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Abstract: In this work, we proposed a new approach called integer sub-deaitiopo(ISD) based on the GLV idea to compute any
multiple kP of a pointP of ordern lying on an elliptic curveE. This approach uses two fast endomorphigmsindys, of E over prime
field Fp to calculatekP. The basic idea of ISD method is to sub-decompose the returned Valaesk; lying outside the rangg/n
from the GLV decomposition of a multiplide into integersky 1, k1o, ko1 andkpo with —/n < ki1,ki2, ko1, ko2 < 4/N. These integers
are computed by solving a closest vector problem in lattice. The new gedpaigorithms and implementation results are shown and
discussed in this study.
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1 Introduction invested to elliptic curves having arbitrary charactésst
however, any improvement in the efficiency is not
In 1985, Miller [1] and Koblitz [2] introduced the elliptic gﬂggae’;ttee%d 55?‘5232%1 aefcg:ar(?&')ti‘;"f;glm;hs"’i‘sgbe;n”
curve - cryptosystem. Smce the_:n, thg elliptic curve efficiently computable endomorphism of an elliptic curve
cryptosystem has been invested in the field of public keyE over a prime fieldF, for a pointP ¢ E of prime ordem
cryptography because of its low bandwidth and SmallThey introduced arF; idea using the decompositio.n of
space storage requiremeng$-[6]. In the main operation k= ki +keA (mod 1}, where) is an integer that satisfies
of public key schemes, scalar multiplication can be L[J(P)lz/\lgandllj is ém endomorphism o. They stated
accomplished using elliptic curve3]| The latter can be that if endomorphism is efficiently com.putable and if
dealt with by successively doubling and adding theeach component di;, k» in the decomposition is short

ﬁg;gsfi;%\/gg?gsuﬁped dmgg'spl:f;?ﬁgssr?]\;e”rstgi L:)r:otlre]elgyklg enough, then their method can improve the computational
q y P y’el‘ficiency up to 50%. The following equation is the

the required complexity may still be relatively heavy. e )

Accordingly, many studies have been conducted anqdecomposmon process.

several other approachg; have been propogeq to improve k=ki + koA (mod n (1)

the computational efficiency of the elliptic curve

cryptography 8]-[13]. For instance, an approach was set with —/n < kg, kp < y/n.

to analyze the algebraic structure of elliptic curves. ThisGallant et al. introduced a method in which they used two
approach was further used to classify a class of specidinearly independent short vectors andv, in the kernel
curves with better efficiency in the scalar multiplication. of the homomorphism

The use of Koblitz curves can increase efficiency. In

Koblitz curves, scalar multiplication requires no point to T:ZxZ—1Z/n, (2)

be doubled by exploiting a feature of the Frobenious
endomorphism14]. The Frobenious endomorphism can S
be efficiently computed when the underlying finite field is T(i, 1) =1+]jA(mod . ®)

of characteristic 2 because the squaring operation is much To make the notation simple, a set of such vectors
faster than the multiplication. The same idea can bedenoted as; andv, which are called a GLV (R. Gallant,

defined by
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R. Lambert and S. Vanstone) generator, will be defineddisplays a new method for computing scalar
later. The original GLV was not perfect because of its multiplication depending on the sub-decompositiorkpf
certain gaps that were left unproven. Hence, the GLVandk, when both or one of them is not bounded-by/n.
method offered in another model that assists in finding aSection 6 shows the implementation results. Finally,
GLV generator. The existence of a GLV generator and theSection 7 is the concluding remarks.

success of finding this generator cannot be guaranteed.

Therefore, Kim and Lim (2003) in 17 proposed a

necessary condition for the existence of the GLV 2 Preliminaries

generator and a method of finding it when such generator

exists. _ . Most applications of elliptic curves theory in
The GLV method and subsequent improvements on it relycryptography deal with elliptic curves defined over a
on the decomposition values kf andk; for values that finite field, Fp, wherep is a prime number. This curve is
fall within the range—,/n < ky,kz < \/n. Forks andkz  called prime curve.

values not within this range, the GLV method will not
work. A new generator should be obtained to generate the
next values ok; andk; that fall within the given range. In 2
this paper, we propose a new method called integer
sub-decomposition (ISD) to overcome this problem. ThisDeﬁnition 1.[19 Let p+ 2,3. An elliptic curve EFy)
method allows us to work witk; andk, values that fall o [ ) P
outside the given range. ISD method has improved theOver Fp, be defined by an equation of the form:
computational efficiency compared with the general
method of computing scalar multiplication in elliptic

curves over the prime field. In the present paper, Weynere AB e F,. The curve E is non-singular if it has no
introduce a sub-decomposition process and present thrég, \pje zeroes. that means the discriminant
main problems that are aimed to be investigated inDE:4A3+27|’327é0(mod .

ordinary elliptic curves that are defined oveH,,.

.1 Elliptic Curve over

E:Y2=X3+AX+B(mod n, (4)

Problem 1: Let E be ordinary elliptic curve ovefp, Definition 2. [19],[20] Let E(F,) be an elliptic curve
P c E(Fy) has a large prime ordem, and defined in equationd) over the field §, P = (xp,yp) and
A A2 € [Ln— 1], where A; £ +X,. Construct the Q= (Xq,¥q) two points on E SUCh. that, @ # o. We
linearly independent integer vectovs,vo,vz andv, ~ G€fine P-Q=R= (xz,yr) as follows:
which are lattice integer points computed by solving

the closest vector problem in lattice. U= (yQ —yp> (mod p if P#Q (5)
XQ—Xp

Problem 2: Let E be ordinary elliptic curve oveFy,
P € E(Fp) has a large prime ordem, and or
A1,A2 € [1,n—1], whereA; # +A; and the linearly
independent integer vectorsi,vo,v3 and v, are
originated. Find two ISD generatorévi,vo} and
{vs,va} that satisfy the necessary condition that
includes the relation between components for any sz/\Z—xP—xQ (mod p
vectorv;, fori = 1,2,3,4 is relatively prime. Vi = A (Xp — Xg) — Y (Mod p.

Problem 3: Let E be ordinary elliptic curve ovelf, such A special case when® —Q then P+ Q = .
that #(F,) = p+1—t, P is a point lying onE has
a large prime orden, andk € [1,n— 1]. Assume that
{v1,v2} and{vs,va} are ISD generators. Compute the 2 2 Endomorphismg of Elliptic curve E over
point multiplication elliptic curvekP when the values E
ki andky are not bounded by-\/nin the ISD method. p

This paper is organized as follows. Section 2 presents @ssume thak is an elliptic curve defined over the finite
synopsis of the mathematical background to explainfield Fy. The point at infinity is denoted &e. The set of
elliptic curve E over prime finite field and its Fy—rational points onE forms the groupE(F,). A
endomorphism ¢y . Section 3 briefly reviews the rational mapy : E — E satisfies(Og) = O dubbed an
mechanisms of the scalar multiplication using a GLV endomorphism ofE. The endomorphismy will be
generator proposed irl9],[17]. Section 4 presents the defined overFq where q = p" if the rational map is
extension of the necessary condition for the existence otlefined overr;. Therefore clearly, foranp > 1, ¢ is a
two ISD generators. In addition, we demonstrate a newgroup homomorphism d& (F,) andE(Fy) [11],[20].
algorithm that helps find ISD generators. Section 5

) (mod p if P=Q (6)
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Definition 3. The endomorphism of elliptic curve E 4.2 How to use a GLV generator to calculate kP
defined over fis the m- multiplication mapm| : E — E

defined by The following section illustrates how Gallant et al. used a
P— mP (7) GLV generator to accelerate the computation k.

for each me Z. The negation map-1] : E — E defined ~ Suppose thafvi,v,} is a GLV generator. In view of the

by P— —P is a special case from amultiplication map ~ fact thatv; andv; are linearly independent oved x Q,
[11]. the latter will sparQ x Q. Consequently, one will have

(k,0) = Biva1 + Bavz, (10)
3 GLV generator for somefy, B2 € Q. Let by, by be the nearest integers to

Definition 4. [17] A GLV generator is a se{vi, vz} of Py, B2 respeciively. Finally, set

two linearly independent vectors &nd \» in the kernel of _ _
the homomorphism T in an equatio) (defined in the X~ (k1 kz) = (k; 0) — (byvy, bave)

equation B). It is called so if each component of and = (k,0) = (Bav1+ BaV2) + (Biva + BaVz) — (bavy, bovo)
V2 is bounded by/n. = (B1—Db)vi+ (B2 —b2)V2).

Lemma 1. [17] Let n be prime andA € [1Ln—1]. In  Then T(x) = k can be obtained from equatio)(and
addition, assumes thatlv:f(r,t), V2 j (uv) € kﬁrT ar|1d X[ < 3([ va || + || v2 ||) can be obtained from lemma 2 in
—vn <rtuv<yn o If v and v are linearly g yhere| - || is an Euclidean norm. Sincévy,vs!}
independent, then r is relatively prime to t and u is represents a GLV generator, each component @indv,

relatively prime to v. is bounded by/n and the result will be
Lemma 2.[17] Letn be prime and\ € [1,n—1]. If there
is a vector v= (r,t) in the kernel of T such as gédt) # 1 —Vh <k ke < V. (11)

and—/n<r,t n, then there will be no GLV generator. . .
vh<rt<yn W 9 Thus, equation1) can always be decompose with the

condition in equation X1) from any GLV generator
4 Original 2-GLV Method by Gallant et al. {v1,v2}. HencekP can be calculated by
. - kP =kiP+g k(P (12)
4.1 Domain Parameters of The Original 2-GLV (F)
Method using the window simultaneous multiple point
multiplication method forP and ¢(P). In addition, the
A set of parameters should be followed in the original efficiency improvement should roughly be 50% over the
method [L5]-[18]. These involve the following: general scalar multiplication method for the currently

(i) Fpisafinite field ofp elementspis the prime number, recommended key sizes.

(i) Eis an elliptic curve defined ové, with the point at
infinity Og;
(i) P e E(Fp)is arational point of a large prime order  Remark.In decomposing the integérinto k; andks, we
~_Thatis, the cofacton = #E(Fp) /nis small, ancdh <4;  can sometimes get to one of the valuegobr k, equal to
(iv) An endomorphismy of E is a rational map zerg, This case is not admissible in decomposition because

Y :E = E with ¢(Og) = O, is an efficiently it cannot satisfy the equation)(
computable endomorphism & over Fp, and it acts

on the subgroupP) as a multiplication byA such that

Y(P) = AP (8) 5 Elliptic Scalar Multiplication using Integer

. - , Sub-Decomposition (ISD) Method
(v) A is a root of the characteristic polynomial

Charpoly(X) = X2 +rX +s, @) 5.1 A condition for the new ISD generators

of s, wherer, srepresent small fixed integersiigand | this study, we state and prove a necessary condition for
Aeln-1]; ) ) the existence of ISD generators based on the idea of
(vi) k'is an integer that is selected uniformly at random pecessary condition of GLV generatdi7].
from the interval1,n— 1J;
(vii) The group homomorphism (the GLV reduction map) Assume thatv; = (a,b), v» = (c,d), vs = (g,j) and
T:ZxZ— Z/nis defined in equatiorg). v4 = (e, f) are linearly independent integer vectors in the
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kernel of T such that—/n < a,b,c,d,g, j,e f < /n.
Then we have

a+bAi =sn
c+dAy =wn,
g+ jA2=un, (13)
e+ fA, =vn,

for somes w,u,v € Z. By multiplying the first and the
second equations inl) by c and a, respectively, we
obtain

(bc—ad)A; = (sc—aw)n, (14)

By multiplying the third and the fourth equations ih3j
by e andg, respectively, we obtain

(je—gf)Az = (ue—gv)n. (15)
Similarly, we have
(bc—ad) = (sd— bw)n, (16)
and
(gf —je) = (uf — jv)n. a7

Note thatbc—ad| < 2nand|je—gf| < 2n.If bc—ad=0

then(a,b) and(c,d) are linearly dependent. And, j&—

gf =0 then(g, j) and(e, f) are linearly dependent.Thus

bc—ad= —n,nandje—gf = —n,n because divides

bc— ad and je — gf. From equations1) and (7), we
sd—bw=-1,1

have
{uf—jv——l,l

Therefore, we conclude th&td, j, and f are relatively
prime tos,w,u, v, relatively. We shall state and prove the
following Lemmas.

(18)

Lemma 3. Let n be primeA; and A, € [1,n— 1], where
A1 # £A2. Assume thatyv= (a,b), vo» = (c,d),v3 = (g, j)
and i (e,f) € kerT such that
—y/n < ahbcdagjef < n If vi,vp,v3 and \y are
linearly independent, then,e g, and e are relatively
prime to hd, j, and f, respectively.

Proof. Sincevy,Vv»,v3 andv, € kerT, we haves,w,u,v €

Z which satisfy equation1@). Assume that the greatest
common divisor ofa andb is a > 1. Thena becomes a
common divisor ofs andb from equation 13) sincen is
prime and this contradicts td.§) [J.

Remark.Lemma @) shows a necessary condition for the
existence of ISD generatorévi,vo} and {vs,vs}. If
vi = (a,b) € kerT, ged(a,b) # 1 and|al < /n, [b] < /N,
then the second vector, = (c,d), |c| < v/n,|d| < /N
never existed. The same thing will happen withandv;.
In fact, Lemma 8) itself shows that ifgcd(a,b) # 1 and

gcd(g, j) # 1, there are no ISD generators that contain theA

vectors(a,b) and(g, j), respectively.

Lemma 4. Let n be primeA; and A, € [1,n— 1], where
A1 # £A. If there are vectors + (a,b) and u= (g, j) in
the kernel of T such that g¢d,b) # 1, gcd(g, j) # 1 and
—y/N<ab,g,j<+/n,then there exist no ISD generators.

Proof. Suppose that{vi,v,} and {vs,v4} are ISD
generators. Thus, eithefv,vi} or {v,v»} is an ISD
generator containing, also {u,vs} or {u,v4} is an ISD
generator containingl. Thus, contradicts Lemma3)
Therefore, there exist no ISD generators from LemB)a (
L.

5.2 The proposed algorithm to find ISD
generators

5.2.1 Findingv, andv,

Using the method proposed by Gallant et al. described in
section 4, one can always get the vectarandvs, where
each component of; andvs is bounded by/n. Now we
present an algorithm to find the second and the fourth
short vectors/, andv, after obtaining the vectorg and

v3. Suppose we have the vectofis= (ams1, —bmy1) and

v3 = (Om+1, —Jms1) in the kernel of T as in Gallant et
als algorithm. We know thatam;1|, |bm+1], [Ome1| @and
|ima| are already less thag/n. Let v» = (c,d) and

v4 = (e, f) be the vectors so thdvy,vo} and{vs,v4} are
ISD generators. Suppose v (a,b),

vo = (c,d),v3 = (g, j), andvs = (e, f) satisfy the equation
(13) for somes,w,u andv € Z. From the equationl@),

we know thats andu are relatively prime to-b and —j,
respectively. We apply the extended Euclidean algorithm
to find the greatest common divisor ®and—b, and also

to find the greatest common divisorwaind— j. Then the
algorithm returngl’, w', U’ andv' which satisfy

{sd—bvxlzl

uf' —jv =1
In general, every integer vectdd,w) and (f,v) which
satisfysd— bw =1 anduf — jv = 1 can be represented
by (d' + aib,w + o18), (f' + a2j,V + apu) where
01,02 € Z. Our purpose is to find a suitable and as.
Setd = d + ajbw =wW 4+ ;s and f = ' + ayj,
v =V + ou. Since|d| < N, b= —bn1 # 0 and

(19)

[f| < /N, j =—]jme1 #0, we have
d /n d n
5 p S<—pt, (20)
and " )
——.—@<ag<——+@, (21)
J J J J
whereb, j > 0.
Iso,
d’ n d’ n
and " )
——.+@<az<f—f—.n, (23)
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whereb, j < 0. and ¢ ¢
|11:—*._@7 |12:—*+@
Note thatc = wn—dA; anda = a1 > 0, then we have j i i j
15V "1 —
d}\la Wn—@<al<“la Wu?’ (24) Step5.Let

_ TR TR
also,e=vn— fA, andg = gm:1 > 0, then we have 1=l 1), 1 =[113,112), i b >0,

and
"Dy — "Dy — Iy = [l1g,111], 17 =[l15,114], if b<O.
M*@<GZ<M+@ (25) 1 [12 ll] 1 [12 ll]
g g g g
Hence, a; has to be an integer in the intersection of St€P 6.Compute
equations 20), (22) and @4). Also, a, has to be an o Y
integer in the intersection of equatior&l, (23) and 5). lpg = _M — @7 lop = _dA wn 4 v
From Lemma 4), in order to seeka; and a» for the a a a a
second and fourth vectows andv, of ISD generators, it Also,
is sufficient to test only eight integers at most since one of
|a],|b| and|g|,|j| is greater thark\/n. Now, we present v f'A2—vn /n - f'fA2—Vvn y/n
our algorithm to find the second and the fourth veator 21— g - Ev 22—~ g + E

andv, respectively.
— /) !

Algorithm 1: Find ISD generatorsv; = (a,b), Step 7.Letlz = [l21, I22] andl; = [I5y, 125].

v, = (c,d), v3 = (g,j) andvs = (e, f) for givenn and

M. Az € Z, whereh, £ +As. Step 8.Find all integers in the intersection of and |,

and define them by, also all integers in the intersection
of I] andl} and define them bw,. Note that the numbers

of ajs andajs are at most 4. If there is not any of such
integers exist, stop.

Input: Integersn, A1, As.

Output: The vectors/y, Vo, vz andvg.
Step 1. Compute Vi — (amii,—bm1) and Step 9.Setv, = (c,d) andvs = (e, ), where
V3 = (Omi1,—Jme1) Such thatsmiin + bmi1Ar = amis c=wn—-dA1+ma, d=d +ab
andum; 1N+ jm1A1 = Omy1 Where|ami 1/, [Bmyia/, [Omy1]

and |jmy1] < y/n by using the extended Euclidean gpqg

algorithm to find firstly the greatest common divisorrof e=Vn—fA+ag, f="F+aj.

and A; and secondly of the sanmeand A,. (This is the ) )
extension of Gallant et al.'s algorithm for two vectors The vectors, = (c,d) andv, = (e, f) are easily verify
andvs). to be in thekerT, and|c|, |d|,|e| and|f| < /n; therefore,

{v1,v2} and{vs,v4} are ISD generators.

Step 2.Check if each components of eith@,, —bm) or
(@mi2, —Pmi2) and (gm,—jm) OF (Imi2,—jmi2) is _ N
bounded by,/n, stop and set the shorter @y, —bm) and 5.3 The proposed integer sub-decomposition
(am+2, —bm:2) as the second vectovy, also set the method (ISDM) to Compute kP
shorter of (gm, —jm) and (Oms2, —jm+2) as the fourth
vectorvs. Otherwise, go to step 3. The proposed method modified the Gallant, Lambert,

) ) , Vanstone GLV method (Gallant et al., 2001) to have faster
Step 3. Find any d ,V\/,f/ and V' such that point multiplication on an elliptic curvé& over a prime
Sme1d’ — bniaW = 1 andupa f — jmeaV = 1. finite field Fp. This modification embeds that the second

] decomposition of the valudg andk, when one or both

For exampled’ andw are obtained from the extended yalues is not bounded by/n. The sub-decomposition

Euclidean algorithm sincesy,; is relatively prime t0  fromk = k; + kpA2 (mod 1 is explained in the following:
—bmy1, and the same thing withi’ andV' are obtained

from the extended Euclidean algorithm singg.1 is ki = ki1 +Eg kipA1 (mod (26)
relatively prime to—jn.1.

and
Step 4.Compute ko = ko1 +E ka2A2 (mod 1. (27)
d n d n One has to find ISD generatofe;, v} and{vs,v4} based
l11 = b b li2= Ty on the algorithm (1) that depends on the same way

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

522 NS 2 R. K. K. Ajeena, H. Kamarulhaili: Point Multiplication using Integer Subdaposition...

followed by a GLV generator algorithnif], so that each

component ofvy,vo,v3 and v4 is bounded by./n. _

Accordingly, the result will be integerk;1, kio, ko1 and ~ Va = (4,V) < (fmy2, —tmr2) and v = (4,9) < (fmy2, —tmi2)-

koo are computed by solving the closest vector problem in _

lattice which is embodied in using an extended Euclidean St€p_4: Compute c3 = [Vki/n], ¢4 = [~tky/n] and

algorithm. That is, one can decompdstarough applying ¢ = [Vke/nl, ¢s = [—tka/n].

the balanced length-two representation of a _ _ _

sub-decomposition multiplier algorithm (2) as follows: ~ Step 5:Computekys = ki —Car — Cqu, kiz = —Cat — CaV
andky1 = ko — csf — g, kop = —cst — CgV.

K = k11 + k12A1 + ko1 + kooA2 (mod 28
11+kazhs ko +keaAz ( r) (28) Step 6: Returnky1, k12, ko1 andkoo.
with —/n < ki1,kip, ko1, ko2 < /n from any ISD

generators{vi,V,} and {vs,vs}. The Fig () shows that Hence, kP can be calculated by using the following

clearly. formula:
kP = k11P—|— klz[)\l]P+ k21P—|— k[)\z]P (29)
= k11P + K21 (P) + ko1P + koo2(P).
The computation in equatior29) can be achieved using
k the window simultaneous multiple point multiplication
method which has been computed in an algorithm (3) for
/ \\ P, Y1 (P) andy,(P).One can see that in the Fig)(
ky kA
/ N\ L5 4
b | [#A] [#a) (%22 <
[ 12 [£:41P
Fig. 1 Shows the Subdecomposition of the intelger “/ \4 / \
[en 1P || AP [ky1P Ao A 1P
—
Algorithm 2: Balanced length-two representation of a I l I l
sub-decomposition multiplier algorithm
[%,17 K 1344 () [£4,17 [’tn% G
Input: Integersn,A1,A2 € [1,n—1], whereA; # +A, and

ki ko € [1,n—1].

Fig. 2 Shows the Subdecomposition of the elliptic curve point

Output: Integers kip,kiz, ko1 and kyz such that multiplicationkP

k = kig + kiodr + ka1 + ko2d2  (mod n  and
k11|, [Kaz2|, [k21l, [ko2| < /M.

Step 1: Run ISD generators algorithm (1) with inputs Ajgorithm 3: Modification of point multiplication with
n, A1 andA,. The algorithm produces the ISD generators tyg efficiently computable endomorphisms algorithm.
{v3,va} and{vs,Vve}.

_ _ _ Input: Integern, ki, ko> € [1,n—1], P € E(Fp), window
Step 20 Set v3 = (fmy1,—tmya) = (F,—t) and  widthswy, wo, ws andwg, A1, Az € Z, whered; # £Ao.
Vs = (Fmi1, —tmia) = (F, —1).
Output: kP.
Step 3:If (15, +12) < (12, ,+12,,) then set P
Step 1: Use balanced length-two representation a
sub-decomposing of a multiplier algorithm to find

V4 = (LI\?) &~ (r_m7 *t_m) and Vg = (0,V) < (fm, —tm). k11, K12, ko1 andky, such that
Else k=ki1+ k1241 + ko1 + ko2A2 (mod n.
@© 2014 NSP
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Step 2:CalculateP, = 1 (P), Ps = @»(P) and letP, = P.

Step 3: Use computing width-w NAF of positive integer

algorithm to computeNARy, (|kzj|) = Zilj;ll kyj 2 for
j=12andz=1,2.

Step 4:Letl, = maxXl,1,122}, z=1,2.

Step 5: If k;j < 0, then setG,j; < —Gj; for
i=0:l; j=12andz=1,2.

Step 6: ComputeiP; andiPs for i € {1,3,...,2%~1 -1}
andi € {1,3,...,2% 1 — 1}, wherej = 1,2 ands = 1, 3.

Step 7:Q « co.

Step 8:Fori=1,—1:0do

8.1.Q«+ 2Q.
8.2.Forj=12 z=1do
If G2j,i # 0 then

If Gzji > 0thenQ «+ Q+k;jiP;;
ElseQ « Q— |k j.i|P;.

Step 9:Forj=1,2, z=2do

If G;j;i # 0 ands= 1,3 then
If Gzj;i > 0thenQ < Q+kjiPs;
ElseQ < Q— |kzjilPs.

Step 10:ReturnQ.

vi < (r,t) andvy + (u,v).

Step 2: Use balanced length-two representation of a
multiplier algorithm in fL1] to decomposé to find k; and
ko for a givenn, A andk € [1,n—1].

As for the proposed steps set for modification, they
include the following:

Step 3:Use algorithm (2) to find
3.1.FornandA;, generate the ISD generator

{v3,v4} such thatsz «+ (r,t) andv, < (U, V).
3.2.Forn andAy, generate the ISD generator
{vs,Ve} such thatss < (7,f) andve + (G, 7).

Step 4: Use algorithm (3) to decompose andk, such
that ki = ki1 + kioAp (mod n and
ko = ko1 + kopA2 (mod n. That is, one can get
K = kg1 +ki2A1 + ko1 + kooAo (mod n.

Step 5: Use algorithm (4) to computeP defined as

KP = k1P + ki2[A1]P + k21P + k22[A2] P
= kg1P + ko1 (P) + k21P + koo (P).

such thatys(P) < [A1]P and gr(P) + [A2]P, where
A1,A2 € ZandAg # +A;.

6 Results

The sub-decomposition method proposed in this paper,

To summarize, the ISD method involves applying the known as the ISD method, is a modification of the GLV
same method as in the original GLV for finding the GLV method introduced by Gallant et al. to compute scalar

generatof vy, Vv, } for the givenn andA by using the GLV
generator algorithm in1[7]. Accordingly, the result will
decomposek into k; andky for n,A andk € [1,n—1].

multiplication kP. In the original GLV method, the
decomposition of the integec into k; and ky assumes
only values lying in the range-\/n < k1,k2 < y/n. For

This step can be done using the balanced length-twdhose values fall outside the range, that is, the valuds of

representation of a multiplier algorithm in17).

andky which lie outside the rang¢/n, the GLV method

Depending on the algorithm (1), find ISD generatorswill not work. This has resulted in a low percentage of
{vs,va} and {vs,vg} such that each component of successful computation of the multiplication operation of

v3,V4,V5 and vg is bounded by.,/n. The result will
sub-decomposle, andk; into the integer&i, kio, ko1 and

kP; hence GLV method is limited by the value lofor kP
computation. To solve this problem, we have proposed

koo which are computed by solving the closest vector new algorithms to anticipate those valuekpndk;, that
problem in lattice that is embodied in using an extendedlie outside the range. In the ISD method, we have
Euclidean algorithmk is sub-decomposed by applying sub-decomposed the valueskafandk, into ki, kio, kog

the algorithm (2) to find the equation28) with
—/N < ki1, kiz, ko1, koo < /N from any ISD generators
{vs,va} and{vs,Vvs}. Eventually,kP can be calculated by
using the formula in the equatio29), See algorithm (4).

Algorithm 4: ISD Method
Multiplication Elliptic Curve kP

to Compute Point

This algorithm consists of the following steps:

Step 1: Apply GLV generator algorithm in1[7] to find
the generatofvy, v»} for the givenn and A such that

andky, which lie within the range of/n. The proposed
ISD method aimed to increase the percentage of
successful computation &P.

The experimental results of the proposed method is
indicated in Table 1. In our experiment, we have
implemented the ISD method on four sets of sample data.
We considered three parameters in the experiment: the
parametern, the parameterA, and the primep with
100-bit length. The results indicate clearly that the ISD
method significantly increases the percentage of
successfully computellP. The ISD method has helped
increase the successful computation ki? by 50%
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