
Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) 691

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080228

An Analytical Security Model for Existing Software
Systems

Ayaz Isazadeh1, Islam Elgedawy2,∗, Jaber Karimpour1 and Habib Izadkhah1,∗

1 Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
2 Department of Computer Engineering, Middle East Technical University, Northern Cyprus Campus, Mersin 10, Turkey

Received: 1 Apr. 2013, Revised: 2 Aug. 2013, Accepted: 4 Aug. 2013
Published online: 1 Mar. 2014

Abstract: Nowadays, evaluation of software security, as one of the important quality attributes, is of paramount importance. There are
many software systems have not considered security in their design; thismakes them vulnerable to security risks. Architecture is the
most important consideration in software design that affects final qualityof software. Quality attributes such as efficiency and reliability
have been studied at software architecture level; however, no reporthas ever been provided about the effect of software architecture
on security. The purpose of this paper is to propose a mathematical-based method for evaluating and quantifying software security
using the coupling aspects of the software architecture. To achieve this goal, first, we show the relationship between coupling types and
vulnerability using an empirical-based software engineering technique that adopts Mozilla Firefox Browser vulnerability data. Then,
we propose a mathematical weighted relationship between coupling types and vulnerability, where regression statistical analysis and
Mozilla Firefox vulnerability data are used to predicate the relationship coefficients. Finally, we extract software architecture using
DAGC tool and then convert the extracted architecture into Discrete Time Markov chains, which are used to predict and compute the
system over all vulnerability.

Keywords: Security, Software Architecture, Mozilla Firefox Browser, Markov chains

1 Introduction

Our ongoing research area is focused on extracting
dynamic and adaptive software system architecture from
source code. Dynamism and adaptability with the
environment are among the features of the next generation
of software systems. A software system must be able to
adapt itself with a continuously changing environment
and modify its performance as a reaction to such changes.
Dynamic software systems have dynamic architectures;
therefore, software architecture has a close relationship
with the dynamism and adaptability of the software
system. Software architecture specifies the performance
of the software system in different situations and different
environmental interactions. Dynamic software system
architecture, generally, has been defined as the ability of
the software system to change its performance, in various
interactions with the environment. Specifically, in our
work, dynamic software architecture is considered as the
design of the software system in a way that it can contain
security, efficiency, power awareness, and distribution

capability, where it should be able to increase its
efficiency when it is important, improve its security when
the security is the matter of significance, decrease its
power consumption when the issue is the lack of energy
(e.g., mobile systems and laptop computers,) and
distribute itself in a distributed environment for
deployment. Existing methods on dynamic software
architectures are merely performable in primary phases of
the software development. No method has been
developed, so far, to extract the dynamic architecture of a
software system from its source code. Existing methods
have only provided a general framework to define the
architecture under consideration; they have not presented
an efficient pattern, which can provide the features of our
concern (efficiency, security, distribution, and power
aware energy assumption.)

In our view, there is a significant relationship between
internal metrics of the software, such as cohesion and
coupling, and external characteristics of the software
system, such as efficiency, security, distribution, and
power aware energy assumption. We propose, and intend,

∗ Corresponding author e-mail:elgedawy@metu.edu.tr, izadkhah@tabrizu.ac.ir

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080228

692 A. Isazadeh et al: An Analytical Security Model for Existing...

to find a mathematical relation between the internal
software metrics and the features of our concern based on
empirical software engineering methods. We further plan
to develop a programming language independent toolset
for extracting a suitable architecture from source code.
This paper explores the security aspect of our ongoing
research, as outlined above, which deals with extracting
security based architecture from source code.

Secure software is a core requirement of the modern
world, because, many of critical processes, such as
air-traffic control and online banking, are software-related
work to do. Unfortunately, there is an increasing rate of
occurrence of software security failures. Most security
specialists believe that threats are originated from
network platform (which includes network hardware,
network operating systems and protocols), whereas some
global documented statistics available in authentic
institutes state the contrary. According to the study
conducted by Gartner Incorporation, 75% of cyber attacks
are done at web application level and only 25% focused
on network and network services, while of the total
budget spent on security, 10% was allocated to the
programs and 90% to network.

Software vulnerability is a weakness in a software
system that allows to an attacker to use the system for a
malicious purpose. Ivan Krsul [1] defined software
vulnerability as an instance of a fault in the specification,
development, or configuration of software such that its
execution can violates an implicit or explicit security
policy. Hogland and McGraw [2] define software security
as the ability to defend attackers exploitation of software
problems by building software to be secure throughout
the development cycle. We use the term fault to denote
any software fault or defect, and reserve vulnerability for
those exploitable faults which might lead to a security
failure.

Coupling is one of the internal software quality
attributes that affect overall software quality [3].
Coupling in software architecture refers to the level of
interconnection and dependency among software
modules. Modules are said to be highly coupled when
they depend on each other to such an extent that a change
in one requires changes in others dependent upon it. High
coupling hinders program comprehension [4]. There are
five types of couplings [5]: (1) content, (2) common, (3)
control, (4) stamp, and (5) data coupling. These five levels
are considered as severity level from high to low, where
the highest severity level, content coupling, is the worst in
the software engineering principles. Data coupling is the
type of coupling where data is the only factor of
dependence among the modules. Stamp Coupling is the
type of coupling when an entire data structure is shared
between modules. In the Control Coupling one module
passes parameters to control the activity of another
module. Common coupling occurs when two modules
share the same global data (e.g., a global variable or a
complete DB table). In the Content Coupling one module
modifies the internal data item in another module.

It is difficult that a software system can be developed
without considering one or more of these types of
coupling. However, it is well accepted that content
coupling, be avoided as much as possible. Coupling
shows the relationship between various modules,
therefore, when information is passed among modules
there is high potential that it is also exposed.

Numerous studies [6,7,8,9,10,11,12] show that
coupling is a feature that has a significant impact on some
critical software quality attributes such as reliability,
portability, reusability, operability, flexibility, testability
and maintainability, and, as a side effect, may introduce
faults in software systems. In [13,14], is shown that high
coupling tends to increase damage propagation when a
vulnerability is exposed. Ayanam [15] has also shown that
many forms of SQL injection or buffer overflow attacks
are based on exploitations of certain types of coupling.

The relationship between coupling and vulnerability
is shown in reference [14] using the empirically-based
software engineering on Mozilla Firefox browser.
Machine learning was used for this purpose; no
mathematical relation was used to show this relationship.
In fact, the tool presented by them receives number of
couplings, cohesions and complexities and predicts
security level of software. Here, we continue their
research and create a formula for specifying and
evaluating software security using the vulnerability data
collected by them from Mozilla Firefox Browser. The
difference between our research and their research is that
they assume coupling as a general concept and assume
the relationship between one entity and the other entity as
a coupling, whereas there are different types of coupling
and the results obtained from our experiments showed
that the effect of each types of coupling on security is
different from the others.

Our intuition is that coupling may, as well, lead to
introduction of vulnerabilities weaknesses that can be
exploited by malicious users to compromise a software
system. In fact, we think that coupling should be
considered as a factor that can affect software security.
Although the effect of coupling is shown empirically and
successfully in software faults, however, no mathematical
relation was presented to show how coupling affects
security. No discussion was also made on the effect of
type of coupling. Here, we will propose a mathematical
relation based on the types of coupling (such as Data,
Stamp, Control, Common and Content) and vulnerability.
Then, using the obtained mathematical relation, we will
predict software security from software architecture.

1.1 The Problem and the claim

The overall problem addressed in this paper is to find
mathematical relation for predicting existing software
security upon software architecture. A solution to this
problem should be the following specific characteristics:

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) /www.naturalspublishing.com/Journals.asp 693

1.Studying the possibility of relationship between type
of coupling and vulnerability

2.In case there is a relationship, a mathematical relation
is offered showing the relationship between type of
coupling and vulnerability

3.Studying the security of the existing software system
from the source code with respect to the mathematical
relation obtained in item 2

To perform the items mentioned above, we will show
the correlation between coupling types and vulnerability
in section3 using the statistical analysis concepts based
on the vulnerability data collected from Mozilla Firefox
software. After specifying correlation, we will use
statistical regression for proposes a mathematical
weighted relationship, which presents the relationship
between type of coupling and vulnerability in each
module. With respect to proposed mathematical weighted
relationship, we will determine the expected security
problems in a software system in section3. Finally, to
evaluate security of a software system, first, we will
extract its architecture from source code using DAGC tool
and then we will convert the extracted architecture into
Discrete Time Markov Chains (DTMCs) for evaluation.
We use DTMCs to model software systems and provide
expressions for predicting the overall behavior of the
system based on its architecture as well as the
characteristics of individual modules. We will evaluate
the software system using its DTMCs, and the expected
security problems formalism offered in section3.

1.2 Paper Outline

Other sections of this paper have been organized as
follows: section 2 provides background on Software
Architecture, Mozilla Firefox, Discrete Time Markov
Chains and Correlation and Regression techniques. In
section3, first, the relationship between different types of
coupling and vulnerability is shown using the
empirically-based software engineering; then, we propose
a mathematical relationship between different types of
coupling and vulnerability. Case study is discussed in
sections4. At the end, section5 deals with conclusions,
study limitations and future works.

2 Background

This section provides background on Software
Architecture, Mozilla Firefox Browser, Discrete Time
Markov Chains, Correlation and Regression techniques
used in this study to detect vulnerabilities.

2.1 Software Architecture

The software architecture of a system is the structure or
structures of the system, which comprises software

elements, the externally visible properties of those
elements, and the relationships among them [16].
Modularization is a key activity in reverse engineering to
extract software architecture. The goal of the software
modularization process is to automatically partition the
classes of a system into modules (or subsystems, i.e. a
number of interrelated classes) so that minimizes
connections between the classes of two different modules
(called coupling), as well as maximizing connections
between the classes of the same module (called cohesion.)
The domain experts, cohesion and coupling are two
features that have a significant impact on some critical
software quality attributes such as reliability, portability,
reusability, operability, flexibility, testability and
maintainability [5,17]; therefore, to reduce costs and
software design, cohesion and coupling management is
very crucial. Therefore, we apply two criteria, namely
cohesion and coupling for modularizing to extract
software architecture.

The well-known and most popular tools for extracting
software architecture are DAGC [18], Bunch [19]. One of
the important issues related to modularization algorithms
is largeness of search space. Search space in Bunch
algorithm is nn; this large search space decelerates speed
of this algorithm to find appropriate architecture. By
introducing an efficient coding, DAGC algorithm
managed to reduce this search space fromnn to n!.
Therefore, we used DAGC, in this paper, for extracting
software architecture.

For modularization process, to extract software
architecture by these tools, they as input need an analysis
tool to convert source code to Call Dependency Graph
(CDG). The CDG vertices include system classes, and
edges show the dependency between classes. We use the
Ndepend tool for generation CDG from source code as
input for DAGC.

2.2 Overview of Mozilla Firefox

Since, the Mozilla Firefox is the source of vulnerability
data for our study; therefore we provide a description of
that. The Mozilla Firefox, an open source browser, is one
of the most popular web browsers with an approximate
user-base of 320 million (SciTools Inc. Blog,
http://scitools.com/blog/2008/10/tip-understand-the-
countpath-metric.html). The Mozilla Firefox project is
large in terms of source code (each release of the browser
includes more than 2 million lines of code). Moreover, it
has a rich history of publicly available vulnerability fixes
over a period of four years (January 26, 2005 to April 27,
2009) [20]. We have conducted case study on different
releases of Mozilla Firefox (releases are analogous to
versions). Until March 1, 2009, fifty-two releases of
Mozilla Firefox have had the vulnerability fixes, from
Release 1.0 (R1.0) to Release 3.0.6 (R3.0.6). To validate
this study, we have collected vulnerability information

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

694 A. Isazadeh et al: An Analytical Security Model for Existing...

from all fifty-two releases as the vulnerabilities are
distributed amongst all the releases.

Over the aforementioned period of four years and
fifty-two releases, 718 of the total of 11,139 files have had
vulnerability fixes. In total, these 718 files suffered from
about 1450 vulnerability fixes ranging from one
vulnerability fix per file to more than five vulnerability
fixes. In the Mozilla Firefox 454 files have had one
vulnerability fix; 141 files have had two vulnerability
fixes; 46 files have had three vulnerability fixes; and so
on.

2.3 Overview of Discrete Time Markov Chains

In this section, we discuss Discrete Time Markov Chains
(DTMCs) [21,22], which we use to model the software
architecture. In a DTMC, the state space is discrete, and
the parameter space, is also discrete. A DTMC is described
by its states and transition probabilities among the states.
The one-step transition probability is the probability that
the process, when in state i at time n, will next transition
to state j at time n + 1. We write:

Pi j (n) = P(Xn+1 = j|Xn = i) (1)

Definition: one-step transition probability matrix,
P = [pi, j], is formed by arranging the one-step transition
probabilities into aN × N matrix: Note that all the

elements in a row of P add up to 1 and each of thepi, js lie
in the range [0, 1]. For our purposes, we use absorbing
DTMC. One DTMC is called absorbing if at least one
state has no outgoing transition. Each DTMC with several
final states can be converted into an absorbing DTMC. It
is performed by adding a final state to DTMC. Next, a
transition is drawn to the added absorbing state from all
the final states available in DTMC. We can partition the
transition probability matrix of an absorbing DTMC as:

P=

[

1 0
C Q

]

(2)

If the DTMC has n states with m absorbing states, Q
would be a(n−m)× (n−m) sub-stochastic matrix (with
at least one row sum< 1) describing the probabilities of

transition only between transient states, 1 being am×m
identity matrix, 0 would be anm× (n− m) matrix of
zeros, and C would be an(n−m)×m matrix describing
the probabilities of transition between transient states and
absorbing state. The k-step transition probability matrix,
given byPk has the form:

P
′
=

[

1 0
C′ Q′

]

(3)

The(i, j)th entry of Qk denotes the probability of arriving
in statesj after exactly k steps, starting from statesi .
Hence the inverse matrix(I −Q)−1 exists. This is called
the fundamental matrix F:

F = (I −Q)−1 (4)

Let Xi, j represent the number of visits to state j starting
from state i before the process is absorbed. It can be shown
that the expected number of visits to a state j with starting
from state i (i.e,E[Xi, j]), before entering an absorbing state
is given by the(i, j)th entry of the fundamental matrix F
[21,22]. So

E[Xi, j] = mi, j (5)

mi, j is the(i, j)th entry of the fundamental matrix F. The
variance of the expected number of visits could also be
computed using the fundamental matrix. Letσi, j denote
the variance of the number of visits to the state j starting
from state i. DefineFD = [mdi, j] such that:

mdi, j =

{

mi, j , if i = j
0, otherwise (6)

In other words,FD represents a diagonal matrix with
the diagonal entries same as that of F. If we defineF2 =
[m2

i, j], we have:

σ2 = F(2FD − I)−F2 (7)

Hence
Var[Xi, j] = σ2

i, j (8)

For an application consisting of a number of software
modules, we can represent its software architecture using
a DTMC such that DTMC states represent the software
modules, and the transitions between states represent
transfer of control from one module to another.

2.4 Correlation coefficient and Regression

Correlation coefficient is used to measure the correlation
of related two variables. It is a statistical technique to
measure the type and degree of a relation of a quantitative
variable with another quantitative variable. A correlation
coefficient shows the intensity of a relation and the type
of a relation (direct or reversed). This coefficient is
between 1 and -1 and if there is no relation between two
variables, it is equal to zero.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) /www.naturalspublishing.com/Journals.asp 695

We evaluate our claim about relationship between
vulnerability and type of coupling by computing the
correlations between the type of coupling and the number
of vulnerabilities in Mozilla Firefox. The value of the
correlation coefficient gives the strength of the
relationship. However, the interpretation depends on the
context of the usage of correlation. Cohen [23] suggest
that a correlation of less than 0.3 means weak correlation,
0.3 to 0.5 means medium correlation, and greater than 0.5
means strong correlation. We interpret the strength of
correlation as per Cohen et al. conventionally, the
significance of a correlation is determined in terms of
p-value, the probability of the t-statistic. The smaller the
p-value, the higher is the confidence on the significance of
the correlation. Traditionally, correlations with p-values
of less than or equal to 0.05 are considered statistically
significant [23]. A p-value of 0.05 means that we are 95%
confident that the observed correlation is not by chance.
The Pearson correlation coefficient and Spearman rank
correlation coefficient are often used to measure the
strength of correlations between two variables.

The Pearson correlation assumes normal distribution
of data, while the Spearman rank correlation is a
non-parametric test that does not assume any distribution.
Spearman rank correlation is performed on the ranks of
the values without considering the magnitudes of the
values, and therefore, it is not sensitive to outliers.
Spearman rank correlation is a commonly used and robust
correlation technique because it can be applied even when
the association between elements is non-linear [23]. For
these reasons, we use the Spearman rank correlation for
this study. We have used SPSS (www.spsstools.net), a
statistical analysis tool, to compute the Spearman rank
correlation and its corresponding p-value.

We analyze the correlation between type of coupling
and vulnerabilities on fifty-two releases of Firefox
developed till March 1, 2009 fall into four major releases:
R3.0, R2.0, R1.5, and R1.0 (Mozilla Vulnerabilities,
http://www.mozilla.org/projects/security/
knownvulnerabilities). An independent variable is the
variable that affects other variables. In an experimental
research, an independent variable is the variable, which is
manipulated by a researcher so that its effect on the
dependent variable is specified. A dependent variable is
the variable whose value or quantity depends on an
independent variable. A dependent variable is not under
the control of a researcher and he/she is unable to
manipulate it.

Regression analysis is a statistical technique for
studying the relationships between the independent and
dependent variables [23]. It provides an opportunity for a
researcher to predict changes of a dependent variable
through an independent variable and determine the share
of each independent variable in explaining a dependable
variable. The difference between regression and
correlation coefficient is that regression looks for
prediction, whereas correlation coefficient only compares
level of dependency of two variables. When there is a

correlation between two variables, value of a variable (Y)
can be predicted or estimated by the other variable (X)
using regression. The higher the correlation between
variables is, the more accurate a prediction will be. The
least squares method is used to construct the regression.
In fact, the least squares method is a method for fitting
data. In this method, the best model fitted on a series of
data is the model in which sum of the squared residuals is
minimum. Residuals mean the difference between the
observed data and the value obtained from a model.

Coefficient of Determination (R2) value is used as a
guideline to measure the accuracy of the data model [23].
It used to describe how well a regression line fits a set of
data.R2 is most often seen as a number between 0 and 1,
an R2 near 1 indicates that a regression line fits the data
well, while R2 closer to 0 indicates a regression line does
not fit the data very well. For example, ifR2 = 0.850, which
means that 85% of the total variation in y can be explained
by the linear relationship between x and y (as described
by the regression equation). The other 15% of the total
variation in y remains unexplained.

3 Vulnerability Detection

The only research carried out on the relationship between
the internal software qualities attributes and security was
issued in System Architecture Journal in 2011 [14]. The
study using an empirical case study of Mozilla Firefox
showed that there is a strong correlation between coupling
and security (the type of coupling has not been specified).
Alexander Ivanov [24] studied different software codes in
his thesis and showed that there is a reversed relationship
between software security and holes inside code. A
research conducted in Queens University in Canada in
2011 [14] revealed that there is a relationship between
holes inside code and software coupling (The type of
coupling has not been specified). In his software
engineering book, Pressman [5] categorized different
types of couplings as Data Dependency- Control
Dependency- Stamp Dependency- Common Dependency-
Content Dependency.

It can be concluded from what stated above that there
are probably reciprocal a relationships between five items
specified by Pressman and software security. To show
such relationship, we use Spearman rank correlation
coefficient. The Spearman rank correlation coefficient
(denoted by correlation in short) between type of
coupling and the number of vulnerabilities in each file of
the five major releases of Mozilla Firefox are presented in
Table 1 and Fig.1. Coupling metrics are collected using
NDepend code analysis tool (www.ndepend.com).
Mozilla vulnerability bug report is obtained from
(Bugzilla, http://www.bugzilla.org) [25]. The correlations
between type of coupling and vulnerabilities are slightly
above 0.5 for all the releases. Therefore, generally type of
coupling metrics are moderately correlated to
vulnerabilities in Mozilla Firefox. The Content is strongly

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

696 A. Isazadeh et al: An Analytical Security Model for Existing...

correlated (0.6-0.7) to vulnerabilities. Therefore, it may
be a good indicator of vulnerabilities. The overlapping
lines (one line for each major release) in Fig.1 illustrates
that the correlation patterns are consistent across releases.
The observed correlations are statistically significant as
indicated by the small p-value of t-test (p< 0.05). We
chose t-statistics over z-score because z-score is used
when the population mean and population standard
deviation are known for the original population. We can
make two inferences from these observations. First, type
of coupling may be useful in vulnerability prediction as
they demonstrate moderate but significant correlations to
vulnerabilities. Second, because the correlations are
positive, highly coupled files are likely to have more
vulnerabilities than less coupled files.

Fig. 1: Plot of correlations between types of coupling vs. the
number of vulnerabilities in Mozilla Firefox

We observe from the table that all the coupling
metrics are generally positively correlated to the number
of vulnerabilities in Mozilla Firefox across all five studied
releases. This unequivocally suggests that highly coupled
files have higher number of vulnerabilities. Table 1 show
that our intuition on the relationship between types of
couplings and vulnerabilities is true and there is a
significant relationship between them. We aim to
establish a mathematical relationship between types of
couplings and vulnerabilities. In general, coupling is
directly related to vulnerability and vulnerability is
inversely related to software security i.e.,

Coupling≡ Vulnerability≡ 1/Security
In this section, we devise a mathematical relation for

studying the association between coupling and
vulnerability. There are multiple types of coupling, and
we capture their contributions to vulnerability by taking

all of them into account through a weighted relation,
called P(x).

We reviewed different types of relationships to
propose a mathematical relationship between types of
coupling and vulnerabilities. We calculated theirR2 and
observed that a polynomial relationship can be a good
estimation. Therefore, at first, we propose the Eq. (9) with
maximum degree of three. We determined their
coefficients using the vulnerability data collected from
Mozilla Firefox and regression analysis of their
coefficients. Finally, we will attempt to delete the
statements with no effect on the relation using statistical
analysis. We performed the regression using SPSS tool.

Pm(x) = c+
5

∑
i=1

wiCi +
5

∑
i=1

αiC
2
i +

5

∑
i=1

βiC
3
i

+
5

∑
i, j=1,i 6= j

φi jCiCj (9)

m = 1,..., Number of modules
C1 = number of Data Dependency in a module
C2 = number of Control Dependency in a module
C3 = number of Stamp Dependency in a module
C4 = number of Common Dependency in a module
C5 = number of Content Dependency in a module

c,wi ,αi ,βi andφi j are weight and importance of coupling
types, respectively.CiCj indicate the effect of type of
coupling on each other. We use the vulnerability data of
Mozilla Firefox software to determine the coefficients.
c,wi ,αi ,βi and φi j are obtained from the least squares
method. These values are achieved by minimizing total
squares of deviations. To do this, total squares of errors
should be derived in ratio of W and be equal to zero. This
will result in 26 equations, which are called Normal
Equations.Cis are specified for each entity. In fact, there
are 26 unknowns in the equations (asc,wi ,αi ,βi andφi j).

We use vulnerability data of Mozilla Firefox Browser
to determineCis. Mozilla Firefox has 11139 files. Seven
hundred and eighteen files out of 11139 files had
vulnerabilities, which were fixed. Therefore, here, we use
these 718 files to determine the coefficients of our
formula. For each Mozilla Firefox file, we specify
number and type of coupling using Ndepend tool and we
specify number and type of vulnerability using the history
of vulnerability (number of vulnerabilities in module i is
shown byPi(x)) and we put them in Eq.9.

We used a commercial tool called NDepend to
automatically calculate the metrics from the source code.
This tool is used because it is user friendly and it has a
good set of APIs to interact with programming languages
such as C++, Perl, and Python. In this study, we compute
the metrics at module-level granularity. Table 2 shows the
obtained coefficients.

First, we calculated Coefficient of Determination or
R2, which is equal to 0.58 for our model. The bigger the
value of R2 is, the better the fitting of a model will be.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) /www.naturalspublishing.com/Journals.asp 697

Number 0.58 indicates that there is a significant
relationship between the independent variable (type of
coupling) and the dependent variable (number of
vulnerability). Now, we discuss each criterion
(independent variable) with respect to their coefficient.
We aim to study which one has a significant effect on the
polynomial. To do this, we used t-Statistic. To study the
significance of each coefficient, we need to compare the
calculated t with the amount of tabulated t with degree of
freedom of n-k (n is number of vulnerability data and k is
number of unknown in equations). Approximately, for
significance of each coefficient at the level of 95%, must
to have|t| ≥ 2. Table 3 shows the value of t-Statistic for
all the obtained coefficients.

Therefore, after deleting the coefficients with no
significant effect on vulnerability, the proposed general
model is as follows:

Pm(x) = c+
5

∑
i=1

wiCi +α4C
2
4 +α5C

2
5 (10)

m = 1,..., Number of modules
After deleting the variables with no significant effect

on the dependent variable, we recalculatedR2, which was
equal to 0.79. In fact, 0.79 indicates that our selected
polynomial can show the relationship between type of
coupling and vulnerability well.Pm(x) can range in value
from 0 to some very large number. The question is how
large is very large vulnerability? We need some sense of
the scale of vulnerability, andPm(x) does not provide that.
Thus a little more elegant metric called vulnerability
index, DV, is defined as follows.

DVm = 1− (1/Pm(x)) where 0< DVm < 1 (11)

m = 1,..., Number of modules
Where,DVm = 0 implies possibly low or no coupling

and possibly less vulnerable, andDVm = 1 implies
possibly high coupling and possibly highly vulnerable.
We have described in Section 5.1, the limitations in this
study.

3.1 Prediction Performance Measures

The performance of a predictor can be measured in
several ways. Most frequently used measures are
accuracy, recall, precision, false positive rate, and false
negative rate. These performance measures are explained
using a confusion matrix, shown in Table 4. The
confusion matrix shows the actual versus the predicted
results where:

–True Negative (TN) = The number of files predicted as
not being vulnerability-prone where no vulnerability is
discovered in those files.

–False Positives (FP) = The number of files incorrectly
predicted as vulnerability-prone when they are not
vulnerable.

–False Negative (FN) = The number of files predicted as
not being vulnerability-prone which turn out to have a
vulnerability.

–True Positives (TP) = The number of files predicted as
being vulnerability-prone which are in fact vulnerable.

From the confusion matrix, several of the prediction
performance measures such as accuracy, precision, recall,
F-measures, false positive rate, and false negative rate can
be derived as follows:
Accuracy: Accuracy is also known as overall correct
classification rate. It is defined as the ratio of the number
of files correctly predicted to the total number of files as
shown in Eq. (12).

Accuracy=
TP+TN

TP+FP+TN+FN
(12)

Precision: Precision, also known as the correctness,
measures the efficiency of prediction. It is defined as the
ratio of the number of files correctly predicted as
vulnerability-prone to the total number of files predicted
as vulnerability-prone, as shown in Eq. (13).

Precision=
TP

TP+FP
(13)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

698 A. Isazadeh et al: An Analytical Security Model for Existing...

Recall: Recall is the vulnerable entity detection rate
which quantifies the effectiveness of a predictor. It is
defined as the ratio of the number of files correctly
predicted as vulnerability-prone to the total number of
files that are actually vulnerable. The formulae to
calculate recall is given in Eq. (14).

Recall=
TP

TP+FN
(14)

Both precision and recall are important performance
measures. The higher the precision, the less effort wasted
in testing and inspection, and the higher the recall, the
fewer vulnerable files go undetected. Unfortunately, there
is a trade-off between precision and recall. For example,
if a predictor predicts only one file as vulnerability-prone
and this file is actually vulnerable, the precision will be
100%. However, the predictor recall will be low if there
are other vulnerable files. In another example, if a
predictor predicts all files as vulnerable, the recall will be
100%, but its precision will be low. Therefore, a measure
is needed which combines recall and precision in a single
efficiency measure.
F-measure: F-measure can be interpreted as a weighted
average of precision and recall [26]. For convenient
interpretation, we also express it in terms of a percentage
like our other performance measures so it reaches its best
value at 100 and its worst at 0. The general formula for
F-measure is given in Eq. (15), where Fβ -measure
”measures the effectiveness of prediction with respect to a
user who attachesβ times as much importance to recall
as precision.”

Fβ −measure=
(1+β 2)×Precision×Recall
(β 2×Precision)+Recall

(15)

The traditional F-measure, denoted byF1-measure, gives
equal importance to both precision and recall by taking
their harmonic mean. Two other commonly used
F-measures are theF2-measure and F0.5-measure.
F2-measure weighs recall twice as much as precision
whereasF0.5-measure weighs precision twice as much as
recall. Some researchers choose to use the false positive
rate (FP rate) and the false negative rate (FN rate) instead
of precision and recall. Ostrand and Weyuker[26] in
particular argue that false positive rate and false negative
rate are the most important measures. We also believe that
these measures are effective in evaluating vulnerability
prediction models. They are defined as follows:

FPrate=
FP

FP+TN
(16)

FNrate=
FN

TP+FN
(17)

A high FN rate indicates that there is a risk of
overlooking vulnerabilities, whereas a high FP rate
indicates effort may be wasted in investigating the

predicted vulnerable entities. These notions are highly
related to recall and precision. Therefore, it is redundant
to use all of them to indicate prediction performance. In
this study, we use accuracy, recall and FN rate as
employed in [26]. All these measures are expressed in
percentages. In addition, we useF1-measure to
quantitatively evaluate and compare the predictors.

We now examine the performance Eq. (11) in
predicting of the modules vulnerability. To do this, we use
the 20 version of Mozilla Firefox from R2.0.0.10 to
R3.0.6. The goal is to determine the Eq. (11) to what
extent can correctly predict the vulnerability in a
component or module level. The results of performance
evaluation of Eq. (11) in Table 5 are given.

For more investigation the Eq. (11) to predict the
vulnerability of modules, ten modules has the greatest
security holes found in the Apache Software has been
studied. Therefore, the vulnerability of these modules by
the Eq. (11) is calculated. The results in Table 6 are given.
As shown in Table (6) is observed for these vulnerable
modules,DVm value is high (number is close to 1). This
table shows that the Eq. (11) it can be used to show a
vulnerability of the module.

3.2 Detecting the vulnerability Overall software
system

After calculating vulnerabilities of a module, we examine
the vulnerability of software system. IfDVi indicates

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) /www.naturalspublishing.com/Journals.asp 699

vulnerability index of module i andX1,i indicates the
random variable corresponding to the number of visits of
state i starting from state 1, the possibility of a module to
be able to act without security failure during its run on the
software system will be equal to[(1−DVi)

X1,i]. Therefore,
the probability of ith module with security problems
during running of a software system is as follow:

1− [(1−DVi)
X1,i] (18)

Consequently, for a software system with n modules (or
components), the vulnerability index may be defined as
follows:

DV = 1−Πn
i (1−DVi)

X1,i (19)

Where DV is the random variable which shows
vulnerability index of a software system. Therefore, the
expected of vulnerability index of software system is as
follows:

E[DV] = E[1−Πn
i (1−DVi)

X1,i]

= 1−E[Πn
i (1−DVi)

X1,i] (20)

= 1−Πn
i E[(1−DVi)

X1,i]

Using the Taylor series expansion,E[(1−DVi)
X1,i] in

Eq. (19) can be written as Eq. (21).

E[(1−DVi)
X1,i] = (1−DVi)

m1,i (21)

+
1
2
(1−DVi)

m1,i × (log(1−DVi))
2σ1,i

As number of visits of the last module is always 1. That is,
E[X1,n]=1 and Var[X1,n]=0 as:

E[(1−DVn)
X1,n] = 1−DVn (22)

Therefore, expected of vulnerability index of second-order
is as follows:

E[DV] = 1− [Πn−1
i [(1−DVi)

m1,i +
1
2
(1−DVi)

m1,i

× (log(1−DVi))
2σ1,i]](1−DVn) (23)

The bottleneck of security of a software system is a module
with the maximum amount of 1−E[(1−DVi)

X1,i].

3.3 Sensitivity Analysis

Here, we intend to study the general impressionability of
a software system on number of the parameters related to
security of a module (for instance, changing vulnerability
of a module). We use differential equation to study the
effect of changes on the parameters related to security of
module k on the general software system. To do this, we

calculate the derivative of expected of vulnerability index
in software onDVk. Therefore:

dE[DV]

dDVk
= [mi,k(1−DVk)

m1,k−1+
1
2

σ2
1,k(m1,k(1−DVk)

m1,k−1

× (log(1−DVk))
2+

2log(1−DVk)

(1−DVk)
(1−DVk)

m1,i)]

× [Πn−1
i=1,i 6=k((1−DVi)

m1,i +
1
2
((1−DVi)

m1,i)

× (log(1−DVi))
2σ2

1,k)](1−DVn) (24)

With respect to the modified vulnerability index of a
software system asDVrev, we define∆DVk as a change in
security index in module k and if the original security
index isDVorg, we have:

E[DVrev] = E[DVorg]+ (dE[DV]/dDVn)∆DVk (25)

4 Case study

This section evaluates the proposed method. To do this,
we use the well-known Travelling Salesman Problem
(TSP). To evaluate the proposed method, we should
extract TSP software architecture from its program using
DAGC tool. The input and output of DAGC include call
graph and software architecture respectively. To extract
TSP call graph from its source code, we used a
commercial tool called Ndepend. After extracting the call
graph, it should be modularized to extract appropriate
software architecture.

To evaluate TSP security from its architecture, we
extract two architectures from its code with almost equal
quality but with different modularizations. Figure2 shows
two extracted architectures for TSP. The edge between the
two modules indicates that the dependency is of coupling
type. In addition to the type of coupling, their numbers
are also important.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

700 A. Isazadeh et al: An Analytical Security Model for Existing...

Fig. 2: modularizations achieved through DAGC tool for TSP

After extracting architecture, we convert them to
DTMC for evaluating security. The DTMC is as Fig.3 for
the architecture of Fig.2(a) and it is as Fig.4 for the
architecture of Fig.2(b). Numbers on edges indicate the
probability of movement from one module to another
module. In this paper the probability to go from module x
to module y is computed as [number of method call from
x to y/ total number of out method call of x (i.e. fan out)].
For example, in Fig.2(a), totally 5 edges exited out of
module 3, two edges went to Module 1, two edges to
Module 2, and one edge to Module 4 (Module 4 is
absorbing state and added automatically to DTMC.)

Fig. 3: Obtained DTMC for Fig.2(a)

Fig. 4: Obtained DTMC for Fig.2(b)

Transition probability matrix of an absorbing DTMC
for Fig. 3 and Fig.4 will be as Fig.5. The fundamental
matrix F for Fig.5(a) and Fig.5(b) is as Fig.6. Table 7
showsDVi for Modules 1, 2, and 3 of Fig.2(a) and2(b).
Table 8 shows security index, that is, DV for both
architectures with respect to Fig.2.

Fig. 5: (a) Transition probability matrix for Fig.3, (b) Transition
probability matrix for Fig.4

Fig. 6: (a) The fundamental matrix for Fig.5(a), (b) The
fundamental matrix for Fig.5(b)

5 Conclusion

This paper aims to propose a new method to determine
level of vulnerability in the existing software systems
from their source code. Since Mozilla Firefox is open
source software and the history of all the vulnerabilities
are specified, we used its vulnerability data to show the
correlation between coupling types and vulnerabilities.
Our experiments showed that there is a significant
relationship between different coupling types and
vulnerabilities. Then, a mathematical formalism was
presented to show the relationship between number of
couplings and number of vulnerabilities in a module and
the whole software system. Finally, we extracted and
retrieved the software architecture using DAGC tool. We
converted the extracted architecture into Markov chains.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 2, 691-702 (2014) /www.naturalspublishing.com/Journals.asp 701

Then, we predicted and evaluated security of software
system using these chains.

5.1 Limitations

We recognize that there are certain limitations to the
results and conclusions we have presented in this paper,
and we discuss several of them in the following
paragraphs.

First, we know the fact that many factors are able to
lead to vulnerability of software systems. As the this
paper only aimed to emphasize on the issue of software
architecture, we showed that coupling types could be used
as the most important factor for evaluating security at the
architectural level; however, we declare that coupling
types, cannot be considered as a complete criterion by
itself. Another criterion, which is used at the architectural
level, is cohesion. Cohesion can also affect the
vulnerabilities. However, the effect of coupling on
vulnerability is greater than the effect of cohesion, as
coupling is in contact with the external communications
of a module while cohesion is in contact with the internal
communications of a module.

Second, the formula proposed in this paper was based
on vulnerability, which were detected and reported before
collecting vulnerability data. The vulnerabilities, which
were not detected or publicized, were disregarded in this
research. As a result, it was impossible to know the true
error rates in the research.

Finally, we have substantiated our findings over a
wealth of vulnerability data by analyzing fifty-two
releases developed over a period of four years.

5.2 Demonstration of the claim

Using Spearman rank correlation, it showed in section 3
that there is a significant relationship between coupling
types and vulnerabilities. After showing this correlation,
using regression and the least squares method, a
mathematical formalism was presented between coupling
types and vulnerabilities in a module. Next, a relation was
presented in section 3-2 which predicted the expected
number of vulnerabilities in a software system at the
architectural level. To do so, we converted the
architecture extracted from source code using DAGC tool
into Discrete Time Markov Chains. Using the properties
of DTMCs and the relation offered in section 3-2, we
could predict the expected number of vulnerabilities at
the architectural level.

5.3 Future works

Following direction can be explored to extend and improve
this work:

1.We have substantiated our findings over a wealth of
vulnerability data by analyzing fifty-two releases
developed over a period of four years. It is better to
use the vulnerability data of other kinds of software to
make the proposed formula more accurate.

2.Coupling and cohesion are the criteria used at the
architectural level of software. In fact, the software
architecture will be appropriate if its coupling is
minimal and its cohesion is maximal. Therefore, if the
proposed formula is able to be more useful at the
architectural level in detecting vulnerability, it is
better to add it to that formula.

References

[1] IV. Krsul, Software Vulnerability Analysis, PhD Thesis,
Purdue University, West Lafayette, Indiana, USA, (1998).

[2] G. Hoglund, and G. McGraw,Exploiting Software: How to
Break Code, Boston: Addison-Wesley, (2004).

[3] F. Tsui, and O. Karam,Essentials of Software Engineering,
2nd Edition, Jones and Bartlett Publishers, (2010).

[4] J. K. Kearney, R. L. Sedlmeyer, WB. Thompson, MA.
Gray, MA. Adler,Software complexity measurement, ACM
Communications,29, 1044-1050 (1986).

[5] R. S. Pressman,Software Engineering: A Practitioners
Approach, 7th ed. McGraw-Hill, Inc, (2010).

[6] G. Koru, J. Tian, An empirical comparison and
characterization of high defect and high complexity
modules, Journal of Systems and Software,67, 153-163
(2003).

[7] M. Janes, W. Scotto, B. Pedrycz, M. Russo, G. Stefanovic,
Identification of defect-prone classes in telecommunication
software systems using design metrics, Journal of Systems
and Software,176, 3711-3734 (2006).

[8] G. Succi, W. Pedrycz, M. Stefanovic, J. Miller,Practical
assessment of the models for identification of defect-prone
classes in object-oriented commercial systems using design
metrics, Journal of Systems and Software,65, 1-12 (2003).

[9] K. O. Elish, M. O. Elish,Predicting defect-prone software
modules using support vector machines, Journal of Systems
and Software,81, 649-660 (2008).

[10] N. Nagappan, T. Ball, A. Zeller,Mining metrics to predict
component failures, in: Proceedings of the 28th International
Conference on Software Engineering, Shanghai, China,
452-461 (2006).

[11] T. Menzies, J. Greenwald, A. Frank,Data mining static code
attributes to learn defect predictors, IEEE Transactions on
Software Engineering,33, 2-13 (2007).

[12] H. Zhang, X. Zhang, M. Gu,Predicting defective
software components from code complexity measures,
in: Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing, Melbourne,
Australia, 93-96 (2007).

[13] I. Chowdhury, B. Chan, M. Zulkernine,Security metrics
for source code structures, in: Proceedings of the Fourth
International Workshop on Software Engineering for Secure
Systems, Leipzig, Germany, 57-64 (2008).

[14] I. Chowdhury, and M. Zulkernine, Using Complexity,
Coupling, and Cohesion Metrics as Early Indicators of

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

702 A. Isazadeh et al: An Analytical Security Model for Existing...

Vulnerabilities, Journal of Systems Architecture,57, 294-
313 (2011).

[15] V. S. Ayanam,Software Security Vulnerability vs Software
Coupling: A Study with Empirical Evidence, Masters Thesis,
Southern Polytechnic State University, Marietta, Georgia,
USA, (2009).

[16] L. Bass, P. Clements, R. Kazman,Software Architecture in
Practice, second ed., Addison-Wesley, Boston, (2003).

[17] C. J. Munson, Software Engineering Measurements,
Auerbach Publications, ACRC Press Company, (2003).

[18] O. Bushehrian,A New Encoding Scheme and a Framework
to investigate Genetic Clustering Algorithms, Journal of
Research and Practice in Information Technology,37, 127-
143 (2005).

[19] B. S. Mitchell, A Heuristic Search Approach to Solving
the Software Clustering Problem, Ph.D Thesis, Drexel
University, Philadelphia, (2002).

[20] Mozilla Vulnerabilities,
http://www.mozilla.org/projects/security/knownvulnerabilities.

[21] U. N. Bhat,Elements of Applied Stochastic Processes,
second ed. John Wiley & Sons, Inc, (1984).

[22] K. S. Trivedi, Probability and Statistics with
Reliability, Queuing and Computer Science
Applications. John Wiley and Sons, (2001).

[23] J. Cohen, Statistical Power Analysis for the
Behavioral Sciences (2nd ed), Academic Press
New York, (1988).

[24] I. Alexander, Automatic Vulnerability Detection
Using Static Source Code Analysis, Ph.D thesis,
Graduate School of The University of Alabama,
(2005).

[25] Bugzilla,http://www.bugzilla.org.
[26] L. Kuang and M. Zulkernine,An Anomaly Intrusion

Detection Method Using the CSIKNN Algorithm, in
Proceedings of the 23rd Annual ACM Symposium
on Applied Computing, Fortaleza, Brazil, 921-926
(2008).

Ayaz Isazadeh
received a B.Sc. degree in
Mathematics from University
of Tabriz, Iran, in 1971,
an M.S.E. degree in Electrical
Engineering and Computer
Science from Princeton
University, USA, in 1978, and
a Ph.D. degree in Computing

and Information Science from Queen’s University,
Canada. Before returning to graduate school in 1992, he
worked with Bell Laboratories for 10 years. He is
currently a full professor of Computer Science at
University of Tabriz.

Islam Elgedawy
Middle East Technical
University - Northern Cyprus
Campus, Guzelyurt, Mersin
10, Turkey. Dr. Elgedawy
is an Assistant Professor
at the Computer Engineering
Department. He received
his B.Sc. and M.Sc. degrees
in computer science from

Alexandria University-Egypt in 1996, and 2000,
respectively, and his Ph.D. degree in computer science
from RMIT University-Australia in 2007. He has about
17 years of experience spread across industry and
academia. His work is mainly focused on the areas of
service-oriented computing, cloud computing, software
engineering and semantic web. He is an author or
coauthor of many technical papers published in well
known international journals and conferences, more
details could be found in the following web site
(http://www.metu.edu.tr/∼elgedawy/).

Jaber Karimpour
received the B.Sc. degree in
computer science and applied
mathematics from Tabriz
University (Iran) in 1998,
the M.Sc. degree, specializing
in the computer systems
area of applied mathematics,
from Tabriz University
in 2000. He is currently an

Assistance Professor of Computer Science at University
of Tabriz, Iran. His research focuses primarily on the
formal specification and compositional verification of
component-based systems.

Habib Izadkhah received
the B.Sc. degree in software
engineering from University
of PayamNour (Iran) in 2005,
the M.Sc. degree in software
engineering from Shabestar
Islamic Azad University in
2008. He is currently a Ph.D.
student of Computer Science

at University of Tabriz, Iran. His current researches focus
on view based software engineering and reverse
engineering.

c© 2014 NSP
Natural Sciences Publishing Cor.

http://www.mozilla.org/projects/ security/ knownvulnerabilities
http://www.bugzilla.org
http://www.metu.edu.tr/~elgedawy/

	Introduction
	Background
	Vulnerability Detection
	Case study
	Conclusion

