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Abstract: In this paper, a numerical algorithm, based on the use of genetic algaetttimique, is presented for solving a class of
nonlinear systems of second-order boundary value problems. lrettisique, the system is formulated as an optimization problem by
the direct minimization of the overall individual residual error subjedhtgiven constraints boundary condtions, and is then solved
using continuous genetic algorithm. In general, the proposed technéggesmooth operators and avoids sharp jumps in the parameter
values. The applicability, efficiency, and accuracy of the proposeatitiign for the solution of different problems is investigated.
Meanwhile, the convergence analysis based on the resulting statisticéd dbsa discussed.
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1 Introduction emphasize that the continuous nature of the optimization
problem and the continuity of the resulting solution

Systems of second-order boundary value problemscurves) for the solution of the following nonlinear system
(BVPs) occur frequently in applied mathematics, of second-order BVPSl;
engineering, theoretical physics, biology and so b2, ay o (x)uf (x)

3]. If the systems of second-order BVPs cannot be solved +a; ; (z) v} (x) + a2 (x) ui ()
analytically because, generally, the solution cannot be +a13(x) Y(x) 4+ a1,4 () uh(x)
exhibited in a closed form even when it exists, which is  +a; 5 () u2(z) + G1 (z,u1 (), u2(z)) = f1 (x),
the usual case, then recourse must be made to numerical a2 0 (x) u () @)
and approximate methods. 1 (1) uh(z) + azs () ua(2)
Many classical numerical methods used with 5 ()]l (z) + 34 () v (z)
second-order initial value problems cannot be applied to +a2 5( Yui(z) + Ga (2, u1(z), us(2)) = f (z),
second-order BVPs. We all know that the finite difference B
method can be used to solve linear second-order BvPsSubject to the boundary conditions
but it can be difficult to solve nonlinear second-order ur(a) = aq,ui (b) = By,
BVPs. Furthermore, the finite difference method requires (2)

some major modifications that include the use of some uz(a) = az, uz(b) = B,
root-finding  technique while solving nonlinear wherea < z < b, ax, B, k = 1,2 are real finite
second-order BVPs. For a nonlinear system ofconstants(G;,G> are nonlinear functions of;, 1, and
second-order BVPs, there are few valid methods to obtainy;, f, and a; ;,a2,, i = 0,1,2,3,4,5 are continuous
numerical solutions. functions onfa, b].

In this paper, we apply the continuous genetic  The previous studies for systent)(and @) can be
algorithm (CGA) (The term “continuous” is used to summarized as follows: irb], the authors have discussed
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the existence of solutions, including the approximation ofcovers the description of GA and CGA in detail.
solutions via finite difference equations. Recently, theNumerical examples and convergence analysis are
iterative reproducing kernel method and a combination ofpresented in Sectiorb. Finally, in Section 6 some
homotopy perturbation and reproducing kernel methodsconcluding remarks are presented.

are carried out in §,7]. The authors in 4,8,9] have

developed the sinc-collocation, the homotopy

perturbation, and the cubic B-spline scaling function 2 Preface to optimization

methods to solve systeni)(and @). In [10] also, the o ) _ ) o )
author has provided the variational iteration method to©Ptimization plays a crucial role in various disciplines in
further investigation to the aforementioned system.SCi€nces, industry, engineering, and almostin every aspec

Furthermore, the homotopy analysis method has beeff the daily life. Optimization problems are encountered,

applied to solve systeni) and @) as described in[l]. for example, in communication systems, antenna design,
Finally, the B-spline method for solving the linear form of @PPlied mathematics, medicine, economic, and so on.
system {) is proposed recently inlpP]. On the other In  mathematics, statistics, empirical sciences,

hand, the numerical solvability of other version of computer science, or management science, mathematical

differential equations and other related equations can b@Ptimization is the selection of a best element with regard
found in [13,14,15] and references therein. to some criteria from some set of available alternatives. In
CGA wa’s developed irlp] as an efficient method for the simplest case, an optimization problem consists of
the solution of optimization problems in which the Maximizing or minimizing a real function by
parameters to be optimized are correlated with each othefyStematically choosing input values from within an
or the smoothness of the solution curve must be achieved!lowed set and computing the value of the function. The
It has been successfully applied in the motion planning ofdeneralization _of optimization theory and technlques_to
robot manipulators, which is a highly nonlinear, coupled ©ther formulations comprises a large area of applied
problem [L7], in the numerical solution of two-point mathematlcs. More generally, optimization mcIud'es
BVPs [18], and in the solution of optimal control finding best available values of some objective function
problems 19]. Their novel development has opened the 9iven & defined domain, including a variety of different
doors for wide applications of the algorithm in the fields YPes_of objective functions and different types of
of mathematics and engineering. It has been also applie§omains. Normally, there is no single answer for any
in the solution of fuzzy differential equationg(]. The  OPtimization problem, and it is necessary to choose the
reader is asked to refer td6,17,18] in order to know best solution for a given problem from the multitude of
more details about CGA, including their justification for POSSible solutions. To achieve this, it is necessary to
use, conditions on smoothness of the functions used in thd€fine the objective function. . _
algorithm, several advantages of CGA over conventional OPtimization problems can be divided into two
GA (discrete version) when it is applied to problems with Catégories ~depending on whether ~the solution is
coupled parameters and(or) smooth solution curves, etc. cOntinuous or discrete. An optimization problem with
In this paper, we introduce a novel method based orfliscrete solution is known as a conventional optimization
CGA for numerically approximating a solution of prob_lem, whllg the continuous version is known as a
nonlinear systems of second-order BVEs4nd Q). The ~ Continuous optimization problem.
new method has the following characteristics; first, it

should not require any modification while switching from 3E lati fth timizati bl
the linear to the nonlinear case; as a result, it is of° Formuiation ortne optimization problem

versatile nature. Second, its ability to solve nonlinear optimization problem is the problem of finding the
system {) and @) without the use of other numerical poqt golytion from all feasible solutions. In this section,
techniques. Third, it should not resort to more advancedy,q system 1) is formulated as an optimization problem

mathematical tools; that is, the algorithm should bey,qeq on the minimization of the cumulative residual of
simple to understand, implement, and should be thus,|  ,nknown interior nodes.

easily accepted in the mathematical and engineering  £q; the first step of formulation, the independent

application’s fields. Fourth, the algorithm is of global jyiena [4,4] is partitioned intoN subintervals of equal
nature in terms of the solutions obtained as well as Siength » given ash = (b—a)/N. The mesh points

ability to solve other mathematical and engineeringnodes' are obtained using the equation = a + i,
problems. Fifth, it requires the minimal amount of , _ 1 N Thus. at the interior mesh points;
information about specific problems; as a result, the; _ 1’5" "N _ 1 the system to be approximatea is
discretized form of systeni) and @) is the only required e '

. iven as:
step that differs from one problem to another one. g
This paper is organized in six sections including the Fy (@i, uy (z3) ,uf (),
introduction. In Sectior2, a short preface to optimization uf (i), ug (i), uh (i) ,uy (7)) = 0, 3)
is presented. In Sectiod, we formulate the system of Fo(xi, uy (z3) ) (25),
second-order BVPs as an optimization problem. Section u () ug (23) , ub (), uf (x;)) =0,
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subject to the boundary conditions The overall individual residual, Oir, is a function of the
residuals of all interior nodes. It may be stated as:
Uy (l‘o) = (1, Uy (CUN) = By,

U2 (iUo) = (2, U2 (CUN) = 527

. N-1 2 2
Oir =4/ > (Res (i))” + (Res (7).
wherer; < z; < zy_1,i=1,2,...,N —1,andFy, I} i=1

are given by The fitness function, Fit, plays a fundamental rule in

optimization techniques (continuous and conventional

/

() s ug ()l () uld (27)) = an o (2) uf (2;) version) a_nd its applications. This fqn_ctpn is required in
ay g () W () + aro (21) ui (27) our work in order to convert the minimization problem
tars (z )Ué/(xy,)Jral’él (:) () into a maximization problem. In fact, we do this to

. ' o ’ N _ facilitate the calculations and planning graphics. A
+ay 5 (x;) us(x;) + G (m,uq (), us (s i), . . ; . ! : .

1 (71) ua(@:) 1 (), ual@i) = i (i) suitable fitness function used in this work is defined as:
F;%(xi7UI v ,U/l gx» ’ " " i 1
uy (z:) s u2 (1), uy (2:) , uy (%)) = as,o (i) ug () Fit= "5
Faz, (2:) up(xi) + az2 (i) uz(w;)
Faz,s (i) uy (@) + az,a (z;) ui () In fact, the value of individual fitness is improved if a
tags (i) ur(2:) + Ga (w4, w1 (2), ua (i) — fa (24) . decrease in the value of the Oir is achieved. On the other

The CGA approach for numerically approximating hqnd, the c_)ptimal solutio_n of the problem, nodal values_,
the solution to systemlf and @) consists of replacing will be ach|eveq when Oir approaches zero and thus Fit
each derivative in the differential system by a difference@PProaches unity.
quotient, which closely approximates that derivative when
h is small. On the other hand, the difference )
approximation formulas, which closely approximate 4 Steps of CGA technique
uy (z;) andu} (x;), k =1,2,i=1,2,..., N — 1 using
(n + 1)-point at the interior mesh points with error of The following account presents a brief review of the GA.
order qhnferl), wheren = 2,3,..., N andm = 1,2 After that, a detailed description of the CGA is given.
is the order of the derivative can be easily obtained byMoreover, the design of the CGA operators and the
using Algorithm ¢.1) in [21]. We mention here that the settings of the system parameters will be shown later to
numbern is starting from2 and gradually increases up to be the key factors on which the efficiency and
N. To complete the formulation substituting the performance of CGA rely.
approximate formulas af}, (z;) anduf (z;), k = 1,2in A GA is an optimization technique that mimics
system B), a discretized form of systeni)is obtained.  biological evolution as a problem-solving strategy. Given
The resulting algebraic equations will be a discretea specific problem to solve, the input to the GA is a set of
function of z;, ug (mi—(n—l))r Ug (:Ei—(n—Q))’ ..., and pote_ntlal solutions to that pro_blem, encc_)ded in some
wp (Tiy(m-1)), k = 1,2. After that, it is necessary to fashion, and a metric called a fitness function that allows
rewrite the discretized system in the form of the €&ch candidate to be quantitatively evaluated. These

following: candidates may be solutions already known to work, with

the aim of the GA being to improve them, but more often
Fi(zi,ui (T (n_1)) » they are generated at random. The GA then evaluates
U (xi—(n—2) Uy xi—i—(n—l)) 7 each candidate according to the fitness function. In a pool
_ _ , ~0 of randomly generated candidates, of course, most will

U2 (xz—(n—l) , U2 xz—(n—2) yeeey U2 (w1+(n—1))) ~ U, .
not work at all, and these will be deleted. However, purely
Fo (s 4 by chance, a few may hold promise-they may show
2(:1727’“1 (xz—(n—l)) ) .. . . .
X activity, even if only weak and imperfect activity, toward
Uy (li—(n—z) y ey UL 1'71+(n—1))7 lving th bl
Uz (Ti—(n-1)) » U2 (Ti—(n—2)) - U2 (Tit(n—1))) = 0. Solving the problem. )

2\Hi=(n=1)) i=(n=2)) > i+(n These promising candidates are kept and allowed to
The residual of the general interior nodes 1,2, .. ., reproduce. Multiple copies are made of them, but the
N — 1, denoted by Res, is defined as: copies are not perfect; random changes are introduced

. during the copying process. These digital offspring then

Res (i) = Fi(zi, w (xif(nfl)), go on to the next generation, forming a new pool of
U1 (a:i,(n,g) yees UL (Tig(n—1)) 5 candidate solutions, and are subjected to a second round
U (Ti—(n-1)) s U2 (Tim(n—2)) s U2 (Tit(n—1))), of fitness evaluation. Those candidate solutions which
were worsened, or made no better, by the changes to their
Res (i) = Fa(wi, u1 (#_(n—-1) code are again deleted; but again, purely by chance, the

U1 (T (n=2)) s U1 (Tit(n—1)) 5 random variations introduced into the population may

U (Tim(n—1)) U2 (Tim(n—2)) s s U2 (Tit(n-1)))- have improved some individuals, making them into better,
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more complete or more efficient solutions to the problemand the modified tangent hyperbolic function (MTHF):
at hand. Again these winning individuals are selected and ,

copied over into the next generation with random pj (ki) =7 (k,i) + Atanh (<32) sin (i),
changes, and the process repeats. The expectation is t?;ft

. . P hi=1,2,....N—1,57=1,2,...,N,, andk =

the average fitness of the population will increase eac or eac P S A
: . .2, wherep; (k, ) is thei-th variable value of thé-th
round, and so by repeating this process for hundreds OCurve for thej-th parenty is the ramp function of théth

Eg%uszr:ﬁscg{/é?gdngs’ very good solutions to the prOblemvariable value of thé-th curve and defined as:
As astonishing and counterintuitive as it may seem to r(k,i) = o + ﬁk&%i’
some, GA has proven to be an enormously powerful and
successful  problem-solving  strategy, dramatically i, o are random numbers within the rangeN — 1] and
demonstrating the power of evolutionary principles. GA (0, (N — 1) /3], respectively, andV, is the population
has been used in a wide variety of fields to evolvesize.
solutions to problems as difficult as or more difficult than ~ The two initialization functions differ from each other
those faced by human designers. Moreover, the solutionby two main criteria: the convex or concave nature and
they come up with are often more efficient, more elegantthe possibility of any overshoot or undershoot of the
or more complex than anything comparable a humanconcerned function. The MNGF is either convex or
engineer would produce. concave within the given range of the independent
On the other aspect, GA can be distinguished fromvariable while the MTHF is convex in a subinterval of the
calculus-based and enumerative methods for optimizatiosndependent variable and concave in the remaining
by the following characteristic2p, 23,24, 25,26,27,28]: interval. The MNGF and MTHF, on the other hand, might
1. GA searches for optimal solution using a populationfesult in an overshoot or an undershoot, which might
of individuals, not a single individual. This very importan €exceed the values of the given boundary conditions at
characteristic gives GA much of its search power and alsgsome interior mesh points but not at the boundary point
points to its parallel nature. {a,b}_ as will be s_hoyvn later. The two initializati_on
2. GA uses only objective function information. No functions ~are multiplied by the corrector function,
other auxiliary information is required. Much of the sin(wi/N), which guarantees that the two functions
interest in GA technique is due to the fact that they belong2lways satisfy the given boundary conditions. N
to the class of efficient domain-independent search The choice ofA depend on the boundary conditions
strategies that are usually superior in performance to*x @ndj;, k = 1,2 as follows:A is any random number
traditional methods without the need to incorporateWithin the range{—3 3, — ai|,3|8;, — o] if B, —

highly domain-specific knowledge. differ from zero, within the rangg-3ay, 3ov] if 8 — .

3. GA uses probabilistic transition rules, not vVanished, —and  finally  within  the  range
deterministic rules, in contrast with the calculus basedl— (¥ = 1) /3, (N —1)/3] 'if f, and «; are both
and enumerative methods. vanished. It is to be noted that for both initialization

functions, A specifies the amplitude of the corrector
function ando specifies the degree of dispersion. For
smallo the parameter specifies the center of the MNGF,
hile 1. specifies the intersection point between the ramp
unction and the MTHF, which determines the convexity
Epoint. The two initialization functions together with the
ramp function are shown in Figuie
The previously mentioned parameterc and A are

Remark.When using GA in optimization problems, one
should pay attention to two points; first, whether the
parameters to be optimized are correlated with each othe
or not. Second, whether there is some restriction on th
smoothness of the resulting solution curve or not. In cas
of uncorrelated parameters or non-smooth solution

curves, the conventional GA will perform well. On the ted domlv due to the fact that th ired
other hand, if the parameters are correlated with eacigenerated randomly dué to the fact that ihe require

other or smoothness of the solution curve is a must, theﬁqlptlons are not known for_us, and in order to make the
the CGA is preferable in this cast617,18,19,20] initial population as much diverse as we can, randomness
T should be there to remove any bias toward any solution.

The mentioned diversity is the key parameter in having an

information-rich initial population. In other cases where

one of the boundaries of the solution curves is unknown,
he reader is kindly requested to go throudt®][for
omparison and more detalils.

2. Evaluation: The fitness, a nonnegative measure of
quality used to reflect the degree of goodness of the
individual, is calculated for each individual in the
population.

o 3. Selection:In the selection process, individuals are
pj (k,i) =1 (k,i) + Aexp (—0-5 (54) ) sin (1) , chosen from the current population to enter a mating pool

The CGA proposed in this work consists of the
following steps 16,17,18,19,20]:

1. Initialization: The initialization function used in
the algorithm should be smooth from one side and shoul
satisfy constraint boundary conditions from the other
side. Two smooth functions that satisfy the boundary
conditions are chosen in this work, which include the
modified normal gaussian function (MNGF):
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Figure 2 shows the crossover process in a solution
curve for the two random parents. It is clear that new
information is incorporated in the children while
maintaining the smoothness of the resulting solution
curves.

MNodalvalue

Node number

@)

MNodalvalue

™
=

MNode number

Nodalvalue

(@)

2
£l

Node number

(b)

MNodalvalue

Fig. 1 Initialization process: (&)z——MNGFand- - - - - - ramp
function; (b) MTHF and- - - - - - ramp function.

devoted to the creation of new individuals for the next Node number

generation such that the chance of selection of a give

individual for mating is proportional to its relative fitres

This means that the best individuals receive more copie$ig. 2 Crossover process: (a}—— first child and- - - - - - ramp
in subsequent generations so that their desirable traitginction; (b) second child and- - - - - ramp function.
may be passed onto their offspring. This step ensures that

the overall quality of the population increases from one . . )
generation to the next. 5. Mutation: The mutation function may be any

4. Crossover: Crossover provides the means by continuous function within the rande, 1] such that the
which valuable information is shared among the mutated child solution curve will start with the solution
individuals in the population. It combines the features of curve of the child produced through the crossover process
two parent individuals, say andh, to form two children  and gradually changes its value till it reaches the solution
individuals, sayl and! + 1, that may have new patterns curve of the same child at the other end. Mutation is often

compared to those of their parents and plays a central rolétroduced to guard against premature convergence.

in algorithm. The crossover process is expressed as: ~ Generally, over a period of several generations, the gene
pool tends to become more and more homogeneous. The
cr (ki) = c(k,i) ps (k,i) + (1 — c(k,4)) pn (k,7) , purpose of mutation is to introduce occasional
N ) . ) , perturbations to the parameters to maintain genetic
civ1 (k@) = (1 = (k,9)) ps (k,9) + e (k, ) pr (K, 9), diversity within the population. The mutation process is
c(k,i) = 0.5 (1 + tanh (=£)) , governed by the following formulas:

foreachi =1,2,..., N—1andk = 1,2, wherep, andpy, m; (k,i) = ¢; (k,i) + Am (ki) sin (1),

represent the two parents chosen from the mating ppol,

andc;; are the two children obtained through crossover m (k, i) = exp (70'5 (i;u)Q) ’

process, and represents the crossover weighting function
within the rangg0, 1]. The parameterg ando are asgiven  foreachi = 1,2,...,N —1,j = 1,2,...,N,, andk =
in the initialization process. 1,2, wherec; represents thg-th child produced through
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the crossover process,; is the mutated-th child, andm generational, replacement. This completes the "life cycle
is the gaussian mutation function. The parametas as  of the population.

given in the initialization process. 7. Termination: The CGA is terminated when some
Regarding the mutation center, and the dispersion convergence criterion is met. Possible convergence
factor, o, used in the mutation process, three methods areriteria are: the fitness of the best individual so far found
used for generating the mutation center where eaclexceeds a threshold value, the maximum nodal residual of
method is applied to one-third of the population and twothe best individual of the population is less than or equals
methods are used for generating the dispersion factosome predefined threshold value, the maximum number
where each method is applied to one-half of theof generations is reached, or the improvement in the
population. The reader is asked to refer1g][in orderto  fitness value of the best member of the population over a
know more details and descriptions about these methodsspecified number of generations is less than some
The mutation process for a random child is shown inPredefined threshold, is reached. After terminating the
Figure 3. As in the crossover process, some newalgorithm, the optimal solution of the problem is the best
information is incorporated in the mutated child while individual so far found. If the termination conditions are
maintaining the smoothness of the resulting solutionnot met, then the algorithm will go back to step
curves.

Remark.We mention here the following facts about the
previously mentioned parametess 1, ando: firstly, the
value of these parameters can gradually increase or
decrease out of the mentioned intervals that are given in
the initialization phase, crossover and mutation
mechanisms throughout the evolution process. Secondly,
these values are vary from process to process, from
generation to generation, and from curve to curve; this is
due to the fact that they are generated randomly.

Modalvalue

, , , , It is to be noted that the two functions used in the
012 . N initialization phase of the CGA will smoothly oscillate
Node number between the two ends with a maximum number of single
@ oscillation. If the final solution curves will have more
smooth oscillations than one oscillation, then this will be
done during the crossover and mutation mechanisms
throughout the evolution process. This is actually done by
those two operators during the run of the algorithm while
solving a problem. However, the evaluation step in the
algorithm will automatically decide whether they are
rejected or accepted modifications due to their fitness
function value.

To summarize the evolution process in CGA an

individual is a candidate solution that consists of two
Node number curves each ofV — 1 nodal values. The population of

(b) individuals undergoes the selection process, which result
in a mating pool among which pairs of individuals are

) , ) , crossed over with probability.; within that pair of
Fig. 3 Mutation process: (aj—— mutated of first child and  4rents individual solution curves are crossed with
""" ramp function; (b}—— mutated of second child and o, apility ... This process results in an offspring
""" ramp function. generation where every child undergoes mutation with
probability p,,;, within that child individual solution
curves are mutated with probabilipy,,.. After that, the
6. Replacement: After generating the offspring’s next generation is produced according to the replacement
population through the application of the genetic strategy applied. The complete process is repeated till the
operators to the parents’ population, the parents’convergence criterion is met where the two curves of the
population is totally or partially replaced by the bestindividual are the required solution curves. The final
offspring’s population depending on the replacementgoal of discovering the required nodal values is translated
scheme wused. This is known as non-overlapping,nto finding the fittest individual in genetic terms.

Nodalvalue
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5 Numerical and convergence analysis the improvement in the fitness value of the best individual
in the population oveb00 generations is less than001.
In this section, some numerical problems are studied tdt is to be noted that the first two conditions indicate to a
demonstrate the accuracy and applicability of the presensuccessful termination process (optimal solution is
technique. Results obtained are compared with thefound), while the last two conditions point to a partially
analytical solution of each problem in different ways and successful end depending on the fithess of the best
are found to be in good agreement with each other. Thendividual in the population (near-optimal solution is
effects of various CGA operators and control parameterseached)16,17,18,19,20].
on the convergence speed of the proposed algorithm are Due to the stochastic nature of CGA, twelve different
also investigated in this section. The analysis includes th runs were made for every result obtained in this work using
effect of various initialization methods on the a different random number generator seed; results are the
convergence speed of the algorithm in addition to anaverage values of these runs. This means that each run of
analysis of the curve crossover and curve mutationthe CGA will result in a slight different result from the
probabilities, population size, maximum nodal residual, other runs. On the other hand, the system of second-order
and the step size effect. In the process of computation, alBVPs related parameters are depend on the nature of the
the symbolic and numerical computations were problem and will be determined later in the same problem.
performed by using Visual Basic platform.

The CGA proposed in this paper is used to solve theProblem 1Consider the following linear syster8]|

given system of second-order BVPs. The input data to the uy (2) + zug (2) + 2ug (z) = f1 (2),
algorithm is divided into two parts; the CGA related .
parameters and the system of second-order BVPs related uy () + 22wy () + 2zug () = f2 (2),

parameters. The CGA related parameters include thaubject to the boundary conditions
population size N, the individual crossover probability,

peir the curve crossover probability,.., the individual uy (0) = 0,u1 (1) =0,
mutation probabilityp,,;, the curve mutation probability, s (0) = 0, us (1) = 0,
Pme, the initialization method, the selection scheme used
the replacement method, the immigration threshold value¥hered < <1, fi (x) =2 andf, () = -2. The exact
and the corresponding number of generations, and finally0lutions areus (z) = «* —z andus (v) =z — 2*.

the termination criterion. The system of second-orderProblem 2 Consider the following nonlinear systedi
BVP related parameters include the governing differential . )

system, the independent interVal b], the step size}, the uy (z) + zuy (7) + 2zu2 (7) + 207 (2) = f1 (2),
boundary valuesq, 5, and finally the number of nodes, ./ (1) 4 u, (2) + 22u; () + sin (2) W2 (2) = f» (z) ,

N. However, the input data to the algorithm are as . .
P g subject to the boundary conditions

follows:

Parameter Description up (0) = 0,up (1) =0,

N, =500 Population size o o

pei = 0.9 Individual crossover probability uz (0) =0,u2 (1) =0,

Pec = 0.5 Curve crossover probability where 0 < , o < L,
Pmi = 0.9 Individual mutation probability fi(z) = 2xsin (mz) + 27 — 22% +2° — 2, andJ;Q (z) =
Pme = 0.5 Curve mutation probability sin (72) (1 + sin (2) sin (7)) + 7 cos (7z) + z° — z%.
Ry = 0.1 Rank-based ratio The exact solutions areu; (z) = 2 — 2? and

— ) us (x) = sin (7x).

In order to the initialization, mixed methods for ) ) )
initialization schemes in the CGA are used where half ofProblem 3.Consider the following nonlinear systef{
the population is generated by the MNGF, while the oth_er u (z) + 200, (z)
half gene_rated using the MTHF. The rank—pas_ed selection '/ cog (z) uy (2) + sin (u; (2) us (2) = f1 (2),
strategy is used where the rank-based ratio is sétito
Generational replacement scheme is applied where the uly (x) + 5e®ul (x)
number of elite parents that are passed to the next +6sinh () ug (z) + cos (uz (2)) = f2 (z),
gene_rati_on eq_ual_s one-tenth of the populati_on size. Th%ubject to the boundary conditions
termination criterion used for each problem is a problem
dependent and varies from one case to another. However, u1 (0) =1,u1 (1) =e,
the CGA is stopped when one of the following conditions .
is met. First, the fitness of the best individual of the uz (0) = 0,up (1) =sinh (1),
population reaches a value @.99999. Second, the Wwhere0 < x < 1, fi (z) = sin (e”sinh (x)) + 21e” +
maximum nodal residual of the best individual of the 4¢® cos (x), andf (z) = cos (sinh (z)) + 11 cosh? (z) +
population is less than or equal @00000001. Third, a  5sinh (x) cosh () +sinh () — 6. The exact solutions are:
maximum number 08000 generations is reached. Fourth, u; () = e® andusg (z) = sinh (z).
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Throughout this paper, we will try to give the results
of the three problems; however, in some cases we will
switch between the results obtained for the problems in
order not to increase the length of the paper without the
loss of generality for the remaining problems and results.
The convergence speed of the algorithm, whenever used,
means the average number of generations required for
convergence. The step size for the three problems is fixed
at0.1 and thus, the number of interior nodes equifer 0-2 1
all problems.

The convergence data of the three problems is given 0 250 500 75 1000 1250 1500
in Tablel. It is clear from the table that the problems take Generation number
1387 generations, on average, to converge to a fitnes$a)
value of abou©.99999469 with an average absolute nodal
residual of the valug.31605833 x 10~7 and an average 14
absolute nodal error of the val2e87790635 x 108,

The evolutionary progress plots, of the best-fithess
individual of Problemd, 2, and3 are shown in Figuré.

It is clear from the figure that, in the firsi0% of

generations the best-fitness approaches to one very fast,
after that, it approaches to one slower. That means the
approximate of CGA converge to the actual solution very 0.2 1
fast in the firs50% of the generations.

The way in which the nodal values evolve for Problem 0 260 460 5[5[] g(ig 1glgg 12|gg 141[]0
3 is studied next. Figurd shows the evolution of the first, Generation number
x1, and middlex s, nodal values ofi; (x), while Figure6 (b)
shows the evolution of the middle;, and ninthzg, nodal
values ofus (). 1

It is observed that from the evolutionary plots that the
convergence process is divided into two stages: the
coarse-tuning stage and the fine-tuning stage, where the
coarse-tuning stage is the initial stage in which
oscillations in the evolutionary plots occur, while the
fine-tuning stage is the final stage in which the
evolutionary plots reach steady-state values and do not 02 1
have oscillations by usual inspection. In other words,
evolution has initial oscillatory nature for all nodes, iret ° 0 150 300 450 €00 750 900 1050 1200 1350
same problem. As a result, all nodes, in the same Generation number
problem, reach the near optimal solution together. The(c)
average percentage of the fine-tuning stage till

convergence from the total number of generations aCroSgiy 4 Evolutionary progress plots for the best-of-generation

all nodes of the three problems is given in Tabldt is individual across all generations for: (a) Problén{b) Problem
clear from the table that the problems spent al30dt of 2: (c) Problem.

generations, on average, in the coarse-tuning stage, while
the remaining’0% is spent in the fine-tuning stage.
The graphs of the exact and approximate solutions of
uy (z) andugy (x) for Problem1 are depicted in Figurg,
while the graphs of the absolute error and absolute residuahe step size results in a reduction in the error and
across all nodes are plotted in Fig@8ret is to be noted that  correspondingly an improvement in the accuracy of the
the accuracy of certain node is inversely proportionalgo it obtained solution. This goes in agreement with the known
distance (number of nodes) from the boundaries. From théact about finite difference schemes where more accurate
last mentioned Figures, we see that we can achieve a goasblutions are achieved using a reduction in the step size.
approximation with the exact solution. On the other hand, the cost to be paid while going in this
The effect of the step size on the convergence speedirection is the rapid increase in the number of
and the corresponding maximum error and maximumgenerations required for convergence. For instance, while
residual is explored next. Tabl8sand4 give the relevant reducing the step size frori.1 to 0.05, the required
data for Problen2, where the number of nodes covers the number of generations for convergence jumps from
range from10 to 80. It is observed that the reduction in almost1300 to 1600, i.e.1.23 multiplication factor.

[y
1

=1
o
1

0.6

Maximumfitness

0.8

0.6

0.4 4

Maximumfitness

0.8
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0.4 -
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Table 1 Convergence data of the three problems.

Problem Average generations Average fitness Average error deeesidual

1 1503 0.99999765 3.74820144 x 10~° 5.29666249 x 10~"
2 1359 0.99999303 4.64375608 x 1078 3.87627057 x 1077
3 1299 0.99999339 2.41761536 x 107 7.75241930 x 1078

Table 2 Average percentage of the coarse-tuning stage of the three problems.

Dependent variable Problem Problem2 Problem3
u1 (z) 28% 31% 29%
us () 29% 30% 32%

Table 3 The influence of the step size on the convergence speed and thepoodigy error ofu; (z) for Problem2.

Step size Average generations Maximum absolute error Maximum absesidelal
0.1 1359 7.68619311 x 10~ 8 5.41550512 x 10~ 7
0.05 1671 9.97232193 x 107° 1.11413003 x 1078
0.025 1986 6.79438253 x 10710 7.30971949 x 10~°
0.0125 2346 7.18387063 x 10~ ! 4.09574688 x 10710

1.119
1.117
1.115
E E
= 1.113 ™
= =
S 1111 S
o " o
= =
1.109
1.107
1.105 + T T T T T T T T 1 0.52 T T T T T T T T 1
150 300 450 600 750 900 1050 1200 1350 0 150 300 450 600 750 900 1050 1200 1350
Generation number Generation number
(@) (@)
1.05 ~
1.678 A
1.047 A
1.673 A 1.044 4
S 1.668 - 2 1.041 J
: E
g 1.663 4 g 1.038 A
S 9 1.035 -
Z 1.658 =
1.032 A
1.633 1 1.029 -
1.648 T T T T T T T T 1 1.026 T T T T T T T T 1
0 150 300 450 600 750 900 1050 1200 1350 0 150 300 450 600 750 900 1050 1200 1350
Generation number Generation number
(b) (b)

Fig. 5 Evolution of the nodal values af; (z) for Problem3 Fig. 6 Evolution of the nodal values af; (z) for Problem3
across all generations at: (a) the first nodal; (b) the fifth nodal. across all generations at: (a) the fifth nodal; (b) the ninth nodal.
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Table 4 The influence of the step size on the convergence speed and thepcod®) error ofus (z) for Problem2.

Step size Average generations Maximum absolute error Maximum absesideal
0.1 1359 6.52802144 x 10~ % 4.47232193 x 10~
0.05 1671 9.18337204 x 10~° 1.00726841 x 1078
0.025 1986 5.05074811 x 10~ 10 5.25578188 x 1077
0.0125 2346 4.90500904 x 10~ 2.15255136 x 10710
0 T T T T T T T T T r .4 TE-08 A
01 02 03 04 05 06 07 08 09 /1 x X
GE-08 x
-0.05 A X
5E-08 - x
-0.1 4 g
E ig 4E-08 - x A A, X
z 015 3 3E-08 A A
B = A A
Z 4, JE-08 - x
wos { 4 A
-0.25
0E+00 #— . . . . . . . —K
03 0 01 02 03 04 05 06 07 08 09 1
’ Node number Node number
(@ @
0.3 - 8E-07 -
x
0.25 1 TE-07 x
6E-07 1 x I a
g 027 Y 5E-07 - x
3 2 A x
2 015 - Saper{ X 4 A
X 3 9
2 014 S 3E-07 - A
2E-07 A
0.05 -
1E-07
0 . . . . . . . . . OE+00 X—— . . . . . . . —x
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 098 1
MNode number MNode number

(b) (b)

Fig. 7 Plot of the exact and approximate solutions for Problem Fig. 8 Plot of the absolute error and absolute residual for

1, exact solution andk x x approximate solution: (a) Probleml: (a) A A A absolute error ofi; () andx x x absolute

uy (x); (b) uz (). error ofus (x); (b) AA A absolute residual af; (z) andx x x
absolute residual afz ().

Numerical comparisons for Problemi are studied
next. The conventional numerical methods that are usedhe absolute error, and the absolute nodal residuals ia give
for comparison with CGA include the following: in Tables7 and8, respectively. Itis clear that the accuracy
sinc-collocation method4], reproducing kernel method obtained using CGA is moderate since it has a truncation
[6], combination of homotopy perturbation and error of the order Qr'?).
reproducing kernel method¥][ cubic B-spline scaling The influence of the population size on the

functions methodq]. Tables5 and6, show a comparison convergence speed of CGA is studied next for Proltem
between the absolute errors of our method together withhs shown in Tabl®. The population size is increased in
other aforementioned methods with points for the first  giens 0f100 starting with 100 and ending with1000.

thr.ee methods angB poin_ts for the Iatgst method. As itis gmg)| population sizes suffer from larger number of
evident from the comparison results, it was found that ourgenerations required for convergence and the probability
method in comparison with the mentioned methods isy¢ being trapped in local minima, while large population
much better with a view to accuracy and utilization. size suffer from larger number of fithess evaluations that
The detailed data of; () anduy (x) for Problem3 means larger execution time. However, it is noted that the
that includes the exact nodal values, the CGA nodal valuesmprovement in the convergence speed becomes almost
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Table 5 Numerical comparison af; (x) for problem2 using CGA with other methods.

Node Method of 4] Method of [6] Method of [7] Method of [9] Present method
0.08 1.4x 10712 5.0x 1072 77 x107° 5.4 x 10710 3.1x 1077
0.24 4.4 x107° 1.4 x 1073 2.2x 1074 1.2 x 107° 8.0 x 107°
0.40 6.7 x 107° 2.1x 1073 3.3x107* 2.2 x107° 8.7x107°
0.56 9.3x107° 22x1073 3.7x107* 2.4x107° 9.5 x107°
0.72 49x%x107° 1.8 x 1073 3.1x107* 5.8 x 1071° 7.3x107°
0.88 8.6 x 107° 9.0 x 1074 1.5 x 1074 3.4 x 10710 3.4 x107°
0.96 7.1x107° 3.0x 1074 5.4 x 107° 1.6 x 10710 1.2 x 107°

Table 6 Numerical comparison afs () for problem2 using CGA with other methods.

Node Method of 4] Method of [6] Method of [7] Method of [9] Present method
0.08 2.4 x 1077 20x107° 71x107% 1.3x10°° 1.8 x 107°
0.24 2.3x 1073 5.6 x 1073 1.9x 1073 9.9 x107° 1.9 x 107°
0.40 8.9 x 107* 7.9x 1073 2.7x 1073 3.5x 1078 2.5 x 1077
0.56 1.4 x 1073 8.2x 1073 2.8 x 1073 1.2 x 1077 5.0 x 107°
0.72 3.1x1073 6.5 x 1073 2.2x1073 1.0 x 1077 1.8 x 107°
0.88 1.6 x 1073 3.1x1073 1.7x 1073 49 %1078 1.5 x 107°
0.96 9.8 x 107* 1.0x 1073 3.6 x 107* 5.8 x 107° 5.9 x 10710

Table 7 Numerical results ofi; (x) for Problems3.

Node Exact value Approximate value Absolute error Absolute residual
0 1 1 0 0

0.1 1.10517092 1.10517092 8.54004085 x 10710 4.98986805 x 108
0.2 1.22140276 1.22140276 8.42495202 x 10710 6.02052782 x 1078
0.3 1.34985881 1.34985881 7.01441771 x 10~1° 2.85466838 x 108
0.4 1.49182470 1.49182470 6.47288927 x 10719 1.81271125 x 1078
0.5 1.64872127 1.64872127 5.74708121 x 1071° 3.89186569 x 1078
0.6 1.82211880 1.82211880 4.00564908 x 10710 5.78639569 x 108
0.7 2.01375271 2.01375271 2.54064751 x 10719 5.56192320 x 108
0.8 2.22554093 2.22554093 1.75550117 x 10710 5.10268438 x 108
0.9 2.45960311 2.45960311 1.42755674 x 10~ 11 3.42025281 x 1078
1 2.71828183 2.71828183 0 0

negligible (saturation is reached) after a population sizescheme with a truncation error of order(l@o). As a
of 500. result, the accuracy of the solution obtained is dependent
) ) _ on the step size used, and for a certain step size there will
Now, the influence of the maximum nodal residual of pe initial improvement while decreasing the maximum

the best individual on the convergence speed and th@odal residual till the step size limit is reached where
corresponding error is investigated. This is the secondyrther reduction will be of no use.

termination condition of the algorithm and its value is set

between 0.1 and 0.0000000001. Table 10 gives the The combined effect of the curve crossover
relevant data for ProblerB. Regarding the convergence probability, p.., and the curve mutation probability,,..,
speed, it is obvious that as the maximum nodal residuabn the convergence speed of the algorithm and on the
decreases, the number of generations required foaverage fitness for Probletnare shown in Figur®. The
convergence increases rapidly since the searching procegsobability value is increased in steps®?® starting with

will be dominated by the fine-tuning stage. The difference0.1 and ending with).9 for both p.. andp,,., where the
between the exact and the CGA nodal values decreaserdividual crossover probability and individual mutation
initially till a maximum nodal residual of the value probability are kept ad.9. It is clear from the figures that
0.0000000001 is reached. After that, there will be no when the probabilities valugs.. andp,,. are increasing
improvement in the accuracy of the solution obtained forgradually, the average number of generation required for
further reduction in the maximum nodal residual. The convergence is increasing as well, while the average
proposed approach is a variant of the finite differencefitness is decreasing. Indeed, it can be seen that the curve
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Table 8 Numerical results ofi; (x) for Problems.

Node Exact value Approximate value Absolute error Absolute residual
0 0 0 0 0

0.1 0.10016675 0.10016676 5.04412133 x 107° 1.19781737 x 107
0.2 0.20133600 0.20133601 7.08781948 x 107° 1.74816625 x 1077
0.3 0.30452029 0.30452030 6.98424446 x 10~° 1.01331349 x 1077
0.4 0.41075233 0.41075233 6.14133705 x 107° 7.45835232 x 1078
0.5 0.52109531 0.52109531 5.11226279 x 10~° 1.06886851 x 107
0.6 0.63665358 0.63665359 3.91191735 x 107° 1.11482510 x 1077
0.7 0.75858370 0.75858370 2.69370010 x 107° 1.01986328 x 1077
0.8 0.88810598 0.88810598 1.57728076 x 107° 1.21174600 x 10~
0.9 1.02651673 1.02651673 4.99999639 x 10~ *° 8.89829783 x 10~®
1 1.17520119 1.17520119 0 0

Table 9 The effect of the population size on the convergence speed of CGArédnlem3.

N, Average generations Average fithess Average error Averageusdsid
100 1654 0.99941551 1.09565517 x 10~° 3.26623322 x 10~°
200 1598 0.99971946 4.75971286 x 1078 1.56296010 x 10~°
300 1496 0.99986403 2.65161347 x 1078 7.56412489 x 107
400 1384 0.99998299 3.32386734 x 107° 9.45034882 x 1078
500 1299 0.99999339 2.41761536 x 107° 7.75241930 x 1078
600 1279 0.99999447 1.29091708 x 10~° 3.62849959 x 1078
700 1272 0.99999466 1.07896381 x 10~° 3.52085425 x 1078
800 1270 0.99999502 8.67201518 x 10710 2.43221070 x 1078
900 1268 0.99999554 4.47235053 x 10710 9.14527547 x 107°
1000 1264 0.99999587 3.80764215 x 10710 8.01199580 x 10~°

Table 10 The influence of the maximum nodal residual on the convergencel spekthe corresponding error for Problém

Maximum nodal residual Average generations Average fitness geeraor Average residual

0.1 150 0.66715254 2.45134428 x 101 2.77170881 x 10~°
0.01 246 0.91864235 1.69499232 x 10~° 4.92016253 x 107°
0.001 350 0.99857452 1.57791166 x 107 8.03385433 x 107°
0.0001 728 0.99988219 1.93835094 x 10~® 6.55284220 x 1077
0.00001 1204 0.99998013 4.10215107 x 107° 1.10423467 x 1077
0.000001 1256 0.99998032 3.64324483 x 1077 1.09332016 x 1077
0.0000001 1271 0.99998654 2.92550326 x 107 9.47701704 x 1078
0.00000001 1294 0.99999049 2.68850679 x 107 8.28563642 x 1078
0.000000001 1305 0.99999494 6.98376995 x 10719 7.47558559 x 1078
0.0000000001 1322 0.99999604 4.28455537 x 10710 2.20159822 x 1078

crossover probability and the curve mutation probability the convergence speed after that is governed by the
have a minor effect on the performance of the CGA. selection mechanism, crossover and mutation operators.
Finally, the effect of the different types of For Problemsl and2, the MNGF results in the fastest

initialization methods on the convergence speed of theconvergence speed while for Probléinthe mixed-type
algorithm is discussed next. Three initialization methodsinitialization method results in the fastest convergence
are investigated in this work; the first method uses thespeed. In general, the initialization method with the
MNGF, the second uses the MTHF, while the third is the highest convergence speed is the one that provides initial
mixed-type initialization method that initializes the firs solution curves which are close to the optimal solution of
half of the population using the MNGF and the secondthat problem; that is, the optimal solution of the Problems
half of the population using the MTHF. Tabld shows 1 and2 is close to the MNGF. However, since the optimal
that the used initialization method has a minor effect onsolution of any given problem is not assumed to be
the convergence speed because usually the effect of thenown, it is better to have a diverse initial population by
initial population dies after few tens of generations andthe use of the mixed-type initialization method. As a
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Table 11 Convergence speed of CGA using different initialization functions.

Initialization method Problen Problem2 Problem3
MNGF 1241 1206 1452
MTHF 1653 1526 1395
Mixed-type 1503 1359 1299

used for representing the required nodal values. There is
an important point to make here, the results obtained by
the CGA are very effective and convenient in linear and
nonlinear cases with less computational generation and
less time. On the other aspects, the influence of different
parameters, including the initialization method, the
evolution of nodal values, the maximum nodal residual,
the population size, the curve’s probabilities, and the ste
size is also studied.
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