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Abstract: In this paper, we present the maximum likelihood (ML) and Bayes estimation of the unknown parameters, the reliability and

hazard functions of the Weibull extension distribution based on progressively Type-II censoring scheme from fuzzy lifetime data. For

the computation of Bayes estimates, we proposed using Tierney-Kadane’s approximation under square error and LINEX loss functions.

The performance of the maximum likelihood and Bayes estimators compared in terms of their mean squared errors (MSEs) through the

simulation study. The results indicated that MSEs based on Tierney-Kadane’s approximation are less than based on the ML method.

Finally, to demonstrate the efficiency of the proposed methods, two real data sets are analyzed.

Keywords: Bayes estimates; Fuzzy lifetime data; Tierney-Kadane’s approximation;Maximum likelihood estimates; Progressive Type-

II censoring; squared error and linear exponential loss functions.

1 Introduction

The Weibull extension distribution (WED) was proposed
by [1]. A random variable X is said to follow the WED if
its probability density function (PDF) is given by

f (x) = αβ xα−1exp
[
xα −β

(
exα

− 1
)]

,x > 0 , (1)

and its cumulative distribution function (CDF) is given by

F (x) = 1− exp
[
−β
(

exα
− 1
)]

α,β , x > 0, (2)

the corresponding survival function (Reliability) is

R(x) = 1−F (X) = exp
[
−β
(

exα
− 1
)]

,x > 0 (3)

the corresponding failure rate function of this distribution
is

h(x) =
f (x)

R(x)
= αβ xα−1exα

,x > 0 . (4)

The WED is the most useful extensions of the Weibull
distribution. This distribution can have a bathtub-shaped
hazard rate or an increasing hazard rate function.
Statistical developments in WED have been numerous.

We mention tail shapes classifications, distribution of
extreme values, statistical inference, hypothesis tests, and
goodness of fit tests [2]. Changing points of mean
residual life and failure rate functions [3]. The exact
confidence intervals for the shape parameter based on
censored samples were derived by [4,5] and Explicit
expressions for moments [6]. Quasi-likelihood estimation
[7]. A generalization is referred to as the increasing,
decreasing, unimodal, and bathtub-shaped distribution[8].
Bayesian analysis using Markov chain Monte Carlo
simulation [9]. Estimation of the reliability function under
type I and type-II censorings [10]. Regression models and
their estimation, sensitivity, and residual analysis [11,12].
Estimation based on generalized order statistics [13]. A
generalization is referred to as the complementary
exponential power lifetime distribution [14]. A
generalization based on a new family of distributions
[15]. Estimation under progressive type-II censoring [16].
A method for determining acceleration factor [17]. A
generalization is referred to as the exponentiated modified
Weibull extension [18]. A discrete analog of the model
[19]. a Bayes comparison with a competing model[20].
The statistical analysis of this model as a bathtub-shaped
hazard rate function was discussed by [21]. The
confidence intervals of the parameters of the Weibull
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extension model using the conditional inference based on
the generalized order statistics were derived by [22].
Various censoring schemes are available in the literature
to deal with the investigator’s need and the limitations of
the experiment. The progressively Type-II censoring
schemes have drawn attention by many authors during
recent years. Since The most common censoring Type-I,
Type-II censoring schemes do not permit the
experimenter to eliminate units before ending the
experiment. A situation that is often met in some of the
life testing experiment, particularly in those experiments
where costly items are put to test, is that units are
removed from the experiment before the final termination
of the experiment. i.e., removal of items is allowed prior
to completion of the experiment and such type of scheme
is known as progressive censoring scheme. It was
presented by [23]. From that point forward, numerous
authors including, see, [24,25,26,27,28,29] have
examined the estimation methods and applications of
progressively censored samples for different lifetime
models. A broad audit of the literature on progressive
censoring can be seen from [30]. Furthermore, [31] these
censoring permits removals within Type-II censoring
scheme in the following manner. Suppose that n units are
placed on a life test and the experimenter decides
beforehand a quantity m, the number of units to be failed.
Now at the time of the first failure, R1 of the remaining
n − 1 surviving units are randomly removed from the
experiment. Then after the second observed failure, R2 of
the remaining n − R1 − 2 units are randomly removed
from the experiment. Finally, at the time of the mth
failure, all the remaining (n − m−∑m−1

i=1 Ri = Rm) of
surviving units are removed from the experiment. The
above research results for estimating parameters of
various lifetime distributions under general progressive
Type-II censoring are restricted to precise data. However,
in numerous fields of application, it is sometimes difficult
to obtain exact observations of lifetime. The obtained
lifetime data may be imprecise most of the time. For
example, consider a life-testing experiment in which n
identical batteries are placed on a test, and we are
interested in the lifetime of these batteries. A tested
battery may be considered a failure, or-strictly speaking-
as nonconforming, when at least one value of its
parameters falls beyond specification limits.
However, in practice, the observer does not have the
possibility to measure all parameters and cannot precisely
determine the moment of failures, but rather he/she can
only approximate it by means of the following imprecise
quantities: “approximately less than 1000 hour ”,
“approximately 1500 to 2000 hours ”, “approximately
2500 hours ”, “approximately 3000 hours ”,
“approximately 3500 to 4000 hours ”, “approximately
higher than 4500 hours ”, and so on. Classical statistical
procedures and Bayesian inference are not suitable for
dealing with such imprecise cases. In order to model
imprecise lifetimes, it is necessary to generalize the real
numbers. These lifetimes can be represented by fuzzy

numbers. A fuzzy number is a subset, denoted by x̃, of the
set of real numbers (denoted by R) and characterized by
the so-called membership function µx̃ (.). Fuzzy numbers
satisfy the following constraints, see, [32,33,34,35,36].
The probability measure for fuzzy events was discussed
by [37]. Also,[38] studied membership functions and
probability measures of fuzzy sets. [39] have considered
generalized parametric procedures for reliability
characteristic including fuzzy point estimators and
generalized Bayesian procedures. [40,41,42,43,44] have
also discussed the estimation of the survival function and
Hazard rate. [45] discussed two types of estimators for
cumulative distribution function (CDF) based on fuzzy
data. Recently [46] discussed various classical and
Bayesian methods of estimation for Weibull distribution
when data is available in the form of fuzzy numbers.
Also, [47] proposed a new method to determine the
maximum likelihood estimate of the scale parameter of a
Rayleigh distribution under doubly Type-II censored
sample from fuzzy data, and [48] discussed inferences for
the Rayleigh distribution based on progressive Type-II
fuzzy censored data. [49] Derived Bayesian estimation
procedures for the parameter and reliability function of
Rayleigh distribution based on fuzzy lifetime data. [50]
Proposed a new method to determine the maximum
likelihood estimate for exponential mean parameter under
progressive Type-II censoring from imprecise lifetime.
[51] Studied inferences for Lindley distribution based on
fuzzy data. [52] Discussed various classical and methods
of estimation for Rayleigh Distribution under Type-II
progressive hybrid censored fuzzy Data.
In the present paper, we obtain the ML and Bayes
estimates for the unknown parameters, reliability, and
hazard functions of WED when the lifetime observations
are reported under progressively Type-II censoring
scheme in the form of fuzzy numbers. The present paper
is organized as follows. In section 2, we obtain the ML
estimate of the parameters of WED. Next, in Section 3,
Bayes estimators under squared error and linear
exponential (LINEX) loss functions by using
Tierney-Kadane’s approximation techniques with
informative priors are obtained. Simulation studies are
carried out in Section 4 to assess the performance of the
proposed methods. In section 5. Also, two real data set
are analyzed for illustrative purposes. Finally, the
conclusions are given in section 6.

2 Maximum Likelihood Estimation

Suppose that n independent units are put on a test and that
the lifetime distribution of each unit is given by f (x;θ ).
Now consider the problem where under a progressive
Type-II censoring scheme, failure times are not observed
precisely and only partial information about them are
available so we can represent them as fuzzy numbers
x̃i = (ai,ci,bi) , i = 1, . . . ,m and its corresponding
membership function (µx̃1

,µx̃2
, . . . ,µx̃m). Let
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c(1) ≤ c(2) ≤ ·· · ≤ c(m) denote the ordered values of the
means of these fuzzy numbers. The lifetime of
Risurviving units, which are removed from the test after
the ith failure, can be encoded as fuzzy numbers
(z̃1, z̃2, . . . , z̃m) where every z̃i is a 1×Ri vector with the
membership functions

µz̃i j
=

{
0 z ≤ Ci,

1 z > Ci,
j, . . . ,Ri

The fuzzy data w̃ = (x̃1, x̃2, . . . ,x̃m, z̃1, z̃2, . . . ,z̃m) where z̃i

is a 1× Ri vector with z̃i =
(
z̃i1 , z̃i2, . . . ,z̃iRi

)
or

i = 1, . . .,m is thus the set of observed life times.

The likelihood function for observed data W̃ can be
obtained by using Zadeh’s definition of the probability of
a fuzzy event; see [37], as

Lo (w̃;α,β ) ∝ ∏m
i=1

∫
f (x)µx̃i

(x)dx

.∏m
i=1 ∏

Ri
j=1

∫
f (z)µz̃i j

(z)dz

= K ∏m
i=1

∫
αβ xα−1e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

.∏m
i=1 ∏

Ri

j=1

∫
αβ zα−1e

(
zα−β

(
ezα

−1
))

µz̃i j
(z)dz.

(5)

Then the observed data log-likelihood function can be
obtained by using the expression (5) as follows:

L(w̃,α,β ) = ∑m
i=1 log

∫
αβ xα−1e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

+∑m
i=1 ∑

Ri
j=1 log

∫
αβ zα−1e

(
zα−β

(
ezα

−1
))

µz̃i j
(z)dz

= m(logα + logβ )−β ∑m
i=1 Ri(e

cα
(i) − 1)

+∑m
i=1 log

∫
xα−1e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx.

(6)
The maximum likelihood estimates of the parameter α
and β can be obtained by maximizing the log-likelihood
logL(w̃;α,β ) .Equating the partial derivative of the
log-likelihood with respect to α and β to zero, the
resulting equation is:

∂ logL(w̃;α ,β )
∂α = m

α −β ∑m
i=1 Ric

α
(i)e

cα
(i) logc(i)

+∑m
i=1

∫
xα−1logx(1+xα−β xα exα

)exp(xα−β (exα
−1))µx̃i

(x)dx
∫

xα−1exp(xα−β (exα
−1))µx̃i

(x)dx
,

(7)

∂ logL(w̃;α ,β )
∂β = m

β −∑m
i=1 Ri(e

cα
(i) − 1)

−∑m
i=1

∫
xα−1(exα

−1)exp(xα−β (exα
−1))µx̃i

(x)dx
∫

xα−1exp(xα−β (exα
−1))µx̃i

(x)dx
.

(8)

Since there are no closed form of the solutions to the
likelihood equations (7) and (8), an iterative numerical
search procedure needs to be considered to obtain the
MLEs. Next, we describe two widely practiced search
procedures, namely, the finite difference method to
determine the MLEs of the parameters α and β .

3 Bayesian estimation

In this section, we derive the Bayes estimates for the
unknown parameters, reliability, and hazard rate functions

under different loss functions based on the progressive
Type-II censored fuzzy data. In the Bayesian estimation,
an unknown parameter is assumed to behave as a random
variable with a distribution commonly known as a prior
probability distribution. Here, we consider the following
independent gamma priors for all the parameters α and β
given as follows:

• Prior for α : π1(α) = ba

Γ(a)
α(a−1)e−(αb), a, b > 0,

• Prior for β : π2(β ) =
dc

Γ(c)β (c−1)e−(β d), c, d > 0.

with the parameter α ∼ gamma(a,b) and
β ∼ Gamma(c,d). Based on the above priors, the joint
posterior density function of α and β given the data can
be written as follows:

π (α,β ; x̌) = Kβ m+c−1αm+a−1

.e−(αb+β d)e
−β ∑m

i=1 Ri

(
e

C(i)
α
−1

)

J11,
(9)

where

J11 =
m

∏
i=1

∫
xα−1exp[xα −β (exα

− 1)µx̃i
(x)dx.

K is the normalizing constant and can be evaluated as

K−1 =
∫ ∞

0

∫ ∞
0 β m+c−1αm+a−1e−(αb+β d)

e−(αb+β d)e
−β ∑m

i=1 Ri

(
e

C(i)
α
−1

)

J11dα dβ .

The Bayes estimates for unknown parameters, reliability
function R(t), and hazard rate H(t) are considered with
different loss functions given respectively as
Squared error loss function (SELF):

L(θ̂ −θ ) = (θ̂ −θ )2. (10)

LINEX loss function (LLF):

Ł(θ̂ −θ ) ∝ exp(δ θ̂ )Eθ [exp(− δθ )]− δ (θ̂ −Eθ (θ ))− 1.
(11)

Firstly, if θ is the parameter to be estimated by an

estimator θ̂SL then the square error loss function is

defined as: L(θ̂ − θ ) = (θ̂ − θ )2. This loss function is
symmetric in nature, that is, it gives equal weightage to
both over and under estimation. The Bayes estimators of a
function u(α,β ) of the unknown parameters, reliability
and hazard rate functions under the symmetric loss
function are given as

ûSL = E(u(α,β )|x̃) =
∫ ∞

0

∫ ∞
0 u(α ,β )αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ∫ ∞
0

∫ ∞
0 αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ

,

where

φ = e−β ∑m
i=1 Ri(e

cα
(i)−1),

R̂(t)SL = E(u = exp(−β (etα
− 1))|x̃) =

∫ ∞
0

∫ ∞
0 e(−β(etα −1))αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ∫ ∞

0

∫ ∞
0 αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ

,
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Ĥ(t)SL = E(u = αβ tα−1etα
)|x̃) =

∫∞
0

∫ ∞
0 αβ tα−1etα αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ∫ ∞

0

∫∞
0 αm+a−1β m+c−1e−(αb+βd)φJ11dαdβ

.

Secondly, the loss function is linear exponential (LINEX)
loss function, which was introduced by [53]. The sign and
magnitude of the shape parameter ρ represent the direction
and degree of symmetry respectively. The Bayes Estimator

of θ which is denoted by θ̂LL under LINEX loss function
that minimizes equation (11) is denoted as follows

θ̂LL =
−1

ρ
ln[Eθ (e

−ρθ )], ρ 6= 0 (12)

provided that Eθ (.)exist and is finite. However, Bayesian
estimation using the LINEX loss function is not
frequently discussed, perhaps, because the estimator
involves integral expressions, which are not analytically
solvable, and one has to use numerical techniques. It can
be observed that the above equations contain the ratio of
integrals that cannot be obtained analytically and as a
result, we make use of Tierney-Kadane’s approximation
procedures to evaluate the integrals involved. To facilitate
these numerical computations, the author has written a
program FORTRAN code, which is available on request

3.1 Tierney-Kadane’s approximation

The Bayes estimate of g(α,β ) can be written in the
following expression.

ĝ(α,β ) =

∫ ∞
0

∫ ∞
0 g(α,β )π1 (α)π2 (β ) l (α,β ; x̃)dαdβ∫ ∞
0

∫ ∞
0 π1 (α)π2 (β ) l (α,β ; x̃)dαdβ

.

(13)
First, we rewrite the expression in (13) as

ĝ(α,β ) =

∫ ∞
0

∫ ∞
0 g(α,β )eQ(α ,β )dαdβ
∫ ∞

0

∫ ∞
0 eQ(α ,β )dαdβ

,

where Q(α,β ) = ln(π1 (α)π2 (β )) + ln(l (α,β , x̃)),

δ (α,β ) = Q(α ,β )
n

,δ ∗ (α,β ) = δ (α,β )+ ln (g(α ,β ))
n

, Then

ĝ(α,β ) =
∫ ∞

0

∫ ∞
0 enδ∗(α,β))dαdβ∫ ∞

0

∫∞
0 enδ (α,β)dαdβ

. Following [54] Eq. (13) can

be approximated as the following form:

ĝ(α,β ) =

[
detΣ∗

detΣ

]1/2

exp{n[δ ∗
(

α∗,β
∗
)
− δ

(
α ,β

)
]},

(14)
where

(
ᾱ∗, β̄ ∗

)
and

(
ᾱ, β̄

)
maximize

δ ∗(α,β )and δ (α,β ), respectively. Also, Σ∗ and Σ are
the negatives of the inverse Hessians of
δ ∗(α,β )andδ (α,β ) at

(
ᾱ∗, β̄ ∗

)
and

(
ᾱ, β̄

)
, respectively.

In our case, we have

δ = 1
n
[k+(a+m− 1)lnα +(c+m− 1)lnβ −

(αb+β d)−β ∑m
i=1 Ri

(
e

cα
(i) − 1

)
+

∑m
i=1 ln

[
∫

xα−1e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

]]
,

where, k is a constant; therefore, (ᾱ, β̄ ) can be obtained by
solving the following two equation

∂δ
∂α = 1

n

[
a+m−1

α − b−β ∑m
i=1 Ric

α
(i)e

cα
(i) lnc(i)

+∑m
i=1

∫
(xα−1lnx)

(
1+xα−β xα exα

)
e

(
xα−β

(
exα

−1
))

µx̌i
(x)dx

∫
xα−1e(xα−β(exα

−1))µx̃i
(x)dx



 ,

∂δ
∂β = 1

n

[
c+m−1

β − d−∑m
i1 Ri

(
e

cα
(i) − 1

)

+∑m
i=1

∫
xα−1

(
1−exα

)
e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

∫
xα−1e(xα−β(exα

−1))µx̃i
(x)dx



 ,

and, from the second derivatives of δ (α,β ), the
determinant of the negative of the inverse Hessian of
δ (α,β ) at (ᾱ , β̄ ) is given by

detΣ = (δ11δ22 − δ12
2)

−1
,

where

δ11 =− ∂ 2δ
∂α2 = 1

n

[
a+m−1

α2

+β ∑m
i=1 Ric

α
(i)e

cα
(i)
(
lnc(i)

)2
(1+ cα

(i))

−∑m
i=1




∫
[

1+x2α+
(

β xα exα )2
+3xα

(
−β exα

(1+xα )+1
)]

J
22

µ
x̃i

(x)dx

∫
xα−1e(xα−β(exα

−1))µx̃i
(x)dx

+



∫ (

1+xα−β xα e
xα )

xα−1(lnx)e

(
xα−β

(
exα

−1
))

µ x̃i
(x)dx

∫
xα−1e

(xα−β(exα
−1))µx̃i

(x)dx




2




 ,

and J22 = xα−1(lnx)2
e

(
xα−β

(
exα

−1
))

δ12 =− ∂ 2δ
∂α∂β = 1

n

[
∑m

i=1 Ric
α
(i)e

cα
(i) lnc(i)

−∑m
i=1

∫
xα−1(lnx)J33e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

∫
xα−1e(xα−β(exα

−1))µx̃i
(x)dx

+∑m
i=1

J44

∫
xα−1lnx

(
1+xα−β xα exα

)
e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

[
∫

xα−1e
(xα−β(exα

−1))µx̃i
(x)dx

]2


 ,

J33 =−xαexα
+
(

1− exα
)(

1+ xα −β xαexα
)

,

J44 =
∫

xα−1
(

1− exα
)

e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

δ22 =− ∂ 2δ
∂β 2 = 1

n

[
c+m−1

β 2

−∑m
i=1

∫
xα−1(1−exα

)2e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

∫
xα−1e(xα−β(exα

−1))µx̃i
(x)dx

+∑m
i=1



∫

xα−1
(

1−exα
)

e

(
xα−β

(
exα

−1
))

µx̃i
(x)dx

∫
xα−1e

(xα−β(exα
−1))µx̃i

(x)dx




2

 .
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Firstly, applying Tierney-Kadane’s approximation
procedure as in (14), to compute the Bayes estimator of α
under SELF we take g(α,β ) = α and accordingly
function δ ∗(α,β ) becomes

δ ∗
1α (α,β ) = δ (α,β )+ lnα

n
.

Then
(
ᾱ∗, β̄ ∗

)
are obtained by solving the following two

non-linear equations

∂δ ∗
1α

∂α = ∂δ
∂α + 1

nα ,
∂δ ∗

1α
∂β = ∂δ

∂β

and, from the second derivatives of δ ∗
1α(α,β ), the

determinant of the negative of the inverse Hessian of
δ ∗

1α(α,β ) at
(
ᾱ∗, β̄ ∗

)
is given by

detΣ∗
1α = (δ ∗

α11δ ∗
α22 − δ ∗

α12
2)

−1
,

where

δ ∗
α11 =−

∂ 2δ ∗
1α

∂α2 =− ∂ 2δα

∂α2 + 1
nα2

δ ∗
α12 = δ ∗

α21 =−
∂ 2δ ∗

1α
∂α∂β =− ∂ 2δα

∂α∂β

δ ∗
α22 =−

∂ 2δ ∗
1α

∂β 2 =− ∂ 2δα

∂β 2 ,

thus, the approximate Bayes estimator of α under SELF is
given by

α̂SL =

[
detΣ∗

1α

detΣ

]1/2

exp{n[δ ∗
1α

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ , β̄

)
]}.

(15)
Similarly, we can derive the approximate Bayes estimator
of β as

β̂SL =

[
detΣ∗

1β

detΣ

]1/2

exp{n[δ ∗
1β

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ, β̄

)
]}.

(16)
respectively. Next, we compute the Bayes estimator of
survival function R(t) under SELF. In this case,

g(α,β ) = exp(β (1− etα
)), then

δ ∗
R(t) (α,β ) = δ (α,β )+ β (1−etα )

n
.

Now compute
(
ᾱ∗, β̄ ∗

)
by solving the following two

nonlinear equations

∂δ ∗
R(t)

∂α = ∂δ
∂α − β tα etα lnt

n
,

∂δ ∗
R(t)

∂β = ∂δ
∂β + (1−etα )

n

and, from the second derivatives of δ ∗
R(t)(α,β ), the

determinant of the negative of the inverse Hessian of
δ ∗

R(t)(α,β ) at
(
ᾱ∗, β̄ ∗

)
is given by

detΣ∗
R(t) = (δ ∗

R(t)11
δ ∗

R(t)22
− δ ∗

R(t)12
2)

−1
,

where

δ ∗
R(t)11

=−
∂ 2δ ∗

R(t)

∂α2 =−
∂ 2δR(t)

∂α2 + β lnt

n
[tα etα

lnt + t2αetα
lnt]

δ ∗
R(t)12

= δ ∗
R(t)21

=−
∂ 2δ ∗

R(t)

∂α∂β =−
∂ 2δR(t)

∂α∂β + 1
n
t
α

etα
lnt

δ ∗
R(t)22

=−
∂ 2δ ∗

R(t)

∂β 2 =−
∂ 2δR(t)

∂β 2 ,

thus, the Bayes estimator of reliability R(t) under SELF is
given by

R̂(t)SL =

[
detΣ∗

R(t)

detΣ

]1/2

exp{n[δ ∗
R(t)

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ, β̄

)
]}.

(17)
Similarly, the Bayes estimator of hazard rate H(t) under
SELF is given by

Ĥ(t)SL =

[
detΣ∗

H(t)

detΣ

]1/2

exp{n[δ ∗
H(t)

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ, β̄

)
]}.

(18)
Secondly, in order to obtain the Bayes estimators of α
and β under LINEX loss function we replacing g(α,β )

by e−ρα and e−ρβ respectively, and accordingly function
δ ∗(α,β ) take the form:

δ ∗
2α (α,β ) = δ (α,β )− ρα

n
, g(α,β ) = e−ρα

δ ∗
2β (α,β ) = δ (α,β )− ρβ

n
, g(α,β ) = e−ρβ






using the same manner as in Eqs. (15) and (16).
Therefore, the approximate Bayes estimate of α and β
based on LINEX loss function are:

α̂LL = −1
ρ

ln

([
detΣ∗

2α
detΣ

]1/2

exp{n[δ ∗
2β

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ, β̄

)
]}

)
,

(19)

β̂LL = −1
ρ

ln

([
detΣ∗

2β

detΣ

]1/2

exp{n[δ ∗
2β

(
ᾱ∗, β̄ ∗

)
− δ

(
ᾱ , β̄

)
]}

)
.

(20)
Finally, the approximate Bayes estimator of R(t) and
H(t), under LINEX loss function can then be obtained in
a straightforward manner.
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4 Simulation Study

In this section, we study the performance of the ML and
the Bayes estimators based on the mean squared errors
(MSEs) of the unknown parameters as well as the
reliability and hazard functions of the WED based on
progressive Type-II censoring scheme from fuzzy lifetime
data. To evaluate the Bayes estimates using
Tierney-Kadane’s approximation method under square
error and LINEX loss functions. In our simulation study,
we have generated 1000 replications for each sample size,
n = 20, 40, and 80 from WED with α= (0.502, 1.002) and
β = (1.002, 2.007) based on progressive Type-II
censoring from fuzzy lifetime data with uncensored levels
m equal to [n/2] and [3n/4]. The hyper-parameter (a, b, c,
d) are taken for informative prior means so that are
exactly equal to the true values of the parameters: (1.02,
6.05, 1.5, 3.9), (1.02, 6.05, 1.8, 2.2), (1.5, 3.9, 1.5, 3.9)
and (1.5, 3.9, 1.8, 2.2). The loss parameter is represented
by (ρ = ±2). Then, using the method as proposed by
[51], each realization of the generated samples was
fuzzifed by employing fuzzy information system
(x̃1, x̃2, . . . , x̃K) from the WED, which corresponds to the
following membership functions

µx̃1
(x) =





1 x ≤ h, h=0.05
x−h

h
h < x ≤ 2h

0 otherwise

µx̃1
(x) =





x−(i−1)h
h

(i− 1)h ≤ x < ih
(i+1)h−x

h
ih ≤ x < (i+ 1)h

0 otherwise

i = 2, . . . ,k−1

µx̃1
(x) =






x−kh
h

ih < x ≤ (k+ 1)h

1 x > (k+ 1)h

0 otherwise

and censoring scheme, progressively censored samples
from the WED were generated, using the method
proposed by [27], as follows:

1.Generate Zi from U(0,1) f ori = 1, . . . ,m
2.For given values of the progressive censoring scheme
(R1, . . . ,Rm)

3.Set Vi = Z
1
ai
i , ai = i+∑m

j=m−i+1 R j, i = 1, . . . ,m.
4.Set Ui = 1−Vm−i+1Vm−i+2 . . . Vm, i = 1, . . . ,m.
5.Thus, Xi = f−1(Ui), i = 1, . . . ,m, is the desired

progressive type-II censored sample from the WED.
For each of the censoring cases, we calculate the ML
and Bayesian estimates based on the mean squared
errors (MSEs) of the unknown parameters, reliability
R(t), and hazard H(t) rate functions under progressive
Type-II censoring scheme from fuzzy lifetime data.
For reliability and hazard characteristics, We take The
time t = 0.5 and 0.8.

From the simulation results in Tables 1− 6, some of the
points are quite clear based on these estimates and the
others have been summarized in the following main
points:

1.The estimated MSEs values of all the parameters
decrease as sample size n and the censored level m

increase.
2.The estimated values for the MSEs based on

Tierney-Kadane’s approximation are smaller than the
maximum likelihood estimators.

3.The estimated values for the MSEs for the reliability
function will increase with increasing lifetime t at α =
0.5 while decreasing with increasing lifetime t at α = 1
as shown according to the characteristics of the WED.

4.The estimated values for the MSEs for the hazard rate
function will increase with increasing values of α and
β for all lifetime t values and these values increase
with increasing lifetime t.

Finally, we can conclude that the Bayes estimates by
using Tierney-Kadane’s approximation are better than the
maximum likelihood estimates for the parameters α and
β , reliability and hazard functions of WED.

Table 1. The mean square errors (MSEs) of the
MLE and Bayes methods for α under squared error

(SL) and LINEX loss functions (LL(ρ)) with (ρρρ= ±2)
based on progressive Type-II censoring from fuzzy
lifetime data for different choices n, m, ααα and βββ .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.0478 0.0236 0.0224 0.0275

2.007 0.0757 0.0384 0.0368 0.0858

1.002 1.002 0.1638 0.0680 0.0584 0.1147

2.007 0.1125 0.0884 0.0716 0.0275

15 0.502 1.002 0.0294 0.0198 0.0192 0.0217

2.007 0.0395 0.0369 0.0354 0.0406

1.002 1.002 0.0957 0.0493 0.0468 0.0576

2.007 0.1006 0.0667 0.0552 0.0831

40 20 0.502 1.002 0.0169 0.0096 0.0099 0.0099

2.007 0.0612 0.0170 0.0165 0.0195

1.002 1.002 0.0478 0.0298 0.0295 0.0328

2.007 0.0489 0.0315 0.0267 0.0383

30 0.502 1.002 0.0115 0.0096 0.0095 0.0101

2.007 0.0246 0.0222 0.0213 0.0241

1.002 1.002 0.0313 0.0228 0.0234 0.0238

2.007 0.0376 0.0275 0.0244 0.0320

80 40 0.502 1.002 0.0079 0.0074 0.0082 0.0066

2.007 0.0167 0.0109 0.0122 0.0102

1.002 1.002 0.0179 0.0133 0.0147 0.0126

2.007 0.0189 0.0120 0.0133 0.0114

60 0.502 1.002 0.0059 0.0048 0.0049 0.0049

2.007 0.0166 0.0121 0.0118 0.0128

1.002 1.002 0.0142 0.0118 0.0123 0.0115

2.007 0.0188 0.0120 0.0128 0.0129
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Table 2. The mean square errors (MSEs) of the
MLE and Bayes methods for β under squared error

(SL) and LINEX loss functions (LL(ρ)) with (ρρρ= ±2)
based on progressive Type-II censoring from fuzzy
lifetime data for different choices n, m, ααα and βββ .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.0941 0.1025 0.0753 0.1392

2.007 1.3110 1.0164 0.6953 1.3224

1.002 1.002 1.1624 0.0722 0.0535 0.1023

2.007 1.3384 0.5439 0.3052 0.8870

15 0.502 1.002 0.1588 0.0460 0.0374 0.0609

2.007 0.7518 0.5153 0.3129 0.7315

1.002 1.002 0.2511 0.0425 0.0402 0.0534

2.007 0.5292 0.3173 0.2582 0.5234

40 20 0.502 1.002 0.0913 0.0552 0.0462 0.0694

2.007 1.2578 0.7007 0.5087 0.9405

1.002 1.002 0.1195 0.0361 0.0364 0.0233

2.007 0.8756 0.2398 0.2498 0.1484

30 0.502 1.002 0.0293 0.0268 0.0243 0.0313

2.007 0.2780 0.3657 0.2611 0.4914

1.002 1.002 0.0569 0.0259 0.0278 0.0270

2.007 0.3194 0.1542 0.1711 0.2266

80 40 0.502 1.002 0.0345 0.0381 0.0351 0.0425

2.007 0.5740 0.3916 0.3478 0.5328

1.002 1.002 0.0403 0.0230 0.0244 0.0233

2.007 0.2901 0.1223 0.1819 0.1484

60 0.502 1.002 0.0142 0.0177 0.0164 0.0195

2.007 0.2169 0.2482 0.2001 0.3115

1.002 1.002 0.0219 0.0152 0.0157 0.0154

2.007 0.1257 0.0878 0.1051 0.0999

Table 3. The mean square errors (MSEs) of the
MLE and Bayes methods for R(t) under squared error

(SL) and LINEX loss functions (LL(ρ)) with (ρρρ= ±2)
at t = 0.5 based progressive Type-II censoring from
fuzzy lifetime data for different choices n,m,α and β .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.0060 0.0133 0.0151 0.0108

2.007 0.0364 0.0407 0.0434 0.0334

1.002 1.002 0.0158 0.0052 0.0056 0.0047

2.007 0.0133 0.0130 0.0141 0.0042

15 0.502 1.002 0.0085 0.0052 0.0057 0.0097

2.007 0.0058 0.0105 0.0114 0.0045

1.002 1.002 0.0117 0.0050 0.0050 0.0087

2.007 0.0088 0.0053 0.0056 0.0052

40 20 0.502 1.002 0.0057 0.0079 0.0087 0.0069

2.007 0.0355 0.0292 0.0306 0.0256

1.002 1.002 0.0072 0.0035 0.0036 0.0035

2.007 0.0061 0.0057 0.0060 0.0046

30 0.502 1.002 0.0039 0.0029 0.0031 0.0027

2.007 0.0028 0.0062 0.0065 0.0055

1.002 1.002 0.0057 0.0036 0.0035 0.0038

2.007 0.0040 0.0025 0.0025 0.0023

80 40 0.502 1.002 0.0044 0.0063 0.0066 0.0058

2.007 0.0337 0.0198 0.0204 0.0182

1.002 1.002 0.0034 0.0023 0.0024 0.0024

2.007 0.0031 0.0027 0.0028 0.0025

60 0.502 1.002 0.0021 0.0019 0.0020 0.0019

2.007 0.0022 0.0039 0.0040 0.0036

1.002 1.002 0.0032 0.0024 0.0035 0.0025

2.007 0.0021 0.0015 0.0015 0.0014

Table 4. The mean square errors (MSEs) of the
MLE and Bayes methods for R(t) under squared error

(SL) and LINEX loss functions (LL(ρ)) with (ρρρ= ±2)
at t = 0.8 based progressive Type-II censoring from
fuzzy lifetime data for different choices n,m,α and β .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.0116 0.0231 0.0258 0.0187

2.007 0.0416 0.0439 0.0457 0.0351

1.002 1.002 0.0142 0.0133 0.0151 0.0107

2.007 0.0145 0.0236 0.0248 0.0182

15 0.502 1.002 0.0064 0.0077 0.0088 0.0066

2.007 0.0079 0.0124 0.0133 0.0106

1.002 1.002 0.0092 0.0061 0.0069 0.0053

2.007 0.0096 0.0093 0.0099 0.0077

40 20 0.502 1.002 0.0061 0.0113 0.0124 0.0098

2.007 0.0384 0.0275 0.0285 0.0236

1.002 1.002 0.0065 0.0051 0.0057 0.0045

2.007 0.0030 0.0083 0.0090 0.0071

30 0.502 1.002 0.0029 0.0036 0.0039 0.0032

2.007 0.0041 0.0069 0.0073 0.0063

1.002 1.002 0.0044 0.0029 0.0031 0.0027

2.007 0.0017 0.0033 0.0035 0.0029

80 40 0.502 1.002 0.0042 0.0068 0.0072 0.0063

2.007 0.0342 0.0154 0.0158 0.0139

1.002 1.002 0.0033 0.0133 0.0027 0.0024

2.007 0.0014 0.0025 0.0027 0.0023

60 0.502 1.002 0.0016 0.0020 0.0021 0.0024

2.007 0.0021 0.0040 0.0041 0.0038

1.002 1.002 0.0023 0.0017 0.0017 0.0017

2.007 0.0008 0.0012 0.0012 0.0011

Table 5. The mean square errors (MSEs) of the
MLE and Bayes methods for H(t) under squared

error (SL) and LINEX loss functions (LL(ρ)) with (ρρρ=
±2) at t = 0.5 based progressive Type-II censoring
from fuzzy lifetime data for different choices n,m,α
and β .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.4584 0.3636 0.3265 0.6452

2.007 4.3844 3.0097 4.0456 4.5712

1.002 1.002 1.5659 0.2536 0.1869 0.5021

2.007 3.4898 1.7801 3.2633 4.2112

15 0.502 1.002 0.4881 0.1998 0.1858 0.3712

2.007 2.6861 2.0000 2.6482 3.3178

1.002 1.002 0.4772 0.1437 0.1226 0.2477

2.007 1.6590 1.0739 2.5442 2.8597

40 20 0.502 1.002 0.2984 0.1629 0.1813 0.3400

2.007 4.0245 1.8857 4.0332 3.6310

1.002 1.002 0.2701 0.1113 0.1037 0.1911

2.007 2.0550 0.7449 0.9726 2.3905

30 0.502 1.002 0.0931 0.0975 0.1061 0.1860

2.007 1.2049 1.3583 2.7367 2.5313

1.002 1.002 0.1392 0.0748 0.0686 0.0888

2.007 0.8166 0.4734 0.5523 1.4968

80 40 0.502 1.002 0.1007 0.0889 0.1065 0.1640

2.007 1.6463 0.9283 3.8515 2.6405

1.002 1.002 0.0981 0.0625 0.0567 0.0665

2.007 0.7020 0.3321 0.4429 0.9776

60 0.502 1.002 0.0466 0.0536 0.0639 0.0952

2.007 0.8933 0.8554 2.6449 1.8555

1.002 1.002 0.0560 0.0418 0.0374 0.0370

2.007 0.3324 0.2414 0.3040 0.6769
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Table 6. The mean square errors (MSEs) of the
MLE and Bayes methods for H(t) under squared

error (SL) and LINEX loss functions (LL(ρ)) with (ρρρ=
±2) at t = 0.8 based progressive Type-II censoring
from fuzzy lifetime data for different choices n,m,α
and β .

Approaches MLE MSE (Tierney-Kadane’s)

n m α β MSE SL LL(-2) LL(2)

20 10 0.502 1.002 0.6376 0.3902 0.7203 0.7106

2.007 4.5816 3.0825 4.5881 4.6359

1.002 1.002 10.3341 0.6749 0.8033 1.5500

2.007 19.0500 4.4074 14.3104 10.6875

15 0.502 1.002 0.3269 0.2401 0.4773 0.4530

2.007 3.1610 2.2405 3.4228 3.6003

1.002 1.002 2.2292 0.4079 0.4218 0.9209

2.007 10.8102 2.9026 8.7467 8.3031

40 20 0.502 1.002 0.4980 0.1774 0.5567 0.3915

2.007 4.2418 1.8960 4.3163 3.7654

1.002 1.002 0.9752 0.3006 0.6197 0.7183

2.007 7.5314 1.8716 4.6019 7.0746

30 0.502 1.002 0.1374 0.1238 0.1552 0.2495

2.007 3.0700 1.5627 3.2681 2.8737

1.002 1.002 0.4180 0.2071 0.3111 0.3921

2.007 2.7883 1.3552 3.3865 5.2201

80 40 0.502 1.002 0.1519 0.1042 0.1312 0.1870

2.007 3.8684 0.9772 4.1032 2.7846

1.002 1.002 0.1449 0.1685 0.7196 0.2594

2.007 2.4565 0.9100 3.3829 3.4574

60 0.502 1.002 0.0668 0.0675 0.0944 0.0136

2.007 2.8823 1.0049 3.1382 2.1960

1.002 1.002 0.3025 0.1102 0.1226 0.0159

2.007 1.1071 0.7362 1.6458 2.8137

5 Application Examples

5.1 Vinyl chloride data application

The first data set represents the Vinyl chloride, a known
human carcinogen, exposure to this compound should be
avoided as much as possible, and its level should be kept
as low as technically possible It is known that the
concentration of vinyl chloride in drinking water of 0.5
mg/liter is being associated with an increased risk of liver
and Brain tumors for exposure beginning at adulthood
and will double cancer risk for continuous exposure from
birth. Therefore, we consider the data set used by [55]
which represents 34 data points in mg/L from the vinyl
chloride obtained from clean upgrade monitoring wells
as:
5.1,1.2,1.3,0.6,0.5,2.4,0.5,1.1,8.0,0.8,0.4,0.6,0.9,0.4,
2.0,0.5,5.3,3.2,2.7,2.9,2.5,2.3,1.0,0.2,0.1,0.1,1.8,0.9,
2.0,4.0,6.8,1.2,0.4,0.2. We found the WED was a good
fit for this data set as shown in [56] studied the
concentration of the vinyl chloride in the water of these
wells based on this data set by finding estimates of the
parameters, which represent the scale and shape of the
concentration using WED. We assume that imprecision of
the failure times of the concentration of the vinyl chloride
in the water of these wells based on this data set in the
form of fuzzy numbers, x̃i = (ai,xi,bi), where ai = 0.05xi

and bi = 0.03xi with the membership functions

µx̃(x) =

{
x−(xi−ai)

ai
xi − ai ≤ x < xi

xi+bi−x
bi

xi ≤ x < xi + bi,
i = 1, . . . ,n

(21)
we determine the average and mean square errors of the
concentration of the vinyl chloride in the water of these
wells based on progressive Type-II censoring scheme
from fuzzy lifetime data. Table (7) shows the ML and
Bayes estimators for α,β ,R(t), and H(t) of WED under
progressive Type-II censoring scheme in the form of
fuzzy numbers. For reliability and hazard characteristics,
We take the time t = 0.5 and 1. For Bayesian estimation,
informative prior with hyper-parameter are taken to be
a = 2,b = 3 and c = 4,d = 2. The shape parameter ρ for
LINEX loss function was set to be ρ = ±2. From Figures
(1, 2), the pdf of the marginal posterior distributions of α
and β are plotted under progressive Type-II censoring
scheme with uncensored levels m equal [3n/4] based on
the fuzzy lifetime data. We conclude the Bayesian
densities for α and β are positively skewed with right tail
and this means that the vinyl chloride concentration will
decrease with increasing time which ensures the
simulations results.

Table 7. The estimates (θ̂ o) and mean square
errors (MSEs) of the MLE and Bayes methods for
α,β ,R(t), and H(t) at t = 0.5,1 under squared error

Loss (SL) and LINEX loss functions (LL(ρ)) with
(ρ = ±2) at the hyper parameters
(A = 2,B = 3,C = 4,D = 2) based on progressive
Type-II censoring from fuzzy Vinyl Chloride Data.

Approaches MLE Tierney-Kadane’s

m Par. θ̂ML θ̂SL θ̂LL(−2) θ̂LL(2)

n/2 α 6.898E-01

(2.36-02)

6.491E-01

(1.95E-02)

6.608E-01

(2.21E-02)

6.385E-01

(1.74E-02)

β 3.453E-01

(1.85E-04)

4.179E-01

(1.04E-03)

4.277E-01

(1.29E-03)

4.175E-01

(1.42E-03)

R(t = 0.5) 7.434E-01

(5.74E-04)

6.891E-01

(1.70E-04)

6.935E-01

(1.99E-04)

6.835E-01

(1.34E-04)

R(t = 1) 5.525E-01

(1.70E-04)

4.943E-01

(6.57E-04)

5.006E-01

(5.60E-04)

4.879E-01

(7.48E-04)

H(t = 0.5) 5.489E-01

(3.61E-03)

6.724E-01

(1.11E-02)

6.672E-01

(1.04E-01)

6.254E-01

(8.23E-02)

H(t = 1) 6.474E-01

(2.69E-02)

7.588E-01

(4.71E-02)

7.597E-01

(2.24E-01)

7.003E-01

(1.80E-01)

3n/4 α 6.317E-01

(9.10E-03)

5.917E-01

(6.74E-03)

5.984E-01

(7.42E-03)

5.853E-01

(6.17E-03)

β 3.185E-01

(1.74E-04)

3.797E-01

(3.56E-05)

3.867E-01

(2.54E-05)

3.726E-01

(5.26E-05)

R(t = 0.5) 7.492E-01

(8.84E-04)

6.994E-01

(5.47E-04)

7.032E-01

(5.68E-04)

6.947E-01

(5.21E-04)

R(t = 1) 5.786E-01

(1.68E-04)

5.258E-01

(3.47E-05)

5.310E-01

(4.44E-05)

5.205E-01

(2.77E-05)

H(t = 0.5) 4.952E-01

(4.03E-05)

5.915E-01

(5.98E-04)

5.853E-01

(2.27E-02)

5.595E-01

(1.65E-02)

H(t = 1) 5.469E-01

(4.02E-03)

6.223E-01

(6.48E-03)

6.149E-01

(7.94E-02)

5.889E-01

(6.84E-02)
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Fig. 1: Plot the posterior density function π(α|x̃)for fuzzy Vinyl

Chloride Data.

Fig. 2: Plot the posterior density function π(β |x̃) for fuzzy Vinyl

Chloride Data.

5.2 COVID-19 data application

The second data set, we contribute modestly to the subject
by applying this WED to analyze the daily data set of
confirmed deaths for COVID-19 in Egypt from December
22, 2020, to February 16, 2021. This data set obtained
from the following email address:
http://covid.gov.Eg/Coronatracker.com/Country/Egypt. It
is given as follows: 37, 42, 51, 49, 43, 53, 61, 54, 56, 55,
56, 54, 64, 58, 55, 57, 54, 56, 57, 55, 52, 55, 58, 59, 52,
54, 56, 55, 58, 51, 54, 52, 49, 57, 53, 55, 48, 54, 48, 46,
53, 44, 47, 53, 52, 48, 44, 47, 48, 52, 53, 53, 42, 36, 59,
56, 51.
We found the WED was a good fit for this data set shown
in [56]. Assume that imprecision of the failure times of
the COVID-19 deaths in Egypt from December 22, 2020,
to February 16, 2021, based on this data set is formulated
by fuzzy numbers, x̃i = (ai,xi,bi), where ai = 0.05xi and
bi = 0.03xi, and use the membership functions in (21).
We obtain the average and mean square errors of the α ,
β , R(t), and H(t) based on progressive Type-II censoring
scheme from fuzzy COVID-19 Death Data. For reliability
and hazard characteristics, we take the time t = 36 and 42.
From Table (8), the MLE and Bayes estimates for β to
this WED are nearly zero, ensuring that the mean square
error is small and the estimated model efficiency
decreases (reliability decrease and hazard increase).In

Figures (3,4), the pdf of the marginal posterior
distributions of α and β are plotted to study their
behavior under progressive Type-II censoring scheme
with uncensored levels m equal [3n/4] based on the fuzzy
lifetime data. We conclude the Bayesian densities for α
and β are positively skewed with a right tail as shown in
Figures (3, 4), which indicates the number of COVID-19
deaths in Egypt will decrease rapidly with increasing the
time of the epidemic. Thus, these results indicate that
WED is very efficient for modeling the COVID-19 data
sets.

Table 8. The estimates (θ̂o) and mean square

errors (MSEs) of the MLE and Bayes methods for
α,β ,R(t), and H(t) at t = 36,42 under squared error
Loss (SL) and LINEX loss functions (LL(ρ)) with
(ρ = ±2) at the hyper parameters

(A = 2,B = 3,C = 4,D = 2) based on progressive
Type-II censoring from fuzzy COVID-19 Death Data.

Approaches MLE Tierney-Kadane’s

m Par. θ̂ML θ̂SL θ̂LL(−2) θ̂LL(2)
n/2 α 6.839E-01

(2.45E-04)

6.560E-01

(1.81E-04)

6.756E-01

(3.26E-05)

6.724E-01

(1.08E-05)

β 2.253E-07

(1.99E-14)

3.294E-07

(5.30E-014)

5.715E-07

(4.89E-012)

1.078E-06

(2.91-012)

R(t = 36) 9.758E-01

(4.29E-05)

9.585E-01

(4.05E-04)

9.506E-01

(9.09E-04)

9.833E-01

(2.71E-06)

R(t = 42) 9.102E-01

(1.44E-03)

7.329E-01

(2.16E-02)

9.146E-01

(4.11E-03)

9.220E-01

(7.79E-05)

H(t = 36) 5.406E-03

(1.33E-06)

1.188E-02

(4.90E-05)

7.882E-03

(2.87E-05)

7.864E-03

(6.24E-06)

H(t = 42) 6.744E-03

(8.90E-06)

3.091E-02

(1.00E-04)

2.705E-02

(9.89E-05)

2.696E-02

(4.96E-05)

3n/4 α 6.991E-01

(2.03E-07)

6.649E-01

(2.05E-05)

6.748E-01

(2.37E-05)

6.699E-01

(6.96E-07)

β 9.020E-08

(3.87E-017)

9.947E-07

(1.89E-013)

1.753E-06

(1.06E-012)

8.305E-07

(3.81E-012)

R(t = 36) 9.814E-01

(8.63E-07)

9.834E-01

(2.24E-05)

9.753E-01

(2.88E-05)

9.809E-01

(6.11E-07)

R(t = 42) 9.375E-01

(1.14E-04)

9.686E-01

(7.88E-03)

9.518E-01

(7.21E-04)

9.372E-01

(4.12E-05)

H(t = 36) 4.470E-03

(4.64E-08)

3.078E-03

(3.27E-06)

5.990E-03

(1.20E-05)

6.037E-03

(4.51E-07)

H(t = 42) 1.719E-02

(6.01E-07)

1.876E-02

(4.58E-06)

2.204E-02

(3.04E-06)

2.204E-02

(4.50E-06)

Fig. 3: Plot the posterior density function π(α|x̃) for fuzzy

COVID-19 Death Data.
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Fig. 4: Plot the posterior density function π(β |x̃) for fuzzy

COVID-19 Death Data.

6 Conclusion

In this paper, we have considered the ML, and Bayes
estimates for the parameters α,β ,R(t), and H(t) of the
WED based on progressive Type-II censoring scheme
from fuzzy lifetime data. The MLEs of the unknown
parameters is computed by using the finite difference
method. Also, approximate Bayes estimators under
squared error and LINEX loss functions were obtained by
using Tierney-Kadane’s method. the approximate Bayes
estimators are compared with the ML in terms of MSE by
using the Monte Carlo simulation method. Based on the
simulation study, we see that; Tierney-Kadane’s
approximation procedure gives the most precise
parameter estimates as shown by MSEs in Tables 1-6.
Moreover, we applied the proposed methods to analyze
real data applications including the COVID-19 pandemic,
which concluded that the number of COVID-19 deaths in
Egypt is declining in the next few months.
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