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Abstract: The challenge of estimating the parameters of the Weibull-Geometric distribution using progressively type-I hybrid censored

data is addressed in this study. For this, the maximum likelihood and Bayes methods of estimation are applied. The Bayes estimates

are calculated using the Markov Chain Monte Carlo (MCMC) method. Through a Monte Carlo simulation investigation, the Bayes

estimates of the parameters under two alternative loss functions are investigated and compared to their corresponding maximum

likelihood estimates. For illustration, a practical set of data is used.
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1 Introduction

Several lifetimes of units put on a life testing experiments
may not be detected in reliability theory for various
reasons. There are various different kinds of censorship
schemes. The two most popular censoring schemes are
type-I and type-II. [1] was the first to introduce the hybrid
censoring scheme, which is a combination of type-I and
type-II censoring schemes. These three traditional
censoring schemes only remove the units at the end of the
experiment. Such intermediate unit deletions are possible
with the progressively hybrid censoring (PHC) scheme.
The traditional censoring schemes are included as special
cases of this form of censoring. [2] introduced the type-I
progressively hybrid censoring scheme (type-I PHC),
which is a hybrid of type-I progressive and hybrid
censoring schemes. This censoring scheme has gained
popularity for evaluating highly trustworthy data and is
commonly used in reliability and survival studies, see [3],
[4] and [5] for further information on the progressively
hybrid censoring scheme.

The type-I PHC can be explained as follows: Suppose
that n similar units are put on a life test with a
pre-specified progressive censoring scheme
(R1,R2, ...,Rm), 1 ≤ m ≤ n. The experiment is ended at
some specified time of termination T ∈ (0,∞). At the first
failure time X1:m:n, R1 units of the remaining live unites

are removed from the test. Similarly, at the second failure
time X2:m:n, R2 unites of the remaining live units are also
removed from the test, and so on. The termination of the
experiment occurs at time T ∗ = min{Xm:m:n,T}. If the
m − th failure Xm:m:n occurs before the time T , the
remaining units R∗

m = n− (R1 +R2 + ...+Rm−1)−m are
all removed and the experiment is ended. Otherwise, if
the m− th failure Xm:m:n does not occur before T , while
only J, 0 < J < m, failures occur all the remaining units
R∗

m = n− (R1 +R2 + ...+RJ)− J are all removed and the
experiment terminated. These two cases of termination
will be denoted here as Case I and Case II, respectively,
where,

Case I: X1:m:n, ...,Xm:m:n, i f Xm:m:n < T ,

Case II: X1:m:n, ...,XJ:m:n, i f XJ:m:n < T < XJ+1:m:n.

Statistical inference methodologies for estimating the
parameters of different lifetime distributions are
researched using progressively type-I hybrid censored
data; see, for instance, [3], [4], [5] and [6]. The
Weibull-Geometric model is highlighted in this study.

2 The Weibull-Geometric Model

[7] was the first one to introduce the Weibull-Geometric
(WG) distribution. [8] examined the same distribution
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under the name complementary Weibull-geometric
distribution, but with different parametrization. The
probability density function (pd f ) and cumulative
distribution function (cd f ) of the WG distribution are as
follows:

f (x;α,β , p) = αβ α(1− p)xα−1e−(β x)α
{1− pe−(β x)α

}−2
,

x > 0,

(1)

and

F(x) = (1− e−(β x)α
)(1− pe−(β x)α

)−1
, x > 0. (2)

When p = 0, the two-parameter Weibull distribution
is obtained, as can be seen from (1). For α = 1, another
special form is produced, which is the
exponential-geometric (EG) distribution with parameters
(β , p). The related survival and failure rate functions of
the WG model are given, respectively, by

S(x) = [(1− p)e−(β x)α
](1− pe−(β x)α

)−1
, x > 0, (3)

and

H(x) =
f (x)

S(x)
= αβ α xα−1{1− pe−(β x)α

}−1
, x > 0. (4)

As seen in Figure 1, the hazard rate function (4) is
decreasing for 0 < α ≤ 1. For α > 1, however, it can be
either increasing (for small values of p) or upside-down
bathtub (for large values of p), as shown in Figure 2.

Fig. 1: (α = 0.8,β = 0.5)

Fig. 2: (α = 1.5,β = 0.5)

The WG distribution is a generalization of the
exponential-geometric (EG) distribution introduced by
[9]. The EG distribution’s hazard rate function is
monotonic decreasing, whereas the WG distribution’s one
can take more flexible forms. The WG distribution, unlike
the Weibull distribution, can be used for modelling the
unimodal failure rates.

[7] fitted WG models to two real data sets to
demonstrate the new distribution’s flexibility and promise.
The first set of data includes the number of consecutive
air conditioning system failures for each member of a
fleet of 13 Boeing 720 jet aeroplanes. The second data set
is a complete set of 100 observations of carbon fibre
breaking stress from [10]. Using the EM algorithm, they
obtained the estimates of the WG parameters p, β and α .
Various characterizations of the WG distribution were
offered by [11]. From the half-logistic distribution, the
WG distribution, and the long-term WG distribution, [12]
generated explicit formulas for the moments of order
statistics. [13] used progressively Type-II censored data to
estimate the unknown parameters of the WG distribution.
[14] used a progressive first-failure censoring approach to
estimate the parameters of the WG distribution. Using the
one and two-sample prediction techniques, [15] obtained
the Bayes point predictors and Bayesian prediction
intervals for future observables from the WG model based
on progressively Type-II censored data.

The maximum likelihood and Bayes estimation
methods are employed in this study to estimate the
parameters of the WG distribution based on PHC data.
The Bayes estimates are obtained by using MCMC
techniques and compared to their corresponding
maximum likelihood estimates via Monte Carlo
simulation study. An example of the set of practical data
that [10] studied is also considered.

3 Maximum Likelihood Estimation

This section deals with computing the maximum
likelihood estimates (MLEs) for the parameters of the
WG distribution based on type-I PHC data. Let D be the
number of failures that occur before time T ∗ which
denotes the terminal time. Then, at time T ∗ the remaining
R∗

D = n − D − ∑D
i=1 Ri units are all removed and the

experiment is stopped, where D = m, T ∗ = Xm:m:n in Case
I, and D = J, T ∗ = T in Case II. The likelihood function
of (α,β , p) can thus be written as

L(α,β , p;x) ∝
D

∏
i=1

fX (xi)[1−FX(xi)]
Ri [1−FX(T

∗)]R
∗
D .

(5)

Assume that X1:m:n, ...,XD:m:n is a type-I PHC sample
from the WG distribution with censoring scheme
(R1,R2, ...,RD−1,R

∗
D) and stopping time T ∗. Here, we will

denote the D type-I PHC order statistics by X1,X2, ...,XD.
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Using (1), (2) and (5), the likelihood function is as follows

L(α,β , p;x) ∝(αβ α)D(1− p)ne−R∗
D(β T ∗)α−∑D

i=1(1+Ri)(β xi)
α

[1− pe−(β T∗)α
]−R∗

D

D

∏
i=1

xα−1
i [1− pe−(β xi)

α
]−(2+Ri)

(6)

Then, the log-likelihood function is

L∗ = lnL(α,β , p;x) ∝ D lnα +αD lnβ + n ln(1− p)

−R∗
D(β T ∗)α −

D

∑
i=1

(1+Ri)(β xi)
α +(α − 1)

D

∑
i=1

lnxi

−
D

∑
i=1

(2+Ri) ln[1− pe−(β xi)
α
]−R∗

D ln[1− pe−(β T∗)α
]

(7)

The maximum likelihood estimators can be derived by
simultaneously solving the following equations using
equation (7)

∂L∗

∂α
=D(

1

α
+ lnβ )+

D

∑
i=1

lnxi − I1(T
∗) ln(β T ∗)

−
D

∑
i=1

λi ln(β xi) = 0,

(8)

∂L∗

∂β
=

α

β
[D− I1(T

∗)−
D

∑
i=1

λi]−T∗R∗
D = 0, (9)

and

∂L∗

∂ p
=

−n

1− p
−R∗

De−(β T∗)α
[1− pe−(β T∗)α

]−1

+
D

∑
i=1

(2+Ri)e
−(β xi)

α
[1− pe−(β xi)

α
]−1 = 0,

(10)

where,

I1(T
∗) = p(β T ∗)α R∗

De−(β T∗)α
[1− pe−(β T∗)α

]−1
, (11)

and

λi =(β xi)
α [1− pe−(β xi)

α
]−1[1+ pe−(β xi)

α
+Ri]. (12)

A closed form solution for α , β , and p does not exist, as
proven by (??), (9), and (10). To acquire the MLEs,
numerical techniques such as the Newton-Raphson
algorithm can be utilised.

4 Bayesian Estimation

Assume that the variables α and β are independent
random variables with Gamma prior distributions,
denoted by G(.,.), of the forms

g1(α) =
b

a1
1

Γ (a1)
αa1−1e−αb1 , a1,b1 > 0, α > 0, (13)

and

g2(β ) =
b

a2
2

Γ (a2)
β a2−1e−β b2 , a2,b2 > 0, β > 0. (14)

[13] were the first to use the Gamma-Gamma prior.
Assume also that the parameter p is independent of α and
β , and that it has a U(0,1) prior distribution given by

g3(p) = 1, 0 ≤ p ≤ 1. (15)

As a result, the joint prior distribution of α , β , and p is
given by

g(α,β , p) =
b

a1
1 b

a2
2

Γ (a1)Γ (a2)
e−(αb1+β b2)αa1−1β a2−1

. (16)

From (6) and (16), the joint posterior distribution takes the
form

q(α,β , p|x) = KαD+a1−1β Dα+a2−1(1− p)ne−(αb1+β b2)

[1− pe−(β T∗)α
]−R∗

De−R∗
D(β T∗)α−∑D

i=1(1+Ri)(β xi)
α

D

∏
i=1

xα−1
i [1− pe−(β xi)

α
]−(2+Ri),

α > 0, β > 0, 0 ≤ p ≤ 1,

(17)

where, K denotes the normalizing constant given by

K−1 =
∫ ∞

0

∫ ∞

0

∫ 1

0
g(α,β , p)L(α,β , p;x)d pdαdβ ,

and L(α,β , p;x) is the likelihood function given by (6).
The Bayes estimator of a function u(α,β , p) under a
squared error loss function is its posterior mean provided
by

ûBS(α,β , p) = E(u(α,β , p|x
¯
))

=

∫

α

∫

β

∫

p
u(α,β , p)q(α,β , p | x)d pdβ dα.

(18)

The Bayes estimator of u(α,β , p) under a Linex loss
function is given by

ûBL(α,β , p) =−
1

ξ
ln
(

E(e−ξ u(α ,β ,p) | x)
)

=−
1

ξ
ln
(∫

α

∫

β

∫

p
e−ξ u(α ,β ,p)

q(α,β , p|x
¯
)d pdβ dα

)
,

(19)

where ξ is the asymmetric parameter.

It is evident from Equations (18) and (19) that none of
the integrals can be derived analytically, necessitating the
employment of numerical integration methods.
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The marginal posterior distributions and hence the
Bayes estimates are computed from the posterior
distribution (17) which includes complicated integrals
that cannot be obtained in closed forms. Therefore the
MCMC sampling procedure will be used to compute
these Bayes estimates. The most two often utilized
techniques of the MCMC methods are the Gibbs sampler
and the Metropolis-Hastings techniques. The Gibbs
sampler technique needs the conditional posterior
distributions to be in closed forms that can be simply
generated from them. On the other hand, the
Metropolis-Hastings technique needs only to use a
jumping or a proposal distribution to generate from it
instead of some complex distribution. For the algorithm
to be efficient, the jumping distribution should be easy to
sample from it. These techniques have been established in
a number of references, see for example, [16] and [17].

The conditional posterior density functions of α , β ,
and p, respectively, are provided by (17)

q1(α|β , p;x) ∝αD+a1−1β Dα e−R∗
D(β T∗)α−∑D

i=1(1+Ri)(β xi)
α

e−αb1 [1− pe−(β T∗)α
]−R∗

D

D

∏
i=1

xα−1
i [1− pe−(β xi)

α
]−(2+Ri), α > 0,

(20)

q2(β |α, p;x) ∝β Dα+a2−1e−R∗
D(β T∗)α−∑D

i=1(1+Ri)(β xi)
α

e−β b2[1− pe−(β T∗)α
]−R∗

D

D

∏
i=1

xα−1
i [1− pe−(β xi)

α
]−(2+Ri), β > 0,

(21)

and

q3(p|α,β ;x) ∝(1− p)n[1− pe−(β T∗)α
]−R∗

D

D

∏
i=1

xα−1
i [1− pe−(β xi)

α
]−(2+Ri),0 ≤ p ≤ 1.

(22)

As can be seen from (20), (21) and (22), these
conditional posteriors cannot be reduced to closed forms
and therefore we cannot sample directly from them for
applying the Gibbs sampler technique. As a result, we’ll
use the Metropolis algorithm to create samples from these
conditional posterior distributions, then construct Bayes
estimates using the squared error and Linex loss
functions. For this, we employ the Metropolis algorithm,
as described by [18] as follows:

1.Start with initial values α(0), β (0) and p(0) and set i =
1.

2.Generate a candidate point α∗ from a proposal normal

distribution N(α(i−1),1), and calculate the ratio of the

posterior density at the candidate α∗ and the current

α(i−1) points,

r1 =
q1(α

∗|β (i−1), p(i−1);x)

q1(α(i−1)|β (i−1), p(i−1);x)
.

3.Generate u from a U(0,1) distribution, If u ≤ r1, accept

α∗ and set α(i) = α∗, else set α(i) = α(i−1).
4.Generate a candidate point β ∗ from a proposal normal

distribution N(β (i−1),1), and calculate the ratio

r2 =
q2(β

∗|α(i), p(i−1);x)

q2(β (i−1)|α(i), p(i−1);x)
.

5.Generate u from a U(0,1) distribution, If u ≤ r2, accept

β ∗ and set β (i) = β ∗, else set β (i) = β (i−1).
6.Again for the parameter p, generate a candidate point

p∗ from a proposal U(0,1) distribution and calculate
the ratio

r3 =
q3(p∗|α(i),β (i);x)

q3(p(i−1)|α(i),β (i);x)
.

7.Generate u from a U(0,1) distribution, If u ≤ r3, accept

p∗ and set p(i) = p∗, else set p(i) = p(i−1).
8.i=i+1.
9.Repeat steps from 2-8 N times.

10.Under a squared error loss function, calculate the
Bayes estimators of α , β , and p as follows

11.Calculate the Bayes estimators of α , β and p under a
squared error loss function as follows

α̂BS =
1

N −M

N

∑
i=M+1

α(i)
, β̂BS =

1

N −M

N

∑
i=M+1

β (i)
,

p̂BS =
1

N −M

N

∑
i=M+1

p(i),

and under a Linex loss function, with the asymmetric
parameter ξ , in the forms

α̂BL =
−1

ξ
Ln

[∑N
i=M+1 e−ξ α(i)

N −M

]
,

β̂BL =
−1

ξ
Ln

[∑N
i=M+1 e−ξ β (i)

N −M

]
,

p̂BL =
−1

ξ
Ln

[∑N
i=M+1 e−ξ p(i)

N −M

]
,

where M is the burn-in period.

It may be noted that we use the maximum likelihood

estimates of the parameters as the initial values α(0), β (0)

and p(0) in step 1.

5 Simulation Study

A Monte Carlo simulation study using a type-I PHC
scheme is performed to compare the estimators of the
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WG distribution parameters. Under two different loss
functions, we examine the performance of the MLEs and
their related Bayes estimates of the unknown parameters
α , β , and p. Mathematica 7.0 is used to complete all
calculations. The following processes are used while
comparing the estimates.

1.For given values of the prior parameters, a1,b1,a2 and
b2, generate α , β and p from the prior densities given
by (13), (14) and (15), respectively.

2.For given values of sample size n and the progressive
scheme R′

is with the generated values α , β and p in
step (1), generate a progressive censored sample of
size m using the algorithm described in [19] till the
termination of the experiment which occurs at
min{Xm:m:n,T}.

3.The maximum likelihood estimates are then obtained
by solving the three nonlinear equations given by (8),
(9) and (10) numerically.

4.The Bayes estimates under the two different loss
functions are then obtained by applying the MCMC
technique, as described above.

5.The above steps 2-4 are repeated 500 times and the
mean squared errors (MSE) are then computed for the
different estimators.

The Bayes estimates are computed based on 10000
MCMC values, where the first 1000 discarded as burn-in.
Two different values of the asymmetric parameter
ξ = −3,3 are considered to get the corresponding Linex
Bayes estimates.
Different combinations of n,m and progressive schemes
Ri, i = 1, ...,m are considered. The parameter values of α
and β are generated from the prior distributions G(1,2)
and G(2,2), respectively. The parameter value of p is
generated from the U(0,1). The predetermined
termination time T is considered to be T = 0.85 and
T = 0.5. The results of this simulation are presented in
Tables (1) and (2).

6 Practical Example

[7] fitted an uncensored set of real data, which is previously

analyzed by [10], to the WG model. This data set consists of

100 observations of breaking stress of carbon fibers. This data

set is listed in Table (3).

Based on this set of data, [7] obtained the estimates of the

WG distribution parameters α̂ = 3.0093, β̂ = 0.3148 and

p̂ = 0.3073 by using an EM algorithm.

In this paper, a type-I PHC data is generated from this original

data set to estimate the WG parameters α , β and p. Since we

have no prior information about the parameters, the

non-informative priors is assumed by setting

a1 = b1 = a2 = b2 = 0. For m = 70 and a censoring scheme

R = (06,10,019,10,028,10,014), we consider two cases

Case I: T = 6 for which Xm:m:n < T

Case II: T = 2.7 for which XJ:m:n < T < XJ+1:m:n,

where T = 2.7 is the median of the original data set. The Bayes

estimates are computed based on 20000 MCMC samples, where

Table 1: The mean squared errors (MSE) of the ML and Bayes

estimates when T=0.85

n m scheme MLE Bayes estimates

SEL Linex

ξ = 3 ξ =−3

20 15 (15,010)∗ α 0.6388 0.5096 0.9203 0.3054

β 0.2011 0.0453 0.0366 0.1045

p 0.0574 0.0907 0.1591 0.0392

(010
,15) α 0.6754 0.5031 0.9079 0.3472

β 0.2030 0.0429 0.0304 0.1054

p 0.0696 0.0892 0.1575 0.0383

30 25 (15,020) α 0.3778 0.3307 0.5815 0.2027

β 0.1693 0.0355 0.0239 0.0763

p 0.0675 0.0835 0.1502 0.0356

(020,15) α 0.3280 0.2983 0.5396 0.1811

β 0.1511 0.0399 0.0185 0.0893

p 0.0701 0.0842 0.1511 0.0360

40 30 (110,020) α 0.3227 0.2765 0.4662 0.1860

β 0.1575 0.0407 0.0263 0.0790

p 0.0683 0.0816 0.1471 0.0352

(020,010) α 0.2904 0.2766 0.4675 0.1838

β 0.1556 0.0364 0.0204 0.0766

p 0.0565 0.0797 0.1449 0.0340

50 40 (110,030) α 0.2211 0.2218 0.3708 0.1374

β 0.1354 0.0375 0.0233 0.0717

p 0.0616 0.0775 0.1415 0.0334

(030,110) α 0.2114 0.2091 0.3516 0.1334

β 0.1492 0.0379 0.0224 0.0744

p 0.0627 0.0738 0.1369 0.0313

*The scheme: (15,010) means n = 20,m = 15 and

R = (1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)

Table 2: The mean squared errors (MSE) of the ML and Bayes

estimates when T=0.5

n m scheme MLE Bayes estimates

SEL Linex

ξ = 3 ξ =−3

20 15 (15,010) α 0.1191 0.8553 1.5461 0.4622

β 0.2349 0.0688 0.1288 0.0934

p 0.0422 0.0986 0.1669 0.0452

(010,15) α 0.9256 0.8021 1.4264 0.4715

β 0.2286 0.0489 0.0927 0.0809

p 0.0411 0.0946 0.1629 0.0422

30 25 (15,020) α 0.5456 0.5772 1.0395 0.3370

β 0.2052 0.0452 0.0660 0.0875

p 0.0501 0.0866 0.1544 0.0369

(020,15) α 0.5872 0.5238 0.9524 0.3581

β 0.1978 0.0446 0.0589 0.0852

p 0.0505 0.0869 0.1544 0.0376

40 30 (110,020) α 0.4953 0.4717 0.8249 0.3162

β 0.1874 0.0422 0.0568 0.0823

p 0.0465 0.0819 0.1492 0.0344

(020,010) α 0.3332 0.4185 0.7396 0.2565

β 0.1674 0.0372 0.0408 0.0795

p 0.0402 0.0827 0.1492 0.0355

50 40 (110,030) α 0.3096 0.3628 0.6389 0.2299

β 0.1775 0.0355 0.0414 0.0737

p 0.0449 0.0808 0.1472 0.0345

(030,110) α 0.3052 0.3117 0.5409 0.2281

β 0.1567 0.0413 0.0379 0.0828

p 0.0511 0.0805 0.1461 0.0346
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Table 3: Breaking stress of carbon fibers (GPa)

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90

3.75 2.43 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22

3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85 2.56 3.56

3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92

1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59

3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71

2.17 1.17 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38

1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03 1.80

1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65

Table 4: Estimates of the WG distribution parameters α , β and

p based on a real data set

Cases MLE MCMC

SEL Linex

ξ = 3 ξ =−3

Case I α 3.1028 3.1602 2.9779 3.4636

T=6 β 0.3137 0.3021 0.3001 0.3040

p 0.3570 0.4067 0.3223 0.5031

Case II α 2.7859 2.8629 2.6462 3.1208

T=2.7 β 0.3085 0.2679 0.2634 0.2712

p 0.2272 0.4701 0.3759 0.5632

Complete α 3.0094 3.1328 2.9516 3.4628

Sample β 0.3148 0.2993 0.2974 0.3012

p 0.3074 0.4092 0.3218 0.5106

the first 1000 itrations discarded as burn-in. The results are

presented in Table (4).

7 Conclusions

The point estimation of the three unknown parameters of the

Weibull-Geometric distribution using the type-I PHC scheme

was explored in this study. The maximum likelihood and Bayes

estimates of these parameters were calculated. It has been

discovered that Bayes estimators cannot be produced in explicit

forms and must be computed numerically using sophisticated

integrals. As a result, the Metropolis-Hastings sampling

methodology is used to obtain Bayes estimates under squared

error and Linex loss functions using the MCMC method.

The MSE of the Bayes estimates of the WG parameters α ,

β , and p is substantially smaller than that of their corresponding

ML estimates, as shown in Tables (1) and (2). It’s also clear that

Bayes estimates using the asymmetric (Linex) loss function have

lower MSE than Bayes estimates using the symmetric SE loss

function. It can also be shown that as sample sizes grow, the mean

squared errors decrease.

Table (4) shows that the Bayes estimates based on the PHC

scheme are good comparable with the similar estimates derived

by Barreto-Souza et al. (2011) using the hale set of data in all

circumstances.
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