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Abstract: Concept lattices are indeed lattices. In this paper, we present a newnstagpidoetween lattices and graphs: given a binary
relationl, we define an underlying gragih, and find out the constitution in the set of cover elements of the minimum eteshéhe
concept lattice of using the properties d,. The following is to provide a way to establish a one-to-one correspaedagtween the
set of covers of an element in the concept lattice and the set of cavitrs minimum in a sublattice of the concept lattice. We apply
the one-to-one correspondence to define a new underlying gragplyeaerate the elements of the lattice.
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1 Introduction and Preliminaries lattice of! in this paper. This is followed by a description
of the manner in which the concept lattice can be

We know that many problems of data analysis are naturallyc0mputed and visualized in steps, at the same time, the
formulated in terms of formal concept lattice. As A.Berry diagram of the concept lattice is born. The final section
and A.Sigayret said ird], one of the important challenges 9ves an example for illustrating the graph-theoretic
in data handling is generating or navigating the conceptMéthod presented in this paper.

lattice of a binary relation.

In this paper, we provide a graph-theoretic approach  Although some of the definitions appearing in this
by determining the concept lattice of a binary relation section do not require that the sets involved be finite, we
with the underlying graph. An important step in make a standing assumption that all the discussions under
connecting this graph-theoretic approach with lattices isconsideration are finite. Originally, the terminologies of
to associate each binary relation with an underlyingconcept lattices are given below. After that, some known
undirected bipartite graph. When the bipartite graph isproperties about concept lattices are shown.
obtained, for the minimum element in the concept lattice
of the binary relation, all its cover elements are searched Definition 1 [1,3] A triple (G, M, 1) is called aformal
out by the graph-theoretic method. Additionally, a key context, if G andM are sets andl C G x M is a binary
aspect of this approach is that it equates the concepts aklation betweerG and M. We call the elements o6
the lattice with the minimum element in a new binary objects, those ofM attributes, and | the incidence of
relation. (G,M,1). ForAC G, we define
~In summary, our method presented in this paperis an A — {meM]|(g,m) eI, forallge A}, and dually, for
initial structural results, which we expect will provide gc M,
support for further advance in this direction. N

The outline of the paper is as follows. After . . .
introducing some notions from concept lattice, graph (AB) is afgrr_nal cogcep_t Of (G,M.1) if and only if
theory and lattice theory, we define the underlying graphAg G,BEM,A'=Ban .A_ B
D, which we use to represent a binary relatibnand The concepts of a given context are naturally ordered
describe some of its properties. Then, we present the maiRY the relation defined by
results regarding the method of obtaining the concept (Aq,B1) < (A2,Bz) < A1 C Ax(< By C By).

B'={geG]|(g,m) €l,forallme B}.
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The ordered set of all formal concepts (@, M, 1) is
denoted by#(G,M, 1) and it is called theconcept lattice
of (G,M,1).

In this paper, a formal context and a formal concept

In view of the results in3], we know that[a,b] is a
sublattice oflL.

will be simply said a context and a concept respectively;2 The bipartite graph underlying a binary

(g,m) € | is often written aglm.

Lemma 1[1,3] (1) For A;,A2,AC G andB;,B,,B C
M, there are the following statements:
HALCA éAlz - A/l' () BiCBy= B/Z - Bll.
(i) ACA” andA' = A”. (i) BC B” andB' =B".
(i) ACB < BCA.
(2) The concept lattice#(G, M, 1) is complete.

relation

In the previous works 4] introduces to represent a given
context by a graph constructed on the complement of the
relation; the breath first search graph partitions method is
shown in [5]. To benefit by the ideas id,p], we just
construct a graph on a given context to obtain the concept
lattice and the diagram of the concept lattice. Of course,
our graph is quite different from that iM[5] and the

The graphs used here are finite and undirected. Aboubther materials such as the referencesdifs]] Thus the
graph theory’s knowledge, we just show some of themmethod here is a new approach.

next and the others are referred to [2]. éraph
D = (V(D),E(D)) means tha¥ (D) is the vertex set and
E(D) CV(D)? = {xy|x,y € V(D)} is theedge set.

Definition 2 [2] A bipartite graph is one whose vertex
set can be partitioned into two subs&sandY, so that
each edge has one end{rand one end iiY.

Thedegree dp(u) of u € V(D) is the number of edges
of D incident withu.

Two verticesu andv of D are said to beonnected if
there is a(u,v)-path inD. Connection is an equivalence
relation on the vertex s&t. Thus, there is a partition &f
into nonempty subset4, Vs, ...V, such that two vertices
u andv are connected if and only if bothandv belong to
the same saf;.

The subgraph®[V1],D[Vz],...,D[Vy] are called the
components of D. If D has exactly one componert, is
connected; otherwiseD is disconnected.

For any setS of vertices inD, we define theneighbor
set of Siin D to be the set of all vertices adjacent to
vertices inS,; this set is denoted biyp (S).

We will used(u) andN(S) instead ofdp (u) andNp (S)

We should point out that the relations we work on are
considered as non-empty.

Definition 4 Let (G, M, 1) be a context; we will define
an associated underlying graph, denddgdas follows:

- The vertex set oD, is GUM.

- Forx,y € G, there is not any edge to incident with
andy.

- Forx,y € M, there is not any edge to incident with
andy.

- For a vertexx of G and a vertey of M, there is an
edge inD, if and only if (x,y) isin|.

Note that only the vertices between a vertexCoand
a vertex ofM are possible to be incident with an edge; the
vertices betweel or betweenM are not possible to be
incident with an edge. Thu®), is a bipartite graph and
undirected graph and(D;) = GUM andE(D;) = {xy |
xeGyeM,(xy) el}={yx|yeMxeG(xy)el}.
The graphs of this class have several remarkable
properties, such as hereditary: any subgraph of bipartite
graph which has more than one vertex is again bipartite
graph. Moreover, since the relations we work on are

respectively if it does not cause confusion throughout theconsidered as non-empD, is always hereditary.

rest of the paper.
By Lemma 1, we see tha®”(G,M,I) is indeed a

We present several nice properties @&y, which
makes our constructiog(G, M, 1) easier to handle than

lattice. We know that the main goal of data analysis is juston more general graphs.

to find the lattice construction for a given context. Hence,
we also need lattice theory to finish this duty. We just

Lemma 2 Let Dy,D,...,Dy be all the components

write out some known literature about lattice theory, the of D, associated with4(G,M, 1) and(A,B) €

others of lattice theory are see3].[

Definition 3 [3] The diagram of a poset (P, <)

Z(G.M.1)\ {Mg = min{C | C € B(G,M,1)},Gy =
max{C | C € #(G,M,1)}}. Then there is one and only
oneD,, satisfyingANV (Dy,) # 0. Similarly, there is one

represents the elements with small circles; the circleand only oneDy, satisfyingBNV (D, ) # 0. Further, there

representing two elementsy are connected by a straight
line if and only if one covers the other;xfcoversy, then
the circle representingk is higher than the circle
representing.

Let L be a lattice. Fom,b € L anda < b, theinterval
[a,b]={xeL|a<x<b}.

is one and only on®y,, such thatA, B belong toV (Dy,,).

Proof The existence oDy, for A is carried out by
Definition 2 and Definition 4.

Suppose there are two componeBisand D, of D,
satisfyingANV (Dy) # 0, (t = 1,2).

Let & € ANV(D;) = A, (t = 1,2). SinceA' =B =
{beM|V¥xeAxlb} ={beM|vxeAxbeE(D))} by
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Definiton 1 and Definition 4. Especially, for
a € At = 1,2), there is ab € E(Dy) for any
b e B, (t = 1,2). However, by the giverB # 0. We could

put bp € B. There areajbg,apbp € E(D;). Further,
a1 (a1bo)bo(bpaz)az is an(ay, ap)-path.
Since Dy = D[V(Dy)] is connected, i.e, for all

X € V(D) \ &, there is an(x, a)-path to conneck; and
a, (t 1,2). Thus, (x1,a1)-path, (az,az)-path,
(a2, %2)-path taken together is &g, xp)-path to connect
X1 andxo.

By the above, we have the connectivitydf U D,, a
contradiction to the assumption.

Similarly, there is one and only one componé&ny
satisfyingBnV(Dy, ) # 0.

By the construction oDy, (A,B) € #8(G,M,I) and
Definition 1, we have, there is one and only obg,
satisfyingA,B € V (D, ).

Suppose (A7 B)a(X7Y) € ‘@<G7M7I) \ {M@,Gq)}
satisfy (A,B) < (X,Y). Then by Definition 1A C X and
Y C B.Y C Btells usY C V(Dg), whereB C V(Dg) and
Dg is a component ob,. In virtue of Lemma 2, one gets
X C V(Dg) and A C V(Dg). That is to say, if
(A,B),(X)Y) € #A(G,M,l) and (AB),(X,Y) are
comparable in8(G, M, 1), it must have tha#\, B, X andY
belong to the same componentDi.

About D;, we have the following extreme statuses to
explain.

Status 1y € M andN(y) = 0.

By Definition 1, for(A,B) € #(G,M, 1) andB # M, it
hasy ¢ B. Namely, for(A,B) € #(G,M,I), y € B if and
only if B= M.

Status 2x € G andN(x) = 0.
In virtue of Definition 1, for(A,B) € #(G,M, 1) and

A # G, it hasx ¢ A. Namely, for (A,B) € B(G,M,I),
x e Aifand only if A= G.

Status 3.  {Om;,Om.---.0m} € G  satisfying
N(gm;) =N(gm,) = ... = N(gm,) = M.

In light of Definition 1, for (A, B) € %(G,M, 1), it has
om €A (i=12...,9.Thatis,

({gm17gn'|2a"'7gms}7M) 6%(G7M7|)
Status 4. {My,,Mn,,....My} C M
N<mnl)_:N(mnz)_:_ _~~:N(mnt): : )

Owing to Definition 1, for(A,B) € #(G,M, 1), it has
my €A (i=12,....1).

satisfying

Say,(G, {my,,Mn,,...,My }) € B(G,M,1).

According to the Statuses, we assure:

(1) Under the supposition of Status 3,
(ALB) € HB(GM,]I) if and only if
A \ {9m,9m,, -, 9ms}, B) €
‘%(G\{gmﬂgmzr"7gms}7M7|1)'
where(X,Y) € 11 < (XU {Gm,,Imps---,Ims},Y) € 1.

(2) Under the supposition of Status 4,
(AB) € AB(GM,I) if and only if
(AB \ {mny, My, ..., My }) €
B(GM\ {my ,My,,...,My },12),

X € X. Thus,b € X". However,X’

where(X,Y) €l & (X,YU{My,My,,...,My }) €
Therefore, in Section 3 and the part of 5.1 in Section
5, we only considefG, M, ) with the property: forvg €
G, there ism € M satisfying(g,m) ¢ |, and at the same
time, forVmy € M, there isgy € G satisfying(go, mp) ¢ I.
Under such supposition, i#8(G,M, 1), (0,M) and (G, 0)
are known existed as the minimukty and the maximum
Gp respectively.
In B(G,M, 1), we callMp andGg trivial elements the
othersnontrivial elements.

3 The cover elements of the minimum in
B(G,M, )

The main aim of studying on4(G,M,1) is to search
nontrivial elements and the relationships among the
members inZ(G, M, 1).

In this section, we only consider thBj is connected.
We will present a way to find all the cover elements of
(0,M) in the concept latticeB (G, M, ).

Let G ={g1,02,...,0«}. In Dy, the degree sequence
d(g1),d(g2),..-,d(9)) Satisfie&i(gll) d(g1,) =
(91,) = min{d(g). (gz> Sd(@d} < d(gzl)
(92,) = ... =d(g2,) < d(gi ) =d(g,) = -
(9,) < ( it1);) = = d(9ir1,,,) <

- <d(gs) =d(gs,) =
mex{d(gy),d(gz)... .. (G},
where for anyg; € G,d(gi,) < d(g;) < d(gi+
true.

This sequence andD,
properties shown as follows.

(
d
d
d d(g i+1)7 )

= d(gss)

iyl

1)) is not

have some remarkable

Lemma3(1) 0<d(gj),(j=1,2,...

(2)d(gj) = IN(gj)[, (] = 1,2,...,K).

(3) For anyg;j € G, if G>ge N(g;), thenN(gj) C
N(g),(j=1,2,....,k).

4) (X,Y) € B(G,M,1) inducesy = () N(X).

xeX

K.

Proof (1) and (2) are got by Definition 2 and
Definition 4.
Let g € N(gj). Since N(gj) = {x € G |

vy € N(gj),xly} by Definition 1, we havegly for
y € N(gj), and in view of Definition 49y € E(Dy) for

every y € N(gj). Hence, owing to Definition 2,
N(gj) € N(g). Say, (3) is true.

By Definition 1 and Definition 2, it is easy to ha¥eC
N(x), and soY C ) N(x).

xXeX
IfY C N N(x), thatis, there id € M N(x)\Y. This
xeX xeX

implies b € N(x) for x € X, say,xb € E(D) for every
=Y holds according to
(X,Y) € B(G,M,1) and Definition 1. This followb €Y,

a contradiction withb ¢ Y. Hence,Y = (1 N(x), i.e. (4)
xeX
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is correct.

We are now ready to prove our main results.

Theorem 1 Let g € G. Then
(N(gj)’,N(gj)) € Z(GM, 1), (j=1,2,....K).

Proof By Lemma 1N(gj) € N(g;)” holds. According
to Definition 1, it only needs to provd(g;)” € N(gj).

In light of Definition 1 and Definition 4, one gets
N(g))" = {y € M | vx € N(gj)",xy € E(D)} and
N(g)) = {a€ G| ¥be N(gj).abe E(D))}.

By Definition 2 and Definition 4g;b € E(D;) holds
for vb e N(g;). It follows gj € N(g;)". Hencegjy € E(Dy)
for vy € N(g;j)”. Soy € N(gj). Namely,

N(g;)" € N(g)).
That is to say(N(g;j)’,N(g;)) € B(G,M,1).

Theorem 2 Letge G, pe {1,...,ts} andd(gs,) =
max{d(g1),...,d(gk)}. Then

(1) N(g)N(gs,) = N(8s,) <= g€ N(gs,)".

(2) (N(gs,)';N(gs,)) covers(0,M) in Z(G,M,1).

Proof (1) (=) N(9) N"N(gs,) = N(gs,) hints
N(gs,) € N(g). Inlight of Lemma 3, this impliesl(gs,) =
IN(s,)[ < [N(g)| = d(g). Howeverd(gs,) =
max{d(g1),d(2),.....d(gi) }. Thusd(g) = d(gs,) is true,
further,N(gs,) = N(g) holds. Hereing € N(g)’ = N(gs,)"-

(<) g€ N(gs, "and Lemma 3 together hint&(gs,) €
N(g), i.eN(gs,) = N(gs,) NN(9).

(2) In view of Theorem 1(N(gs,)’,N(gs,)) €
B(G,M,1).

Suppose there iX,Y) € Z(G,M, ) satisfying
(OM) < (X.Y) < (N(gs) N(gs)). It
0 # X C N(gs,) and N(gs,) C Y C M.
Yo € YAN(gs,) #©.

BecausX =Y'={xec G|VyeY,xly} ={xcG|Vye
Y,xy € E(Dy)}. Then, foryp € Y andvx € Y/ = X, there is
Xyo € E(Dy). This followsyg € N(x) for ¥x € X. However,

_ ==

has
Let

x € X C N(gs,)" and the above closed (1) together shows

us N(x) = N(gs,)- Thusyo € N(gs,), @ contradiction to

Yo € YAN(Gs,)-
That is to say(N(gs,)’;N(gs,)) covers(0,M).

Theorem 2 endows the cover elements (6fM)
yielded from the members ifs = {Js,,0s,,- - -, 05, }. We

will now discuss how to find the other cover elements of (0,M)

(0,M).
Suppose we have got the cover elementg@®M)
yielded from

F1= {9(i+1)179<i+1)27~~,g(i+1)ti+l}\{gj € G|ld(gj) =
d(gi+1),), additionally, there isg € G satisfying

N(gj) < N(g) }. Put
T = {gil,giz,...,giti}\{gj € G|d(gj) =d(g,), there is
g € G satisfyingN(gj) C N(g)}

= {gial ) giaza R 7giaﬁi }

Then we get a sequenc&, %,..., 7. Considering
with Theorem 1, we will prove that the following
Theorem 3 is true.

Theorem 3 (N(gi, )'.N(gi, )) covers (0,M),
(h: 172a"'7Bi)'
Proof Otherwise, there is(X,Y) € Z(G,M,I)

satisfying(0,M) < (X,Y) < (N(gig, )", N(Gi, ))-

In view of Definiton 1, N(gj, ) C Y and
0# X C N(gi,, )" are correct.

Puta € N(gi, )" It has {a}’ 2 N(gi, )" = N(gi, )-
According to Definiton 1 and Section 2,
{a} ={yeM|vxe{a},xly} ={yeM |aly} ={ye
M|[ay € E(Di)} =N(a). Thus,N(gi, ) € N(a).

If N(gi,, ) € N(a) for someag € N(giah)’. This causes
a contradiction to the choice gf, . Thatis to sayN(a) =
N(gi,, ) foranyae N(gj,, )’. Particularlyx € X C N(gi,, )’
leads toN(x) = N(gig, )-

Thus by(X,Y) € B(G,M, ) and Lemma 3, it follows
Y = 1 N(X) = N N(gi,, ) = N(gi, ), a contradiction to

xeX xeX
N(Gig,) C Y.

Therefore,(N(giah)’, N(gi4, ))covers(Q,M),(h=1,2,....5).
Observing7a, ..., 7, Theorem 2 and Theorem 3, by the
induction ons < |G| < », we obtain that the style members
(N(g)’,N(g)) covers(D,M), whereg € G, additionally, for
anyx € G, N(g) C N(x) is wrong.

We will now discuss the converse part of the above
closed result as follows.

Theorem 4 Let (X,Y) cover (0,M) in B(G,M,I).
Then there iggy € G such that(X,Y) = (N(gv)’,N(gv))
and for anyg € G,N(gy) C N(g) is wrong.

Proof That(X,Y) covers(0,M) hints 0+# X C G and
YCM.

Letac X. Becaus&X' =Y = {ye M |Vxe X,xly} =
{ye M |V¥xe X,xye E(D)}, in particularay € E(Dy ) for
anyyeY. Thisimpliesye N(a) forvy €Y, i.e.Y C N(a).

Supposer C N(a) for anya € X.

Since (N(a)’,N(a)) € #(G,M,l) is correct by
Theorem 1. FurtherN(a)’, N(a)) < (X,Y) holds by the
supposition and Definition 1. These aifidl,Y) covers
taken together will bring about
(N(a)’,N(a)) = (0,M). That isN(a) = M.

But Y = N N(x) holds according to Lemma 3.

xeX
Considering the arbitrary ofa € X and the above

discussion, we havé = M, a contradiction t&Y C M.

That is to sayY = N(gy) for somegy € G. Herein,
(X,Y) = (N(gv)",N(gv)).

On the other hand, suppose thergds= G satisfying
N(gy) < N(go)- By Theorem 1,
(N(go)’;N(go)) € %(G,M,1). In view of Definition 1, it
has(X,Y) = (N(gv)’,N(gv)) > (N(go)’,N(go))-
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However, that (X,Y) covers (0,M)
(0.M) = (N(go)',N(go)), and so 0= N(go)".
Here, we should notice thgp € N(go)’ is right owing
to Definition 1. NamelyN(gp)’ # 0 is correct. This follows
a contradiction to 8= N(go)’.
In one word, there does not exist agy G satisfying

N(gv) C N(9).

The following approach is the sketch of an algorithm
to obtain the cover elements (@, M) yielded from .7 =
{gsj_?gSga cee 795(5}'

Step 1. Let’Z =0,%s=0and7 = {1,2,...,ts}.

Step 2. If.7 # 0, thens? = .7, go to Step 3.
Otherwise, go to Step 7.

Step 3. = min?, N(gsg)’ =0 anng,S =0.

Step 4. If27 #£ 0, thena = minsZ, go to Step 5.
Otherwise, go to step 6.

Step 5. IfN(gs; ) MN(0se) = N(gs; ), then

Ng(f = NgE Ugs, andZ = 27\ a, go to Step 4.
Otherwise# = 77\ a and7 = (7 \&)Ua,
go to Step 4.

Step 6'N(gsg)/ - Nég ,Cs = bsU {(N(gsg )/7 N(gsg ))}!
go to Step 2.

Step 7. Stop.

compels

By the above algorithm, we get that is the need
cover elements.

Suppose we have got the s&t,; of the cover
elements of 0, M) yielded from

Fi1 = {901 9i+2)20 - Dy, , )\ {gj €Gld(g) =
d(9it1),), besides, there isg € G satisfying

N(g) CN(@)-

PUt 77 = {0y, Gr--+ G, } \ {95 € G | d(g)) = dl(g,),
besides, there is g € G satisfying

N(gj) € N(g)} = {Giay + Gicy -+ Gia I

If 7% # 0, then posit7 = {a1,02,...,0ag } and repeat
the algorithm above for7, we obtain;, the set of the
cover elements ofd, M) yielded from 4.

If 7 =0, then 4 = 0. We just consider.7,
successively, n i — 1i — 2,...,1, where
i—1>i—-2>...>1.

According to || < |G| < (i = 1,2,...,s < |G|)
and the Theorems from Theorem 1 to Theorem 4, it
brings about that the sét of the cover elements ¢D,M)
IS =€1U%U...U%s.

g

4 The covers of an element of the lattice

We will use the classical properties of lattice theory and
graph theory to construct a one-to-one correspondenc
between an interval of the lattice and the minimum
element in the concept lattice of a new binary relation.

At first, we examine what happens to
(A,B) € #(G,M,l) when a new underlying graph is
established. In Definition 5, we will not suppose tBatis
always connected and Status 3 or Status 4 in Section 2
could not happen.

Definition 5 Let (A,B) € #(G,M,1); we will define a
new binary relationag C (G\ A) x B, as follows:

(Xa; Ya) € lag & (XaUAYa) = (X,Y) €1
whereXa = X\ AandYa =Y.

For the sake of convenience, before Theorem 5, we just
suppose that none of Status 3 and Status 4 in Section 2 will
happen here.

Note that(X,Y) € [(A,B).(G,0)] C B(G,M,I) tells
usAC X CG)Y CBand(X,Y) € l. Simultaneously, it
also tells uX\AC G\A)Y CBand(X\AY) € Ias. By
Definition 5, it follows that (Xa,Ya) € lag induces
(X,Y) = (XaUA,Y) € [(A,B), (G,0)].

Analogously to the construction d, in Section 2,
the associated underlying graph,, with (G\ A, B, lag)
is provided.

We firstly remark that by virtue of Definition G\
AB,lag) is a new context andd, B) is the minimum in
PB(G\ A B, lag).

Posit (X1,Y1) be a cover element ad,B) in A(G\
A, B,lag). Then one gets & Xi,Y1 C Band(Xy,Y1) € lag,
and further(Xz,Y2) € [(A,B),(G,0)] C A(G,M, 1) where
Xo = XiUAandY, =VY;.

Suppos€ Xy, Y,) does not cove(A, B) in B(G,M,1).
We will get that there igX3,Y3) € Z(G,M, 1) satisfying
(A,B) < (X3,Y3) < (X2,Y2). In view of Definition 5 and
the above discussiof,B) < (X3\ A, Y3) < (X2 \AYz2) =
(X1,Y1) is correct inZ(G\ A B, 1ag). This brings about a
contradiction to the position @X1,Y1) in Z(G\A,B, Iag).
Thus,(X2,Y2) covers(A,B) in Z(G,M,1).

Likewise, if (X,Y) covers(A,B) in (G, M, 1), then it
must haveX \ A,Y) covers(0,B) in Z(G\ A, B, Iag).

Summary, one will get a result as follows:
(X,Y) € B(G,M,I) covers(A,B) in B(G,M,I) if and
only if (X\AY) € #(G\ A B,lag) covers (0,B) in
B(G\A,B, ).

The below in this Section, we will not suppose that
both Status 3 and Status 4 will not happen; tBatis
connected will not assumed. Considering the above
closed result and the study on the Statuses in Section 2,
we pledge that the following Theorem 5 is valid.

Theorem 5 (X,Y) € #(G,M,I) covers (A,B) in
B(G,M,1) if and only if (X\AY) e B(G\AB,la)
eovers By in #A(G \ AB,lag), where Bp is
min{C|C € Z(G\A,B,lap)}.
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5 Generating the lattice

Computing the cover elements of an element in

2(G,M, 1) is an important problem for finding out all the

Y
haveF(wﬂM) = tL_Jngt.

5.2 The second process
Beyond now in this Section, we just consid&, M, | )

concepts of a given context and the diagram ofyth the property that for ang € G, there ism e M
Z(G,M,1). One may generate all the concepts defined bysatisfying (g,m) ¢ 1, and at the same time, for any

a binary relation, and at the same time, its diagram.

5.1 The first process
In the latticeZ(G, M, 1), if the height function id, by
[3], we will know h(a) = h(b) + 1 whena € #(G,M,I)

coversb € (G, M, 1). Because the relations we work on Y U{Mh;, My, .., My }) € Fuy, WhereFg )

are considered as non-empty, one ¢g6,0) > 1.

Whenh(G,0) = 1. (G, M, 1) has only the two trivial
elements.

Whenh(G,0) > 1. We have 8= h(0,M) < h(X,Y) <
h(G,0) < o for any nontrivial element
(X,Y) € B(G,M,1I).

Applying the method in Section 3, we will have all the
cover elements Fgyy of (0,M). In  addition,
h(X,Y) =1« (X,Y) covers(0,M).

Suppose there are at least two componé&nt4] and
D[V;] of Dy. Let V5| > 1 andVi NG = V; with |Vy| = 1.
1 < |V»| and DV] is connected taken together hints
|E(V2)| > 1. We will prove the following Lemma 4.

Lemma 4 Any concept yielded fronD[Vi] will not
cover(0,M) if there is another componebtV,] satisfying
Vo| > 1.

Proof For any (A,B) € #(G,M,l), Lemma 2 says
that A,B belong to the same component. NMt= {v;}
and Vo = {v2,v3,...,Vp,} U {Wo,W3,...,Wp,}, where
{Vo,v3,...,vp,} C Gand{wy,wz,...,Wp,} C M.

Itis easy to see that iD;,N(v1) = 0 is valid. Recalled

my € M, there isgp € G satisfying (go,mo) ¢ |. But,
below, no such supposition exists.
Using the discussions in Section 2 and 5.1, we have
(X,Y) € Flo ) & (XU{Gm;,Gm, - Oms },

0 is the set of
covers of (0,M) in
<%(G‘" \ {gml,gmz,.--,gms},M \ {nhlanhza"'vrn'k}all);
Fw, is the set of covers dflp in (G, M, 1);
UV)elhe
(U U{gm,,Gmp,- - Ome}, Y U{Mny, My, ..My ) €1
{gm1>gm27---7gms} g G7ND| (gml) = ND| (gmz) = ...
Np, (gms) = M;

{mnlvnhzv“'an}h} - M7NDI(rTh1) = ND|(mﬂz) = .-
Np, (mﬂt) =G.

As the talk in 5.1, we can geFt‘()O‘M). Considering the
above talk, we will obtairFy,. '

Though by Section 2 especially Lemma 2, {&B)
Z(G,M, 1)\ {Mp,Go}, if (X, Y1) € B(G,M, 1)\ {Mg,Go}
covers(A,B), it causes that all oA, B, X, Y; belong to the
same component d);, (t = 1,2), we could not say that
both the pair ofX; \ A andY; and the pair o, \ A andY,
belong to the same componentdf,;. The reason is that
Dy, is perhaps disconnected.

When we examine the cover elements of
(U,W) € Z(G,M,1). If Dy, is disconnected, in virtue of
Section 2, we just separately consider the different
components oD,,,,. For each component D, , we

on Status 2 in Section 2, this leads that there is only ong,ce the outcomes from Section 2 and that beyond this

concept(G, 0) yielded fromD[V4].

On the other hand, by the results in Section 3,
(N(vr)',N(vn)) € Z(G,M, 1) covers(0,M), where
d(vy) = max{d(v2),d(v3),...,d(vp,)}.

By virtue of |[E(V2)| > 1, one gets thad(vy) > 1 is
effective, and sdN(vy)| > 1. Herein,N(vy) # 0 is right.
Thus, (N(va)',N(vr)) < (G,0) = (N(v1)',N(v1)).

By the knowledge of lattice theory, her&3,0) will

not cover(0,M).

Based on Lemma 4, we get that if all the components

Dl,Dz,...,Dy of Dy satisfy |V(D1) N G| =

V(D2) NG| =... =|V(Dy) NG| = 1, then there is only

(G,0) belonging to the set of cover elements(@fM). In

another word to say, fofA,B) € #(G,M,l) andA # 0,

the underlying grapl®, ,, associated t¢A, B) satisfies
E(Di,) =0 if and only if (A,B) is (G, 0).

Considering with Lemma 4, for each componBabof

Section. The main idea is as the following.

Put (Xo,Yo) be a cover element ofMp and
{Dgla=1,2,...,n} be the set of components mﬁXOYO.
Now we just want to search out the fam#yy, vy, of all
the cover elements of(Xo,Yo) in #(G,M,l). For
(G\ X0, Y0, Ixyv,), We hope to use the methods appeared in
Section 3, Section 4 and that at the above. Unfortunately,
we could not pledge that the previous conditions are built
on. So we need to consider it under the following two
cases to search out the $g%_ v, of covers of(Xo, Yp) in
B(G,M, ).

Case 1)V(Dg)| = 1 for everyq € {1,2,...,n}.

By the Statuses in Section 2, we will get all the cover
elements of(Xo,Yo) in A(G\ Xo, Yo, Ixyy,). Afterwards,
under the instruction of Theorem 5, we obtain the covers
of (Xo,Yo) in Z(G,M,1).

Case 2. If there i®g satisfying|V (Dg)| > 1 for some

D;, we can use the results for Statuses in Section 2 and € {1,2,...,n}.

the manner in Section 3 to obtain the covetof (0,M),
(t=1,2,...,y). Calling the results in Section 2 back, we

By Lemma 4, we need not to consider the component
Ds where|V(Dg)| = 1,0 € {1,2,...,n}. Review Status 1
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in Section 2, if[V(Dy)| = 1 andV(Dy) "M #0,(y ¢ 6 Example

{1,...,n}), then when we search the covers (b, Yo),

it needs not to considedy. Therefore, we only put our We give an example to show how to use the manners

attention to the components Bg where|V (Dg)| > 1. presented from Section 2 to Section 5 to find out the
Firstly, becauseDg is connected, the Status 1 and concept latticeZ#(G,M, 1) and its diagram for a given

Status 2 must not happen . If the Status 3 or Status CONtext(G, M, ).

4 happens, we just use the discussion for the two statuses

in Section 2 and Theorem 5 to get the cover§Xef Yo) in Example let M = {1,23456} and
B(G,M,1). G = {a,b,c,d,e f}. The table below describes binary
relationl.

For example, the Status 3 happens, i.e. there are
{x1,%2,...,X;} € V(Dg) N G satisfying Np,(X) =

Table 1 The binary relation for the given context
V(Dg)NM. Then by the result in Section 2, y g

({x1,%2,..., % },V(Dg) N M) is the minimum in 11213141516
P(G\ X0, Yo, Ixv,)- Further, in light of Theorem 5, al 1<% >
(XoU{x1,%2,...,X7 },V(Dg) NM) is the only one cover of blx % [x
(X0,Yo) in B(G,M, ). c|x[x X
Secondly, if both Status 3 and Status 4 do not happen d|x X | X
for Dg. e| x X
According to|V(Dg)| > 1, Lemma 2 and Section 4, f X
we could use the method in Section 3 to find all the cover
elementséy (Xo, Yo) of (0,Yp) in B(G\ Xo, Yo, Ixyy,) born By the following steps to find ou(G, M, ).
in Dg. The underlying grapiD, associated tqG,M,I) is

Under the guide of Theorem 5, we will get the set Shown as Figure 1.
Ho (X0, Yo) of the cover elements ¢o, Yo) in Z(G,M, 1)
associated witlDg. a b c d e f
Finally, considering Lemma 2 and Section 2, it will
have the familyF x,y,). In virtue of Section 2, we have
Fxoxo) = GUJHQ(XO,YO) where 2 C {1,2,...,n} and
c @

[V(Dg)| > 1for6 e 2.

Let Fy, be the family of covers oM in Z(G,M,1).
Considering Lemma 2 and Section 2, ferb) € Fx, v,
and(Xg,Y1) € Fu, \ (X0, Y0), (a,b) will not compare with
(X1,Y1). Therefore, we could say that whefiy, v, is
carried out, simultaneously, the relation betwegenb)

and (c,d) are represented, besiddga,b) = 2, where 1 2 3 4 5 6
(c,d) € Fu, andh s the height function of8(G, M, ).
Since |Fy,| < %, repeated application of this above Figure 1 Underlying graptD,

process successively for other membersFjy,, as the

consequence, we will obtain all the membédfs in )

2(G,M,1) with height 2 and the relationships among  Since

(V) € F2and(e, f) € F. f(F3)3(30)b(b1)1(1e)efo) (4 (A1 L(10)c(c2)2
(2a)a(ab)6(6a)a(a2)2(2b)b(b1)1(1c)c(c5)5 is a

Finally, by the principle of induction and recursively .
compute the covers of each element in a breath-firs rl:ES)egg;hx;hr?grgr;(o;tsllvt?gl\)/erlttlci(f”[ngsvvrtlﬁ;(te(é)l/) :z

fashion, we will get all the concepts for a given context .J 0 o

(G,M,1) and the diagrards(G, M, 1). By Dy, itis easier to geti(a) — d(b) = d(c) — d(d)
By the definition ofD,;, for x € G\ A, it must have 3 N(a) = {2,3,6},N(b) = {1,2,3},N(c)

dp,,, (X) < dp, (x) < [M[ < eo. Thus, after finite steps, the {1,2,5},N(d) = {1,4,5};d(e) = 2,N(e) = {1,4};

above process must be stopped and @gtas the last d(f) = 1,N(f) = {3}. Thus, we haved(f) =

obtained element in%(G,M,l). Namely, it is a = min{d(a),...,d(f )} < d(e) < d(a) = d(b) =d(c)

practicable approach provided above to get the memberd(d) = max{d(a),...,d(f )}

in 2(G,M, 1) and the diagram of4(G, M, I). BecauseN(a) "N(g) # N(a) whereg = b,c,d. This

hints N(a)’ = {a}. By the consequence in Section 3,

=
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({b,c},{1,2})  ({c,d},{1,5})

(N(a)',N(a)) = ({a},{2,3,6}) € #(G,M,1) is sound,
and simultaneously, it cove(®,M).

similarly, (N(b)’,N(b)) = ({b},{1,2,3}),
(N(c),N(c)) = ({c}.{1.2.5}) and
(N(d)’,N(d)) = ({d},{1,4,5}), besides, all of the three
cover(0,M).

Because{x € G | d(x) = 2} = {e}, and additionally, 1
N(e) € N(d) hints {x € G | d(x) = 2, there isg € G (_ ) © {_1’ 2:3,4,56}) (6)
satisfying N(x) ¢ N(g)} = {e}. Hence, % = 0. Figure 3 Diagram ofF2 UFpm) U (0,M)
According to{x € G |d(x) =1} = {f} andN(f)  N(d) in the concept lattice

hints {x € G | d(x) = 2, there isg € G satisfying where (1)%{b}, {1,2,3}), (2)=({a},{2,3,6}),

N N ={f}. Thus.z; = 0. _ _
(X')I'r?ere(f%)r}é, ai{l tr};e col\J/Zr élements(@‘, M) is ®)=({a.b} {2.3)), (=({d.€}, {1.4))

Fom) = {(N(a)’,N(a)),(N(b)’,N(b)), (N(c)’,N(c)), (5)=({d},{1,4,5}), (6)=({c},{1,2,5})
EN(d)’, N(d))} = {({a},{2,3,6}),({b}, {1,2,3}),

{c},{1,2,5}),({d},{1,4,5})}. . . :
Analogously, we will obtain all the members in
We seeh(N(a)’,N(a)) = 1. A new context associated #(G,M,|) and at the last, the diagram &#(G,M,1) is

with  (N(a)’,N(a)) is (G\ N(a),N(a),In@yn@) =  Produced at the same time. The diagrany&(G, M, 1) is
({b,c.d,e f},{2,3,6},l{a11236}). IN shown as Figure 4.

%#({b,c,d,e },{2,3,6},11a1(236}), the minimum is ({a,b,c,d,e f},0)

(0,{2,3,6}).

The underlying grapli)|{a}{2‘3"6} is as Figure 2.

2 3 6 H
3) 9
Figure 2 Underlying grapr|{a}{2‘376}
We find that D|{a}{2_’3>6} has four components
DIVi = D({b,c,f} U {2,3}),D[d],D[¢] and D8] 2 (10

According to Lemma 4 and the other results in Section 5,
it only needs to considdd[V4] to search out the covers of
({a},{2,3,6}).

Because Npy,(b) = {2,3} = V(DM]) N M,
considering Status 3 in Section 2 with the discussion in
Section 5, we obtain thd{b},{2,3}) is the minimum in

#({b,c,t},{2,3},11), where (0,{1,2,3,4,5,6})
(X,Y) € i <= (X)Y) € ligpaze for any
(X,Y) C{b,c,f} x{2,3}. Figure 4 Diagram of the concept lattice

Moreover, by Theorem §{b}U{a},{2,3}) =
({a,b},{2,3}) is a cover of({a},{2,3,6}) in B(G,M, ).
Therefore, by the minimum property ¢fb},{2,3}) in  where (1)£{b},{1,2,3}), (2)=({a},{2,3,6}),

#({b,c,1},{2,3},11), one gets that inB(G,M,1), the (3)=({a,b},{2,3}), (@)=({b,c},{L,2}),
set of cover elements qf{a},{2,3,6}) is consisted by (5)=({a,b, f},{3}),(6)=({a,b,c},{2}),
only ({b} U{a},{2,3}) = ({a,b},{2,3}). _ (7)=({b,c.d.e}.{1}).(8)=({c.d},{L5}),

For any of the other cover elements of a member in (9)=({d.e},{1,4}),(10)={d},{1,4,5}),
Fowm \ ({a},{2,3,6}), by the similar way as the above, (11)=({c},{1,2,5}).

we will get their covers. That is to say, we det, all the

members inG, M, |) with height 2, and the relationships At the final part, we say that this Example above is
betweerf; andF g ). The diagram oF,UF g m)U(D,M)  just the running example i]. [4] solves this example by
in (G,M, 1) is shown as Figure 3. its way which is quite different from ours born in this
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