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Abstract: Analytical solution has been obtained for one-dimensional advection-diffusion equation which includes terms of decay

and increasing sources by using Laplace transformation. Also numerical solution has been obtained by using explicit finite difference

scheme. In this study the boundary condition applied at x = 0 describes a sinusoidal variation in pollutant concentration. The analytical

solution obtained produces results that are exact for any location at any time. Impact of different parameters controlling the pollutant

dispersion along the river at any time has been studied separately with figures help. This publication proved mathematically the fact

that the high concentration of pollutant can be reduced by releasing fresh water discharges from Delta Barrage in the Nile River. For a

real situation, our simple model can give decision support for planning restrictions to be imposed on cultivating and urban practices.

Keywords: Concentration of pollutant, Advection-diffusion equation, Finite difference method, Laplace transformation, Solutions of

partial differential equations.

1 Introduction

The Nile River in Egypt is polluted by a variety of
chemical and biological pollutants, as well as agricultural
waste therefore, it is important to accurately predict the
concentration of these pollutants in order for this water to
be treated. Globally, pollution is drastically increasing in
water bodies, negatively influencing the surrounding
areas species and grounds. Hence, mathematical models
have been developed to control and reduce contamination.
Such models originated in 1920s. In the modeling of the
transport of pollutants, the solution of the partial
differential equation and its related boundary and initial
conditions play an important role. The
advection-diffusion equation describes the pollutant
concentration distribution in porous media as a result of
the combined effects of diffusion and convection.
Advection diffusion equation is applied in many
disciplines like, chemical engineering, environmental
sciences and petroleum engineering, bio sciences,
groundwater hydrology [1].

The advection-diffusion equation’s analytical and
numerical solutions along with an initial condition and

two boundary conditions help to explain the distribution
behavior of the contaminant concentration across an open
medium such as air, rivers, lakes and porous medium. On
the basis of which therapeutic operations can be carried
out to reduce or eliminate damage. Because only a few
partial differential equations have analytical or exact
solutions, anyone who wishes to construct and use models
based on these equations and their related circumstances
must be able to efficiently and accurately get numerical
solutions [2]. Analytical solutions are provided for the
one-dimensional transport of a pollutant in an open
channel with steady unpolluted lateral inflow uniformly
distributed over its whole length by Zoppou and Knighe
[3]. Tamora and Wadham [4] made a numerical solution
of advection-diffusion equation for Radial Flow. Limiting
source dimensions of three-dimensional analytical point
source model for solute transport studied by
Ahsanuzzaman et al. [5]. Romao et al. [6] presented the
finite difference methods of 3D convection diffusion
equation to investigate error in the numerical solution of
this equation. Agusto and Bamingbola [7] studied the
numerical treatment of the mathematical model for water
pollution. They employed an implicit centered difference
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scheme in space and a forward difference system in time
to evaluate the generalized transport equation. Analytical
solutions for temporally and spatially dependent solute
dispersion of pulse type input concentration in one
dimensional semi-infinite media studied by Kumar et al.
[8]. Wadi et al. [9] studied analytical solution for
one-dimensional advection-dispersion equation of the
pollution concentration and divided the river into two
regions. Remediation of pollution in a river by unsteady
aeration with arbitrary initial and boundary conditions
was studied by Ibrahim et al. [10]. Andallah and Khatun
[11] studied the numerical solution of advection-diffusion
equation by using explicit centered difference scheme and
Crank-Nicolson scheme for prescribed initial and
boundary data. Manitcharoen and Pimpunchatt [12]
studied the analytical and numerical solutions of pollution
concentration with uniformly and exponentially
increasing forms of sources. Azis et al. [13] used the
boundary element method for solving a boundary value
problem of homogeneous anisotropic media governed by
diffusion-convection equation. Hesham et al. [14] proved
experimentally that, the impacts of high organic loads in
Rosetta branch of Nile River during the low demand
period can be mitigated by releasing clean water of
amount 30 million m3/day from Nile River water at the
Delta barrage. They proved that this solution reduced the
concentrations of ammonia and organic nitrogen below
the limits of the local guidelines. The propagation of
pollution in water bodies can be studied in several ways
[15], [16] and [17].

The objective of this study is to develop a
mathematical model for the Nile River response to a
sinusoidal varying in the concentration of the pollutant by
considering advection-diffusion equation in one
dimension which includes terms of decay and increasing
sources. We are assuming an added pollutant sources
along the river in exponentially increasing terms. We
obtained an analytical solution by using Laplace
transformation and numerical solution by using explicit
finite difference scheme. We studied impact of different
parameters controlling the pollutant dispersion along the
river at any time and the effect of releasing fresh water
from Delta Barrage on concentrations of pollutant in the
Nile River.

2 Formulation of the problem

We consider the unsteady flow in a river as being
one-dimensional characterized by a single spatial distance
x(km) measured from the source of pollution (x = 0). The
concentration of the pollutant C(x, t)(kg km−3) is assumed
to vary with time t (day) along the length of the river. The
one dimensional advection-diffusion equation can be
written as ([18] and [12])

∂C

∂ t
= D

∂ 2C

∂x2
− u

∂C

∂x
− γ C+ µ

(

1− e−λ x
)

, (1)

where D is the dispersion coefficient
(

km2 day −1
)

,u is

the average flow velocity ( km day−1
)

,γ is the pollutant

decay rate (day−1), µ is the Zero-order source term
(

kg km−3 day −1
)

and λ is an arbitrary constant of

exponential pollution source terms
(

km−1
)

. The
exponentially increasing form of pollution sources in
equation (1) has been assumed because the pollution of
the Nile River water at the downstream is higher than at
the upstream, and this is due to chemical and biological
pollutants, agricultural waste and other pollutants. In our
study, we will assume that the river is initially free from
the pollutant. Hence the initial and boundary conditions
associated with equation (1) are:

C(x,0) = 0, x ≥ 0, (2)

C(0, t) = ca + cb sin(ω t), t > 0, (3)

∂C

∂x
= 0, x → ∞ , t ≥ 0, (4)

where ca is the average pollutant concentration (kg km−3),
cb is a constant whose dimension is (kgkm−3) and ω is the
unsteadiness parameter (day−1). A sinusoidal variation in
concentration is approximate the effect of a diurnal flow
variation from a wastewater treatment plant into a stream
with a constant discharge ([19] and [20]).

3 The analytical solution

Applying Laplace transformation on equations (1, 3 and 4)
and using equation (2), gives:

D
d2C̄(x,S)

dx2
− u

dC̄(x,S)

dx

− (S+ γ)C̄(x,S) =
µ
(

e−λ x − 1
)

S
,

(5)

C̄(0,S) =
ca

S
+ cb

ω

S2 +ω2
, S ≥ 0, (6)

dC̄(x,S)

dx
= 0, x → ∞, S ≥ 0, (7)

where S is the Laplace transform of t and C̄(x,S) is
Laplace transform of C(x, t). Thus, the general solution of
the ordinary differential equation (5) subject to conditions
(6) and (7), is given by:

C̄(x,S) =−
µe−λ x

(

S− Seλ x+ γ − γeλ x+λ (u+Dλ )eλ x
)

S(S+ γ)(S+ γ −λ (u+Dλ ))

+e
ux
2D e

− x√
D

√

S+ u2

4D+γ















µ
γ

1
S+γ

+

(

λ µ(u+Dλ )

γ(γ−uλ−Dλ 2)
+ ca

)

1
S

+ µ

(−γ+uλ+Dλ 2)(S+γ−uλ−Dλ 2)
+cb

ω
S2+ω2















(8)

c© 2022 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 11, No. 5, 1329-1334 (2022) / www.naturalspublishing.com/Journals.asp 1331

Now, applying inverse of Laplace transformation on
equation (8) , hence the analytical solution of
advection-dispersion equation (1) associated with the
initial and boundary conditions (2-4) may be written in
terms of (x, t) as:

C(x, t) =−
µ

γ (γ − uλ −Dλ 2)
f1(x, t)

+
µ

2γ
e−γ t f2(x, t)

+
1

2

(

λ µ(u+Dλ )

γ (γ − uλ −Dλ 2)
+ ca

)

f3(x, t)

+
µ

2(−γ + uλ +Dλ 2)
f4(x, t)

+
1

4
i cb e−iωt f5(x, t)−

1

4
i cb eiωt f6(x, t)

(9)

where:

f1(x, t) =
(

γe−λ x − γe(−γ+λ u+Dλ 2)t−λ x

−e−γ t
(

−γ + uλ +Dλ 2
)

− γ +λ u+Dλ 2

)

f2(x, t) = erfc
[

x−ut

2
√

Dt

]

+ e
ux
D erfc

[

x+ut

2
√

Dt

]

,

f3(x, t) =













e

(

u−
√

u2+4γD

)

x

2D erfc

[

x−
√

u2+4γD t

2
√

Dt

]

+e

(

u+
√

u2+4γD

)

x

2D erfc

[

x+
√

u2+4γD t

2
√

Dt

]













,

f4(x, t) =



















e (−γ+λ u+Dλ 2)t−λ x)

∗erfc

[

x

2
√

Dt
−
√

(

u2

4D
+ uλ +Dλ 2

)

t

+e
ux
D e(−γ+λ u+Dλ 2)t+λ x

∗erfc

[

x

2
√

Dt
+

√

(

u2

4D
+ uλ +Dλ 2

)

t

]



















,

f5(x, t) =

























e

(

u−
√

u2+4D(γ−iω)

)

x

2D

∗erfc

[

x−
√

u2+4D(γ−iω) t

2
√

Dt

]

+e

(

u+
√

u2+4D(γ−iω)

)

x

2D

∗erfc

[

x+
√

u2+4D(γ−iω) t

2
√

Dt

]

























,

f6(x, t) =

























e

(

u−
√

u2+4D(γ+iω)

)

x

2D

∗erfc

[

x−
√

u2+4D(γ+iω) t

2
√

Dt

]

+e

(

u+
√

u2+4D(γ+iω)

)

x

2D

∗erfc

[

x+
√

u2+4D(γ+iω) t

2
√

Dt

]

























.

where erfc is the complementary error function and
i =

√
−1 . We have confirmed that equation (9) satisfies

equations (1-4).

4 Special cases

The analytical solution (equation (9)) has practical
applications in many field problems as follows:
(I) The special case for which ca = cb = 0 is derived from
equation (9) as:

C(x, t) =−
µ

γ (γ − uλ −Dλ 2)
f1(x, t)

+
µ

2γ
e−γ t f2(x, t)+

λ µ(u+Dλ )

2 γ (γ − uλ −Dλ 2)
f3(x, t)

+
µ

2(−γ + uλ +Dλ 2)
f4(x, t).

(10)

Equation (10) gives C(0, t) = 0, this satisfies the boundary
condition (3) at ca = cb = 0.
(II) The special case for which λ −→ ∞ and cb = 0 is
derived from equation (9) as:

C(x, t) =
µ

γ
−

µ

γ
e−γt

(

1−
1

2
erfc

[

x−ut

2
√

Dt

]

−
1

2
e

ux
D erfc

[

x+ut

2
√

Dt

])

+
1

2

(

ca −
µ

γ

)









e
(u−

√
u2+4γD)x

2D erfc

[

x−
√

u2+4γD t

2
√

Dt

]

+e
(u+

√
u2+4γD)x

2D erfc

[

x+
√

u2+4γD t

2
√

Dt

]









.

(11)

Equation (11) is the same as that obtained by Kumar [21]
(when m = 0).

5 Numerical solution

The explicit finite difference method (EFDM) is applied
to solve equation (1) associated with the initial and
boundary conditions (2-4). The forward difference

scheme was used for ∂C
∂ t

. The central difference scheme

was used for ∂ 2C
∂x2 and ∂C

∂x
. With these substitutions,

equation (1) can be written as :

Ci, j+1 = r1 Ci−1, j + r2 Ci, j + r3 Ci+1, j

+ µ (1− e−λ xi)∆ t,
(12)

where i and j refer to the discrete step lengths ∆x and ∆ t

for the coordinate x and time t, respectively, and

r1 =
D ∆ t

(∆x)2
+

u ∆ t

2(∆x)
, (13)

r2 = 1−
2D ∆ t

(∆x)2
− γ ∆ t, (14)

r3 =
D ∆ t

(∆x)2
−

u ∆ t

2(∆x)
. (15)

Equation (12) represents a formula for C(i, j + 1) at the
(i, j+ 1)th mesh point in terms of known values along the
jth time row. The truncation error for equation (12) is
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O(∆ t,(∆x)2). Using a small-enough values of ∆x and ∆ t,
the truncation error can be reduced until the accuracy
achieved is within the error tolerance [22]. The initial and
boundary conditions (2-4) can be expressed in the finite
difference form as

Ci,0 = 0, x ≥ 0, t = 0. (16)

C0, j = ca + cb sin(ω t j), x = 0, t > 0, (17)

CN, j =CN−1, j , x → ∞, t ≥ 0, (18)

where t j = j∆ t and xi = i ∆x. N = x∞/∆x is the grid
dimension in the x direction and x∞ is the distance in the
direction x at which ∂C

∂x
→ 0 .

6 Results and discussions

The analytical solution obtained in equation (9) is
illustrated in figures (1 and 2). Numerical solution of
equation (12) using explicit finite difference method with
the initial and boundary conditions (16-18) is given in
figure (1). Figures (1-3) have the common input data
0 ≤ x ≤ 70( km), D = 1.2

(

km2day−1
)

,γ =

0.4
(

day−1
)

,λ = 0.5
(

km−1
)

,ca = 37
(

kg km−3
)

,cb =

13
(

kg km−3
)

, and ω = 2π
(

day−1
)

. Figure (1), shows
the variation of C(x, t) with time for the values t = 0.5,1

and 1.5 (day), where u = 26
(

km day−1
)

and

µ = 0.6
(

kg km−3day−1
)

. From figure (1), it is clear that:
(I) The imaginary part in equation (9) is equal to zero for
all values of C(x, t) this means that, when separate
equation (9) into its real part and imaginary part we get
the imaginary part is equal to zero. Then equation (9) can
be applied to practical problems.
(II) The fluctuations of the values of C(x, t) is due to the
boundary condition (3) so at t = constant, as x increases,
C(x, t) is fluctuating until it reaches zero. This result
agrees with that obtained by Shukla [19].
(III) At any cross section x = constant, as t increases, C is
fluctuating. This result agrees with that obtained by
Shukla [19].
(IV) When the time t increases, the distance between the
source of pollution (x = 0) and the point of zero
concentration (C(x, t) = 0) increases. In the numerical
solution of equation (12), the step length ∆x = 0.1km and
∆ t = 0.002(day), have been used to achieve the stability
of the finite difference scheme. To test the accuracy of the
numerical solution, a comparison between the analytical
solution given by equation (9) and numerical solution
given by equation (12), is made and illustrated in figure
(1). From figure (1) it is clear that there is a very good
agreement between the analytical solution and numerical
solution. So the explicit finite difference method is
effective and accurate for solving advection-diffusion
equation, which is especially important when arbitrary
initial and boundary conditions are required. Figure (2)
shows the variation of C(x, t) with µ for the values

µ = 0.6,2 and 4
(

kg km−3day−1
)

, where t = 1.5( day ),

u = 26
(

km day−1
)

. From figure (2), it is clear that:
(I) At any cross section x = constant, C(x, t) increases as
µ increases.
(II) At x ≥ 42 km we notice that C(x, t) did not change
with increasing x, and this satisfies the condition (4).
Equation (10) is illustrated in Figure (3). Let the cross
section area of the river at x = 0 be A, then the flux of the
water (the volume of water crossing A every day) will be
Q = A u. Consequently increasing the value of u means
increasing the value of Q for constant values of A. Let the
maximum value of C be denoted by Cm. Figure (3), shows
the variation of C(x, t) with flow velocity for the values

u = 5,10,15,20.25 and 30
(

km day−1
)

, t = 1.5( day )

and µ = 0.6
(

kg km−3day−1
)

. From figure (3), it is clear
that:
(I) At any cross section x = constant, C(x, t) decreases as
u increases.
(II) The maximum value of C(x, t) (Cm = 0.68) is
constant for u = 5,10,15,20.25 and 30 (km day−1).
(III) At u = constant, as x increases, C(x, t) increases until
it reaches the maximum value Cm = 0.68(kg km−3).
(IV) As expected, as u increases i.e. the quantity of fresh
water released from the Delta Barag increases ( the flux of
fresh water Q increases), the maximum value of pollutant
concentration Cm moves toward the downstream of the
Nile River. This result agrees with that obtained by Saleh
et. al [23].

Fig. 1: The comparison between the analytical solution

(equation (9)) and the numerical solution (equation (12)) for

the values t = 0.5,1 and 1.5 (day), D = 1.2
(

km2day−1
)

,u =

26
(

km day−1
)

,γ = 0.4
(

day−1
)

,µ = 0.6
(

kg m−3day−1
)

,λ =

0.5
(

km−1
)

,ca = 37
(

kg km−3
)

,cb = 13
(

kg km−3
)

and ω =

2π
(

day−1
)

where the dashed lines represents the numerical

solution and the continuous lines represents the analytical

solution.
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Fig. 2: The variation of C(x, t) with µ in equation (9) for the

values µ = 0.6,2 and 4
(

kg km−3day−1
)

, t= 1.5 (day), D =

1.2
(

km2day−1
)

,u = 26
(

km day−1
)

,γ = 0.4
(

day−1
)

,λ =

0.5
(

km−1
)

,ca = 37
(

kg km−3
)

,cb = 13
(

kg km−3
)

and ω =

2π ( day −1
)

.

Fig. 3: The variation of C(x, t) with u in equation (10)

for the values u = 5,10,15,20.25 and 30
(

km day−1
)

, t =

1.5( day ),D = 1.2
(

km2day−1
)

,γ = 0.4( day
−1

)

,µ = 0.6
(

kg m−3day−1
)

,λ = 0.5
(

km−1
)

,ca =

37
(

kg km−3
)

,cb = 13
(

kg km−3
)

and ω = 2π
(

day−1
)

t =

1.5( day ) and µ = 0.6
(

kg km−3 day −1
)

.

7 Conclusions

The analytical solution obtained generalize the earlier
solution obtained by Kumar [21] (when m = 0).
Numerical solution for the same problem also obtained by
using explicit finite difference scheme. When comparing
the analytical solution with the numerical solution, we
found a very good agreement between them. Impacts of
different parameters controlling the pollutant dispersion
have been studied separately with the help of graphs. We
found that at any cross section x = constant, C(x, t) is
fluctuating with the increase of t and C(x, t) increases as

µ increases. At constant time t, as x increases, C(x, t) is
fluctuating until it reaches zero. Figure (3) emphasize the
fact that we can reduce the high concentration of pollutant
by releasing clean water discharges from barrage in a
river.
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