial interpolation is today a basic subject of
Approximation Theory and Numerical Analysis [1,2]
with applications to many mathematical problems [3,4].
The problem of multivariate interpolation has been the
concern of many scientists [5,6,7,8,9]. Some of the most
known multivariate interpolation methods are: a) the use
of a multivariate Vandermode matrix and its LU
factorization [9], b) the Lagrange interpolation [10,11] c)
the Hermite-Birkhoff interpolation [12] and d) the
Newton-form interpolation [8,10,13].
An interpolation problem is defined to bepoisedif it has a
unique solution. The two-variable interpolation problem
is not always poised. It is poised when we use the known
triangular/rectangular basis of interpolation points [10].
In particular, the two-variable Newton interpolation can
be implemented in two bases of interpolation points [13] :
triangular and rectangular as we see below.

The interpolating polynomial with the form

p(x,y) =
n

∑
i=0

n−i

∑
j=0

ai, jx
iy j (1)

hastotal degree n= deg[p(x,y)] and defineduniquelyin
the following set of N =

(n+2
n

)

interpolation points
(triangular basis)

S(n)∆ = {(xi ,y j) | i, j ∈ N, i + j ≤ n}

(1) can be rewritten as follows:

p(x,y) = XT ·P·Y (2)

where

P=

























p(0)0,0 p(1)0,1 p(2)0,2 · · · p(n−1)
0,n−1 p(n)0,n

p(1)1,0 p(1)1,1 p(2)1,2 · · · p(n−1)
1,n−1 0

p(2)2,0 p(2)2,1 p(2)2,2 · · · 0 0
...

...
...

. . .
...

...

p(n−1)
n−1,0 p(n−1)

n−1,1 0 · · · 0 0

p(n)n,0 0 0 · · · 0 0
























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and

X =













1
x−x0

(x−x0)(x−x1)
...

(x−x0)(x−x1) · · ·(x−xn−1)













Y =













1
y−y0

(y−y0)(y−y1)
...

(y−y0)(y−y1) · · ·(y−yn−1)













with P∈ R
(n+1)×(n+1), X ∈ R[x](n+1) andY ∈ R[y](n+1).

Additionally, the interpolating polynomial with the form

p(x,y) =
k1

∑
i=0

k2

∑
j=0

ai, jx
iy j (3)

hastotal degree in terms of x(resp. in terms ofy) k1 =
degx[p(x,y)] (resp.k2degy[p(x,y)]) and defineduniquely
in the following set ofÑ = (k1+1)(k2+1) interpolation
points (rectangular basis)

S̃(k1,k2)
∆ = {(xi ,y j) | i, j ∈ N, i ≤ k1, j ≤ k2}

(3) can be rewritten as

p(x,y) = X̃T · P̃·Ỹ (4)

where (in casek1 > k2)

P̃=































p(0)0,0 p(1)0,1 p(2)0,2 · · · p(k2)
0,k2

p(1)1,0 p(1)1,1 p(2)1,2 · · · p(k2)
1,k2

p(2)2,0 p(2)2,1 p(2)2,2 · · · p(k2)
2,k2

...
...

...
.. .

...

p(k2)
k2,0

p(k2)
k2,1

p(k2)
k2,2

· · · p(k2)
k2,k2

...
...

...
.. .

...

p(k1)
k1,0

p(k1)
k1,1

p(k1)
k1,2

· · · p(k1)
k1,k2































and

X̃ =













1
x−x0

(x−x0)(x−x1)
...

(x−x0)(x−x1) · · ·
(

x−xk1−1
)













Ỹ =













1
y−y0

(y−y0)(y−y1)
...

(y−y0)(y−y1) · · ·
(

y−yk2−1
)













with P̃∈R
(k1+1)×(k2+1), X̃ ∈R[x](k1+1) andỸ ∈R[y](k2+1)

where p(k)i, j in P and P̃ are known asdivided differences

and are computed in [13] by using the following recursive
formula

p(k)i, j :=



























































p(k−1)
i, j −p(k−1)

i−1, j
xi−xi−k

i f ( j < k∧ i ≥ k)

p(k−1)
i, j −p(k−1)

i, j−1
y j−y j−k

i f (i < k∧ j ≥ k)

p(k−1)
i, j +p(k−1)

i−1, j−1−p(k−1)
i−1, j −p(k−1)

i, j−1

(xi−xi−k)(y j−y j−k)
i f (i ≥ k∧ j ≥ k)

p(k−1)
i, j i f (i < k∧ j < k)

(5)

There are many problems in applied mathematics
where the functionf that we need to interpolate is already
a two-variable polynomial or a two-variable polynomial
matrix with known upper bounds both of the total degree
and the degree for each variable. For the computation of
the interpolating polynomial off we use the technique
“evaluation-interpolation”. That means, in the first step
we calculate the values off on a set of interpolation
points(xi ,y j) whereas in the second step we compute the
interpolating polynomial with interpolation techniques.
Such kind of problems are the following : the
computation of the determinant of a two-variable
polynomial matrix [13], the computation of the greatest
common divisor of two-variable polynomials [14] the
computation of the inverse matrix of a two variable
polynomial matrix [15], [16], [13] etc.. To make that clear
we give the following example.

Example 1.Let the two-variable polynomial matrix

A(x,y) =
[

ai, j(x,y)
]

=









x4+y2 2 3 x3−xy5

x9−y2 x+y x3y2 x2+y9

y x3+xy2 x x4y6+y8

1 x2−y3 y x3y3









We know that an upper bound of the total degree of the
polynomial p(x,y) = det(A(x,y)) is given by the sum of
the greatest total degrees in each column or row of all
polynomials in matrixA(x,y) i.e.

n= min

{

4

∑
i=1

(

max
1≤ j≤4

{

deg[ai, j(x,y)]
}

)

,

4

∑
j=1

(

max
1≤i≤4

{

deg[ai, j(x,y)]
}

)

}

= min{6+9+10+6, 9+3+5+10}= 27
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Similarly, an upper bound of the degreek1 (resp.k2) in
terms ofx (resp.y) of p(x,y) is given by

k1 = min

{

4

∑
i=1

(

max
1≤ j≤4

{

degx[ai, j(x,y)]
}

)

,

4

∑
j=1

(

max
1≤i≤4

{

degx[ai, j(x,y)]
}

)

}

= min{4+9+4+3, 9+3+3+4}= 19

and

k2 = min

{

4

∑
i=1

(

max
1≤ j≤4

{

degy[ai, j(x,y)]
}

)

4

∑
j=1

(

max
1≤i≤4

{

degy[ai, j(x,y)]
}

)

}

= min{5+9+8+3, 2+3+2+9}= 16

Therefore, either we find an interpolating polynomial
with total degreen = 27 by using N =

(n+2
n

)

= 406
interpolation points on a triangular basis or we find an
interpolating polynomial with total degreek1 = 19 (resp.
k2 = 16) in terms of x (resp. y) by using
Ñ = (k1+1)(k2+1) = 340 interpolation points on a
rectangular basis. Note thatn< k1+k2 < 2·n.

In order to compute the determinant of the polynomial
matrix in the above example, we need to compute the
determinants ofA(x,y) at the interpolation points(xi ,yi)
of either a triangular or a rectangular basis. The less
interpolation points that we get, the less computational
cost will have the solution to our problem. Therefore,
certain questions still remaining as concerns the set of the
interpolation points that we shall use. In the above
example, it is easily seen that by selecting the rectangular
basis we shall have the least computational cost due to
less interpolation points (340 instead of 406 for the
triangular basis). Is there any other basis with less
interpolation points for the above example and the
specific upper bound conditions given ? As we propose in
Section 2, in that kind of problems we can always select a
new polygonal basis, which in certain cases coincides
with the ones of triangular/rectangular basis and in the
most of the cases use less interpolation points from both
of them. Furthermore, in Section 3 we present a formula
that help us to select the appropriate basis according to
the known upper bounds in the total degree and the
degree of each variable of the interpolating polynomial.
The whole theory is illustrated by specific examples.

2 Bivariate interpolation on a polygonal basis

The aim of this section, is to propose a new polygonal
basis, for the Newton interpolation of a two-variable

polynomial with specific upper bound on the total degree
and the degree in terms of each variable. As we shall see,
the proposed basis will use less interpolation points than
the ones of triangular/rectangular basis. We start by a
simple example, in order to make clear why all the
interpolation points in triangular/rectangular basis arenot
needed for the evaluation of the coefficients of the
interpolating polynomial.

Example 2.Let the function

f (x,y) = 3x2+2x2y+xy2−y2

Suppose that the only things we know is thatf (x,y) is a
polynomial with:

–upper bound of the total degreen= 3,
–and upper bound of degree for the variablex (resp.y),
k1 = 2 (resp.k2 = 2)

and we know its values at any interpolation points(xi ,yi).
Triangular basis
Let the set ofN =

(n+2
n

)

= 10 interpolating points of the
triangular basis

S(3)∆ =
{

(xi = i,y j = j) | i = 0,1,2,3, j = 0,1,2,3 , i + j ≤ 3
}

and the initial valuesp(0)i, j = f (xi ,y j) given by the
following table

P0 =













p(0)0,0 = 0 p(0)0,1 =−1 p(0)0,2 =−4 p(0)0,3 =−9

p(0)1,0 = 3 p(0)1,1 = 5 p(0)1,2 = 7

p(0)2,0 = 12 p(0)2,1 = 21

p(0)3,0 = 27













For k = 1(1)n, compute the tables of orderk by using the
recursive formula (5) [13].
The Newton interpolating polynomial is the following:

p(x,y) = XT ·P3 ·Y = 3x2+2x2y+xy2−y2

where

X =







1
x

x(x−1)
x(x−1)(x−2)






, Y =







1
y

y(y−1)
y(y−1)(y−2)







and

P3 =













p(0)0,0 = 0 p(1)0,1 =−1 p(2)0,2 =−1 p(3)
0,3 = 0

p(1)1,0 = 3 p(1)1,1 = 3 p(2)1,2 = 1

p(2)2,0 = 3 p(2)2,1 = 2

p(3)
3,0 = 0













Rectangular basis
Let the set ofÑ=(k1+1)(k2+1)= 9 interpolating points
of the rectangular basis

S̃(2,2)∆ =
{

(xi = i,y j = j) | i = 0,1,2 , j = 0,1,2
}
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and the initial valuesp(0)i, j = f (xi ,y j) given by the
following table

P̃0 =







p(0)0,0 = 0 p(0)0,1 =−1 p(0)0,2 =−4

p(0)1,0 = 3 p(0)1,1 = 5 p(0)1,2 = 7

p(0)2,0 = 12 p(0)2,1 = 21 p(0)2,2 = 32







For k = 1(1)ñ, whereñ= max{k1,k2} = max{2,2} = 2,
compute the tables of orderk by using the recursive
formula (5) [13].
The Newton interpolating polynomial is the following:

p(x,y) = X̃T · P̃2 ·Ỹ = 3x2+2x2y+xy2−y2

where

X̃ =





1
x

x(x−1)



 , Ỹ =





1
y

y(y−1)





and

P̃2 =







p(0)0,0 = 0 p(1)0,1 =−1 p(2)0,2 =−1

p(1)1,0 = 3 p(1)1,1 = 3 p(2)1,2 = 1

p(2)2,0 = 3 p(2)2,1 = 2 p(2)
2,2 = 0







From the above example we observe that :

–the elementsp(3)3,0 and p(3)0,3 when we use the triangular
basis are equal to zero because we do not have the

termsx3 or y3. Similarly, the elementp(2)2,2 when we
use the rectangular basis is equal to zero because we
do not have the termx2y2.

–the interpolating polynomial can be calculated either

by using the setS(n)∆ (triangular basis) or by using the

set S̃(k1,k2)
∆ (rectangular basis). However, although the

setsS(n)∆ andS̃(k1,k2)
∆ have common interpolation points,

the one is not a subset of the other.

The aim of the following lemma is to prove our first
observation in the previous example.

Lemma 1.Let a Newton interpolating polynomial p(x,y)

with total degree n. Then, the divided difference p(max{m,k})
m,k

defined in(5) with m+k> n is equal to zero.

Proof.Note that p(max{m,k})
m,k with m + k > n, is the

coefficient of the term

p(max{m,k})
m,k

m−1

∏
i=0

(x−xi)
k−1

∏
i=0

(y−yi)

in (4) and thus creates the powerxm · yk of total degree
m+ k > n. Sincep(x,y) has total degreen we have that

p(max{m,k})
m,k = 0 which verifies the lemma.

This is the reason whyp(2)
2,2 is equal to zero in the

above example when we use the rectangular basis .
Similarly, someone can show the following lemma.

Lemma 2.Let a Newton interpolating polynomial p(x,y)
with degree k1 (resp. k2) in terms of x (resp. y). Then, the

divided difference p(n)k,n−k with k= 0,1, ...,n defined in (5)
with either k> k1 or n−k> k2 is equal to zero.

This is the reason whyp(3)
3,0 andp(3)

0,3 are becoming zero
when we use the triangular basis.

Theorem 1.The set of interpolation points given by the
polygonal basis

Ŝ(n,k1,k2)
∆ = S(n)∆

⋂

S̃(k1,k2)
∆ = (6)

=
{

(xi ,y j)|i = 0,1, . . . ,k1 , j = 0,1, . . . ,k2 , i + j ≤ n
}

are enough in order to evaluate uniquely the coefficients
of a Newton interpolating polynomial p(x,y) with total
degree n, and total degree k1 (resp. k2) in terms of x (resp.
y).

Proof.According to Lemma1 thefinal divided differences

p(max{i, j})
i, j with i + j > n are equal to zero since the total

degree ofp(x,y) is equal ton. As we can see from (5) the

computation ofp(max{i, j})
i, j is based on the values ofp(k)l ,m

with k < max{i, j}, l ≤ i andm≤ j. Although the values

of p(k)i, j for k < max{i, j} may not be zero, their
computation are not necessary since they have impact
only on the evaluation of divided differences of the form

p(max{i, j})
l ,m with l ≥ i andm≥ j which gives rise to zero

coefficients of the Newton interpolating polynomial since
l +m≥ i + j > n.

According to Lemma2 the divided differencep(n)i,n−i
with i = 0,1, ...,n defined in (5) with eitheri > k1 or n− i >

k2 is equal to zero. The computation ofp(n)i,n−i with i > k1

andn− i > k2 is based on the values ofp(k)l ,m with k≤ n, l ≤ i

andm≤ n− i. Although the values ofp(k)i,n−i with k< n may
not be zero, their computation are not necessary since they
have impact only on the evaluation of divided differences

of the formp(k)l ,m with l ≥ i andm≥ n− i which gives rise to
zero coefficients of the Newton interpolating polynomial
sincel ≥ i > k1 andm≥ n− i > k2.

From the above we conclude, that the Newton
interpolating polynomialp(x,y) can be computed by

using only the initial valuesp(xi ,y j) = p(0)i, j wherei ≤ k1,
j ≤ k2 andi + j ≤ n which verifies the Theorem.

Due to (6) the number of interpolation points that we

need for the polygonal basis Ŝ(n,k1,k2)
∆ is

N̂ =
(n+2

n

)

−
(

Sn−k1 +Sn−k2

)

. The recursive formula for
the calculation of divided differences (5) and the

c© 2014 NSP
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algorithm for the calculation of the Newton interpolating
polynomial given in [13] can now be used in this
polygonal basis as we can see in the following Example.

Example 3.Consider the Example2. Denote the set of

N̂ =
(n+2

n

)

−
(

Sn−k1 +Sn−k2

)

=
(3+2

3

)

− (S1+S1) = 8

interpolating points given by the set (polygonal basis)

Ŝ(3,2,2)∆ =
{

(xi = i,y j = j)|i = 0,1,2 , j = 0,1,2 , i + j ≤ 3
}

and the values of the functionf (x,y) on that points as
given by the table

f (xi ,y j) y0 = 0 y1 = 1 y2 = 2
x0 = 0 0 −1 −9
x1 = 1 3 5 7
x2 = 2 12 21

Step 1: Construction of the table with initial values

P̂0 =







p(0)0,0 = 0 p(0)0,1 =−1 p(0)0,2 =−4

p(0)1,0 = 3 p(0)1,1 = 5 p(0)1,2 = 7

p(0)2,0 = 12 p(0)2,1 = 21







Step 2: For k = 1(1)ñ, where
ñ= max{k1,k2} = max{2,2} = 2, compute the tables of

orderk, wherep(k)i, j are given by the recursive formula5.
For k = 1, the first order table of divided differences is
given by

P̂1 =







p(0)0,0 = 0 p(1)0,1 =−1 p(1)0,2 =−3

p(1)1,0 = 3 p(1)1,1 = 3 p(1)1,2 = 5

p(1)2,0 = 9 p(1)2,1 = 7







For k = 2, the second order table of divided differences is
given by

P̂2 =







p(0)0,0 = 0 p(1)0,1 =−1 p(2)0,2 =−1

p(1)1,0 = 3 p(1)1,1 = 3 p(2)1,2 = 1

p(2)2,0 = 3 p(2)2,1 = 2







Step 3: The Newton interpolating polynomial in polygonal
basis is the following:

p(x,y) = X̂T · P̂·Ŷ = x2+x2y+y2

whereP̂= P̂2 with zero at the position(3,3) and

X̂ =





1
x

x(x−1)



 , Ŷ =





1
y

y(y−1)





which coincides with the results given in Example2

The main advantage of polygonal basis is that it uses
less interpolation points whenn< k1+k2 < 2·n (see Table
1 and Figure1).

Table 1: The number of interpolation points in all bases whenn
is constant (10) andk1 (resp.k2) gets values from 0 to 10

(n,k1,k2) N Ñ N̂

(10,2,8) 66 27 27
(10,3,8) 66 36 35
(10,4,9) 66 50 44
(10,5,9) 66 60 50
(10,6,9) 66 70 55
(10,7,9) 66 80 59
(10,8,9) 66 90 62
(10,9,9) 66 100 64
(10,10,9) 66 110 65
(10,10,10) 66 121 66
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Fig. 1: The number of interpolation points in all bases (red:
triangular, green: rectangular and blue: polygonal) whenn is
constant (10) andk1 (resp.k2) gets values from 0 to 10

3 An optimal basis for the evaluation of the
Newton two-variable interpolating
polynomial

We consider as “optimal basis” the set with the least
number of interpolation points for the computation of the
coefficients of a Newton two variable interpolating
polynomial of a polynomial f with the the following
known characteristics:

–upper bound of the total degreen= deg[ f (x,y)]
–upper bound of degree for the variablex (resp.y), k1 =
degx[ f (x,y)] (resp.k2 = degy[p(x,y)])

As far as we know, from the previous section, we have
three choices for the selection of this set : a) triangular
basis, b) rectangular basis and c) polygonal basis. Since
the polygonal basis is coming from the intersection of the
triangular and the rectangular basis, is always a subset of
these two bases and therefore has the least interpolation
points. As we shall see below, under certain conditions the
polygonal base coincide with one of these two bases.
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Lemma 3.Let the Newton two-variable interpolating
polynomial p(x,y) has total degree n, upper bound degree
for variable x (resp. y), k1 (resp. k2). Then, it holds that

n≤ k1+k2 ≤ 2·n

Proof.The polynomialp(x,y) has total degreen, when the
maximum value of the summation of the exponents of the
term xn1yn2 is equal ton, namely,n1 + n2 = n. Since the
greatest power ofx (resp.y) in p(x,y) is k1 (resp.k2) we
have that

k1 ≤ n
k2 ≤ n

}

=⇒ k1+k2 ≤ 2·n

and
k1 ≥ n1
k2 ≥ n2

}

=⇒ k1+k2 ≥ n1+n2 = n

From these inequalities we conclude that

n≤ k1+k2 ≤ 2·n

Based on the above we conclude that the selection of
the appropriate base depends on the structure of the
polynomial and more specifically, on the connection
betweenn,k1 andk2. We distinguish three possible cases:
If k1+k2 = n then we have

N =

(

n+2
n

)

=
(n+1)(n+2)

2
(k1+k2=n)

=

=
k2

1
2
+k1k2+

3k1

2
+

k2
2
2
+

3k2

2
+1

Ñ = (k1+1)(k2+1) = k1+k2+k1k2+1

N̂ =

(

n+2
n

)

−
(

Sn−k1 +Sn−k2

) (k1+k2=n)
= k1+k2+k1k2+1

with a consequence

N− Ñ =
k2

1
2
+

k1

2
+

k2
2
2
+

k2

2
> 0 and N̂ = Ñ

Thus, the optimal basis is the rectangular basis (Figure2).
If k1+ k2 = 2 ·n then from Lemma3 we have thatk1 = k2 = n
and

N =

(

n+2
n

)

=
(n+1)(n+2)

2

Ñ = (k1+1)(k2+1)
(k1=k2=n)

= (n+1)2

N̂ =

(

n+2
n

)

−
(

Sn−k1 +Sn−k2

) (k1=k2=n)
=

(n+1)(n+2)
2

with a consequence

Ñ−N =
n2

2
+

n
2
> 0 and N̂ = N

thus, the optimal basis is the triangular basis (Figure3).
Finally, if n < k1 + k2 < 2 · n then the optimal basis is the
polygonal basis (Figure4).
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Fig. 3: The setsS(n)∆ (red circles) and̃S(k1,k2)
∆ (blue squares) where

k1+k2 = 2·n

Therefore, the optimal number of required interpolation points
is given by the following formula

No =























N =
(n+2

n

)

whenk1+k2 = 2·n

Ñ = (k1+1)(k2+1) whenk1+k2 = n

N̂ =
(n+2

n

)

−
(

Sn−k1 +Sn−k2

)

whenn< k1+k2 < 2·n
(7)

or equivalently as we already expected

No = N̂ =

(

n+2
n

)

−
(

Sn−k1 +Sn−k2

)

wheren≤ k1+k2 ≤ 2·n.
In the following two examples we present the application of the
formula (7) and polygonal basis in problems of applied
mathematics where the technique “evaluation-interpolation”is
used.
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Example 4(Computation of GCD).Let the two-variable
polynomials

f (x,y) = x9−x4−x5y6+y6

and
g(x,y) = x11−x6−x5y9+y9

The total degree of the greatest common divisor
p(x,y) = gcd{ f (x,y),g(x,y)} has as an upper boundn the
greatest total degree in each polynomial i.e.

n= min{deg[ f (x,y)] ,deg[g(x,y)]}= min{11,14}= 11

Let k1 (resp.k2) be the upper bound of the degree ofx (resp.y)
in p(x,y) = gcd{ f (x,y),g(x,y)}. Then

k1 = min{degx [ f (x,y)] ,degx [g(x,y)]}= min{9,11}= 9

and

k2 = min
{

degy [ f (x,y)] ,degy [g(x,y)]
}

= min{6,9}= 6

Therefore, we need to find a Newton two-variable interpolating
polynomial with total degreen = 11 and degree for variablex
(resp.y), k1 = 9 (resp.k2 = 6) with n< k1+k2 < 2·n. The least
number of interpolation points that we need is

No = N̂ =

(

n+2
n

)

−
(

Sn−k1 +Sn−k2

)

= 60

on polygonal basis instead toN = 78 for the triangular basis and
Ñ = 70 for the rectangular basis. An algorithm for the solution
of this problem based on DFT interpolation techniques can be
found in [14].

Example 5(Computation of the determinant).Consider the
two-variable polynomial matrixA(x,y) of the Example1 with
determinantp(x,y) = detA(x,y), having an upper bound of the
total degreen= 27 and upper boundk1 = 19 (resp.k2 = 16) of
the degree ofx (resp.y). Sincen< k1+ k2 < 2 ·n, we can use a
polygonal basis with

No = N̂ =

(

n+2
n

)

−
(

Sn−k1 +Sn−k2

)

= 304

interpolation points instead of a triangular basis withN = 406
interpolation points or a rectangular basis with̃N = 340
interpolation points. The number of interpolation points is
significantly important on the computation of the determinant of
a two-variable matrix, since for its solution a respective number
of computations of constant determinants is needed [13].

4 Conclusions

In certain types of Newton two-variable interpolation problems,
we already have an estimation of the upper bound of the total
degreen of the interpolating polynomialp(x,y) and the total
degree of its variables (k1 (resp.k2) in terms ofx (resp.y)). In
that cases, it was shown that it is less expensive in computational
cost and memory, to use a basis of interpolation points that
comes from the interconnection of the well known triangular
and rectangular basis. This new polygonal base, use less
interpolation points and under certain conditions between the
degrees of the polynomial, coincides with either the triangular
basis (k1+k2 = 2·n) or the rectangular basis (k1+k2 = n). This
new polygonal basis can be used in many problems of applied
mathematics such as a) the greatest common divisor of
two-variable polynomials and b) the determinant of a
two-variable matrix e.t.c. by using the Newton interpolation
algorithm proposed in [13]. Although, we study here the specific
case where the function that we would like to approximate is
already a polynomial, this polygonal basis can also be used for
the approximation of any function if the pre-specified properties
for the Newton bivariate interpolating polynomial are satisfied.
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