
J. Stat. Appl. Pro. 11, No. 1, 15-28 (2022) 15

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/110102

Constant-Partially Accelerated Life Tests for Three-

Parameter Distribution: Bayes Inference using

Progressive Type-II Censoring

M. A. W. Mahmoud1, M. G. M. Ghazal2,3.∗ and H. M. M. Radwan2

1Mathematics Department, Faculty of Science, Al-Azhar University, Nasr city 11884, Cairo, Egypt
2Mathematics Department, Faculty of Science, Minia University, Minia 61519, Egypt
3Mathematics Department, University of Technology and Applied Sciences-Al Rustaq, 329-Rustaq, Sultanate of Oman

Received: 18 Sep. 2020, Revised: 2 Oct. 2020, Accepted: 28 Oct. 2020

Published online: 1 Jan. 2022

Abstract: This article explores accelerated life test from constant-stress test based on progressive type-II censoring. We consider

that the lifetime of items under use condition follows the three-parameter inverted generalized linear exponential distribution. To

estimate the distribution parameters and the acceleration factor, we employ the maximum likelihood method. The Gibbs sampler

with the Metropolis-Hastings algorithm is applied to generate the Markov chain Monte Carlo samples from the posterior functions to

approximate the Bayes estimation using several loss functions and to establish the symmetric credible interval for the parameters and

the acceleration factor. A real data and simulated data are analyzed for more illustration. A simulation study is presented to compare

the obtained estimates based on mean square error and average absolute bias.

Keywords: Progressive type-II; Gibbs sampler; Partially accelerate life test; Maximum likelihood estimation; Inverted generalized
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1 Introduction

Censoring plays a vital role in statistical analysis for life tests. In type-II censoring scheme, which has been extremely
prominent, the lifetime test is terminated when pre-specified number r out of n items has fails. The analysis of type-II
censoring scheme with various distributions was discussed by[1,2,3]. The progressive type-II censoring scheme (PT-IICS)
is considered as a generalization of the type-II censoring scheme. It has been extensively researched as it saves the cost and
time of the experimental test. Recently, several authors [4,5,6,7,8,9] have studied the analysis of PT-IICS under different
lifetime distributions.

Due to the continuous improvement in the manufacturing design, it is gradually difficult to obtain data on the life of
highly reliable products at test time in normal conditions. As such lifetime test in normal conditions all-round costly and
time consuming. As a result, accelerated life tests (ALTs) are chosen for use in manufacturing to obtain enough failure
data, within a short time frame, necessary to infer its relationship to external stress variables. In ALTs, test items are tested
only in accelerated conditions, namely, higher than normal pressure levels, to induce early failure. The data collected
in such accelerated conditions is then extrapolated by a physically appropriate statistical model to estimate the lifetime
distribution under normal use conditions. According to [10], there are mainly three ALT methods. The first method is
called the constant-stress ALT, the stress is kept at a constant level throughout the life of the test products [11,12,13,
14]. The second one is referred to as progressive-stress ALT, the stress applied to a test product, which is continuously
increasing in time [15]. The third is the step-stress ALT, in which the test condition changes at a given time or upon the
occurrence of a specified number of failures. The step-stress ALT has been studied by several authors [16,17]. When the
acceleration factor cannot be assumed as a known value, the partially accelerated life test (PALT) will be a good choice to
perform the life test. In PALTs, items are tested at both accelerated and use conditions. Also, there are three major stress
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types of PALTs: constant-stress, step-stress and progressive-stress. When a test involves two levels of stress with the first
one being the normal level and at a specific time point the stress will be change, it is referred to as a step-stress PALT.
Several authors have dealt with this type of ALT, including [18,19]. The constant-stress PALT (CSPALT) (which is the
main topic of this paper) runs each item at either use or accelerated condition only, see [20,21,22,23].

One of the most well- known distributions for fitting real data in reliability and medical studies is linear exponential
distribution (LED). The principal objective of proposing any new distribution is that it can be fitted better than the
well-known distributions under different applications to real data sets of varying study areas. Thats why several studies
developed the LED. [24] presented the generalized linear failure distribution and the transmuted LED is studied by [25].
[26] suggested a new generalization known as the generalized LED. The distributions with an unimodal hazard rate
function (HRF) have a pivotal role in many practical experiments. Recently, [27] proposed an extension of the
generalized LED with unimodal HRF known as inverted generalized LED (IGLED) and [28] studied the parameter
estimation and optimal censoring for this distribution under progressive first failure.

They considered IGLED as a generalization of the inverted exponential distribution (IED), inverse Weibull
distribution (IWD) and inverse Rayleigh distribution (IRD). Several important statistical properties were established by
them. They also constructed a several explicit forms for the HRF, RHRF, mean residual life (MRL) time, mean waiting
time (MWT), the variance residual life time (VRL) and the variance of the reversed residual life (VRRL) and studied the
behavior of them. Some measures of income inequality using IGLED distribution are also studied. Furthermore, the
IGLED is compared with IWD, IRD, IED, generalized IWD, log-normal distribution and inverted Gaussian distribution
using different real data sets. It was obvious that the IGLED fits all data sets better than the other distributions.

The probability density function (PDF) and the cumulative distribution function (CDF) of IGLED with parameter
vector Φ = (λ ,µ ,θ ) are given by

f1(t;Φ) = θ e
−( λ
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respectively.
The SF and HRF are given by:
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respectively.

2 Basic Assumptions and Model Description

2.1 Basic assumptions

–Under normal condition, the lifetimes of test units follow the IGLED and are independent and identically distributed.
–Under the acceleration condition, the HRF of test unit can be given by h2(t) = γ h1(t), where γ > 1 is the acceleration
factor. Then the PDF, CDF, SF and HRF can be written as
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, (7)
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and
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. (8)

2.2 Model description

Upon using the CSPALT, the total size of units are divided into two groups: n1 units for use condition and n2 units for
accelerated condition. Furthermore, let the lifetime Tji, i = 1, ...,n j, j = 1,2 be two PT-IIC samples from IGLED. At the
time of the first-failure Tj1, R j1 items are randomly withdrawn from the remaining n j − 1 surviving items. At the second-
failure Tj2, R j2 items from the remaining n j − 2−R j1 items are randomly withdrawn. The test continues until the m j th

failure Tjm j
at which time all the remaining R jm j

= n j −m j−∑
m j−1

k=1 R jk items are withdrawn for j = 1,2. Also, let R ji be
fixed prior and m j < n j.

Suppose that the failure times are from two continuous populations with PDFs and CDFs given in (1), (5), (2), and
(6), then the likelihood function for the two PT-IIC samples Tj1:m j :n j

< Tj2:m j :n j
< ... < Tjm j :m j :n j

can be written as
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, (9)

where C j = n j(n j −R j1 − 1)(n j −R j1 −R j2 − 1)...(n j −m j −∑
m j−1

k=1 R jk).

3 Maximum Likelihood Estimation and Fisher Information Matrix

In this section, the maximum Likelihood (ML) estimators of the parameters and the accelerated factor under PT-IICS are
discussed for IGLED and their asymptotic variance covariance matrix are derived.

Upon inserting (1), (3), (5), and (7) in (9), the likelihood function under PT-IIC data for IGLED can be obtained as:
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Let us define the log-likelihood function ℓ= log L(λ ,µ ,θ ,γ|t) ignoring the constant terms as:
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The normal equations of the unknown parameters and the accelerated factor can be given as:
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The ML estimators of the unknown parameters and the accelerated factor can be computed by solving the normal
equations. It is obvious that the normal equations cannot be solved analytically and the numerical method is indispensable.

The ML estimators of λ , µ , θ and γ can be denoted as λ̂ , µ̂, θ̂ and γ̂ . For this purpose, Mathematica11.3 was used.
Since the computation of Fisher information matrix (given by taking the expectation of the second partial derivative

of (11)) is very difficult, it seems appropriate to approximate these expected values by their ML estimates. Then, the
asymptotic variance-covariance matrix is given as [see, [29]];

I−1 =









Var(λ̂) Cov(λ̂ , µ̂) Cov(λ̂ , θ̂ ) Cov(λ̂ , γ̂)

Cov(µ̂, λ̂ ) Var(µ̂) Cov(µ̂ , θ̂ ) Cov(µ̂ , γ̂)

Cov(θ̂ , λ̂ ) Cov(θ̂ , µ̂) Var(θ̂ ) Cov(θ̂ , γ̂)

Cov(γ̂, λ̂ ) Cov(γ̂, µ̂) Cov(θ̂ , γ̂) Var(γ̂)









=







−ℓλ λ −ℓλ µ −ℓλ θ −ℓλ γ

−ℓµλ −ℓµµ −ℓµθ −ℓµγ
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−ℓγλ −ℓγµ −ℓγθ −ℓγγ







−1

(λ̂ ,µ̂,θ̂ ,γ̂)

, (16)

where ℓΦiΦ j
= ∂ 2ℓ

∂Φi∂Φ j
, i, j = 1,2,3,4. Accordingly, the approximate confidence intervals (ACIs) based on the asymptotic

variance-covariance matrix for the parameters λ , µ and θ and the accelerated factor γ are given respectively as:

λ̂ ± z α
2

√

Var(λ̂), µ̂ ± z α
2

√

Var(µ̂), θ̂ ± z α
2

√

Var(θ̂ ), and γ̂ ± z α
2

√

Var(γ̂),

where z α
2

is the percentile of the standard normal distribution with right tail probability α
2

.

4 Bayesian Estimation

This section describes the Bayes estimation which used to estimate the unknown parameters and the accelerated factor of
IGLED under CPALT using PT-IICS. For this purpose, several loss functions are proposed like squared error loss function
(SELF) and balanced squared error loss function (BSELF). For more details see, [8,30].

It is assumed that the priors of unknown parameters are independent. The priors of the parameters θ and γ can be
assumed as a gamma distributions with parameters (a1,b1) for θ and (a2,b2) for γ and can be written as

π(θ ) ∝ θ a1−1e−b1 θ , a1 > 0,b1 > 0, (17)

and

π(γ) ∝ γa2−1e−b2 γ , a2 > 0,b2 > 0. (18)
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Furthermore, the priors of parameters λ and µ can be considered as log-concave distributions (uniform distribution). They
can be written as
{

π(λ ) ∝ 1; λ > 0,
π(µ) ∝ 1; µ > 0,

(19)

for simplification, see [31]. Then the joint prior distribution can be written as:

π(λ ,µ ,θ ) ∝ θ a1−1 e−b1 θ γa2−1e−b2 γ . (20)

Across using Equations (10) and (20), one can write the joint posterior distribution of λ ,µ ,θ , and γ as
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Therefore, to compute the Bayes estimators of any function ω(λ ,µ ,θ ,γ), the posterior expected value must be calculated
as
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Equation (22) cannot be solved analytically, so the MCMC with Gibbs sampling is applied to approximate it.

4.1 Gibbs sampling technique

From Equation (21), the full conditional probability distribution for λ , µ , θ , and γ can be written as
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Lemma 1: ν1(λ |µ ,θ ,γ, t) and ν2(µ |λ ,θ ,γ, t) are a log-concave functions under θ ≥ 1.

Proof 1: See Appendix 1.

Lemma 2: ν3(θ |µ ,λ ,γ,x) is a log-concave function.

Proof 2: See Appendix 2.

Lemma 3: ν4(γ|µ ,θ ,λ , t) is a gamma distribution.

Proof 3: The result is clearly shown from the equation (26).

It is clear from Figures (1), (2), and (3) that the full conditional posterior distribution for λ , µ , and θ take the same
shape of the normal distribution. Upon using the idea in [32] with the fact that the full conditional posterior distribution
for λ , µ , and θ take the same shape of the normal distribution, the MCMC technique can be used to generate samples.
For this purpose, the M-H algorithm with the Gibbs sampling is a commonly used strategy in MCMC method.
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Fig. 1: The posterior density function of λ
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Fig. 2: The posterior density function of µ
The following procedures illustrates the steps for this strategy.

1.Start by guessing initial value of λ ,µ , θ and γ say λ0,µ0, θ0 and γ0.
2.Set j=1.

3.Generate γ j from Γ

[

m2 + a2,b2 −∑
m2
i=1(R2i + 1)

(

1− e
−

(

λ
t2i

+ µ

2 t2
2i

)θ
)]

.

4.Due to the idea in [32], generate λ j from ν1(λ j−1|µ j−1,θ j−1,γ j , t), µ j from ν2(µ j−1|λ j,θ j−1,γ j, t), and θ j from

ν3(θ j−1|µ j,λ j,γ j, t), with the normal proposal distributions N[λ j−1,Var(λ̂ )], N[µ j−1,Var(µ̂)], and N[θ j−1,Var(θ̂)]
where Var(.) is the variance of parameter obtained from the asymptotic variance-covariance matrix.

(a)Generate a proposal λ ∗ from N[λ j−1,Var(λ̂)], µ∗ from N[µ j−1,Var(µ̂)], and θ ∗ from N[θ j−1,Var(θ̂ )].
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Fig. 3: The posterior density function of θ

(b)Compute the acceptance probabilities

ρ(λ j−1,λ
∗) = min[1,

ν1(λ
∗|µ j−1,θ j−1,γ j ,t)

ν1(λ j−1|µ j−1,θ j−1,γ j ,t)
],

ρ(µ j−1,µ
∗) = min[1,

ν2(µ
∗|λ j ,θ j−1,γ j ,t)

ν2(µ j−1|λ j ,θ j−1,γ j ,t)
],

ρ(θ j−1,θ
∗) = min[1,

ν3(θ
∗|λ j ,µ j ,γ j ,t)

ν3(θ j−1|λ j ,µ j ,γ j,t) ].

(c)Generate u1, u2, and u3 from uniform (0,1) distribution.
(d)If u1 < ρ(λ j−1,λ

∗), then set λ ∗ = λ j, else set λ j = λ j−1.
(e)If u2 < ρ(µ j−1,µ

∗), then set µ∗ = µ j, else set µ j = µ j−1.
(f)If u3 < ρ(θ j−1,θ

∗), then set θ ∗ = θ j, else set θ j = θ j−1.
5.Set j=j+1.
6.Reiterate Steps 3-5 NG times to get (λ j,µ j,θ j,γ j), ( j = 1,2, ...,NG)
7.Then the approximate Bayes estimates of λ , µ , θ , and γ under several loss functions are given as:

Under SELF, the approximate Bayes estimates of λ , µ , θ , and γ are respectively given by

λ̂S =
1

NG−M

NG

∑
j=M+1

λ j,

µ̂S =
1

NG−M

NG

∑
j=M+1

µ j,

θ̂S =
1

NG−M

NG

∑
j=M+1

θ j,

and

γ̂S =
1

NG−M

NG

∑
j=M+1

γ j.

Under BSELF, the approximate Bayes estimates of λ , µ , θ , and γ are respectively given by

λ̂BS = w λ̂ +(1−w)
1

NG−M

NG

∑
j=M+1

λ j,

µ̂BS = w µ̂ +(1−w)
1

NG−M

NG

∑
j=M+1

µ j,

θ̂BS = w θ̂ +(1−w)
1

NG−M

NG

∑
j=M+1

θ j ,
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and

γ̂BS = w γ̂ +(1−w)
1

NG−M

NG

∑
j=M+1

γ j, w ∈ [0,1].

For building the credible interval (CRI) of λ , µ , θ , and γ under the MCMC with the Gibbs sampling technique, an idea
given by [33] is considered. Sort λ j, µ j, θ j, and γ j in ascending order. One can see that the 100(1−α)% CRI for λ , µ , θ ,
and γ can be given respectively by

(λ j,λ j+[(1−α)NG−M]), (µ j,µ j+[(1−α)NG−M]) , (θ j ,θ j+[(1−α)NG−M]) and (γ j,γ j+[(1−α)NG−M])

where j selected which gives the smallest length for intervals and [o] is the largest integer less than or equal to o.

5 Numerical Computations

To illustrate the computation of methods presented in the previous sections, a real life data and a simulated data are
presented.

5.1 Real data analysis

The failure data in hours of gold-aluminum bonds in three encapsulating resins for integrated circuits under
temperature-accelerated life test which was presented in [10], is considered. In this section, these data under the first
resin is slightly modified for illustrating our problem. The temperatures 213oC and 231oC are considered as use and
accelerated temperatures. First, the ML estimates is used under complete data to check the validity of the IGLED

Table 1: The failure data in hours under use and accelerated temperatures

Use temperature (213) 33.8 , 34.8 , 24.2, 20.5 , 22.5 , 18.8, 18.2 , 24.2

Accelerated temperature (231) 14.2, 14.6 , 14.8, 14.8 , 16.2 , 16.7 , 18.9

distribution to fit the data set for use and accelerated temperatures. The Kolmogorov-Smirnov (K-S) distance and the
corresponding P-value is obtained for use and accelerated temperatures. The results are summarized in Table (2). From
Table (2), the IGLED provide a good fit to the data sets.
Now, the PT-IIC samples are generated from the use and accelerated temperatures as given in Table (3). The estimation

Table 2: The ML estimates of parameters for IGLED, the K-S values and the associated P-values under use and accelerated temperatures

Data set Estimates K −S P-value

Use temperature (213) λ = 15.3206, µ = 264.286, θ = 4.4382 0.1714 0.9728

Accelerated temperature (231) λ = 8.8975, µ = 184.015, θ = 10.9213 0.2872 0.6106

Table 3: PT-IICSs using the use and accelerated temperatures with (n1,n2) = (8,7) and (m1,m2) = (6,5)

Temperature CS PT-IICSs

213 R1 = {0*5,2} {18.2, 20.5, 22.5, 24.2, 24.2, 33.8, 34.8 }
231 R2 = {2, 0*4 } {14.2, 14.8, 16.2, 16.7, 18.9 }

methods, which are given in Section 3 and Section 4, are used to obtain the estimates of the unknown parameters of the
IGLED distribution and the accelerate factor using the use and accelerated temperatures. The estimates based on real
data sets under different methods of estimation are tabulated in Table (4).
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Table 4: The ML and Bayes estimates, AICs and CRIs for (λ ,µ,θ ,γ) using real data

Estimates ML ACI SELF BSELF CRI

λ̂ 14.5958 {0,166.564} 14.3502 14.473 {0.686,27.3994}

µ̂ 394.827 {0.34,7400.99} 594.704 494.765 {5.8113,1543.86}

θ̂ 2.4838 {0,14.3818} 2.2462 2.36498 {1.1877,4.1299}

γ̂ 20.9811 {0,55.525} 29.1865 28.7599 {4.631,145.996}

5.2 Simulated data analysis

The two PT-IIC samples are generated by adapting the procedure used by [34] from IGLED with the parameters
(λ ,µ ,θ ,γ) = (0.2,0.02,2,12.5) of sizes of two samples n1 = 40 and n2 = 30 and two observed samples m1 = 20 and
m2 = 15 with two censoring schemes (CSs) R1 = {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,
1,0,1,0,1,0,1,0,1,0,1,0} and R2 = {5,0,0,0,0,0,0,5,0,0,0,0,0,0,5}. The two simulated PT-IIC samples can be
given as:
For use condition
t1i = {0.128301,0.146732,0.152845,0.161519,0.162132,0.181885,0.191791,0.196716,0.206666,0.212564,
0.232836,0.239599,0.254043,0.261641,0.299884,0.356677,0.384122,0.398528,0.509063,0.514587}
For accelerate condition
t2i = {0.111878,0.114752,0.12297,0.131734,0.13253,0.137284,0.138394,0.139216,0.140129,0.149177,
0.149652,0.152815,0.156706,0.157131,0.158206}.

Under the two simulated PT-IIC samples, the ML estimates of the parameters and accelerated factor can be computed.
Furthermore, the Bayesian estimation can be calculated for the parameters and accelerated factor. For this purpose, we
generate NG = 20000 MCMC samples and eliminate the first M = 2000 values as burn-in. Also, the non-informative
priors are considered with a weight function w = 0.5. The results of this subsection are summarized in Table (5)

Table 5: The ML and Bayes estimates, AICs and CRIs for (λ ,µ,θ ,γ) using simulated data

Estimates ML estimates ACI SELF BSELF CRI

λ̂ 0.1692 {0,0.5056} 0.2115 0.1903 {0.0807,0.2768}

µ̂ 0.0259 {0,0.1738} 0.0145 0.0202 {0.0001,0.0753}

θ̂ 2.0225 {0,4.5097} 2.2066 2.1145 {1.306,2.9011}

γ̂ 13.5096 {0,27.2825} 19.6187 16.564 {6.2748,50.4194}

6 Simulation Study

The principal reason for this section is to compare the estimators of the parameters by utilizing mean square error (MSE)
and average absolute bias (AAB). For varying values of n1 and n2 (number of two samples) and m1 and m2 (two observed
data) with different censoring schemes R1 and R2, a large number N = 1000 of PT-IIC samples are generated from IGLED.
Take the values of hyper parameters as (a1,b1) = (0.0,0.0) and (a2,b2) = (0.0,0.0) for non-informative prior and the true
values of λ , µ , θ and γ as (λ ,µ ,θ ,γ) = (0.6,0.3,1.3,1.6) with w = 0.5. To carry out the numerical study, the following
steps are required:

1.With different choice of n1, n2, m1, m2, R1 and R2, the PT-IIC samples are generated by adapting the procedure used
by [34] from IGLED with distribution function F(x).

2.The ML estimates of the unknown parameters and accelerated factor are computed using the results given in Section
(3).
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3.Across using the results obtained in Section (4), the Bayes estimates of the unknown parameters and accelerated factor
are calculated. For this purpose, we generate NG = 20000 MCMC samples and eliminate the first M = 2000 values
as burn-in.

4.Repeat Steps 1− 3, N = 1000 times.
5.Calculate the MSE and AAB of Φ .

The results obtained from the numerical study are presented in Tables (6-9). The most interesting aspect of these tables is
the comparison between different methods based on MSE and AAB of all estimates. It is evident from these tables that:

1.The MSE and AAB decrease for all estimates when n1, n2, m1 and m2 increase.
2.The MSE and AAB of almost cases based on Bayes estimates are better than MSE and AAB based on MLEs.
3.The MSE and AAB based on Bayes estimates under SELF is the best one for all cases.

Table 6: The AAB and the MSE of ML and Bayes estimates of parameters λ and µ under different PT-IICSs. (n1 = n2 = n and

m1 = m2 = m)

(n,m) CS λ µ
MLE SELF BSELF MLE SELF BSELF

(40,30) (15,0∗29) MSE 0.0304 0.0121 0.0177 0.0465 0.0120 0.0209

AAB 0.1410 0.0868 0.1056 0.1731 0.0868 0.01107

(0∗29,15) MSE 0.0188 0.0109 0.0125 0.0285 0.0119 0.0144

AAB 0.1116 0.0821 0.0895 0.1388 0.0883 0.0979

(0∗14,15,0∗15) MSE 0.0283 0.0107 0.0163 0.0444 0.0123 0.0211

AAB 0.1353 0.0820 0.1022 0.1674 0.0893 0.1125

(45,40) (5,0∗39) MSE 0.0286 0.0109 0.0163 0.0470 0.0091 0.0206

AAB 0.1389 0.0831 0.1046 0.1744 0.0737 0.1129

(0∗39,5) MSE 0.0281 0.0109 0.0157 0.0466 0.0083 0.0194

AAB 0.1394 0.0820 0.1024 0.1755 0.0693 0.1104

(0∗19,5,0∗20) MSE 0.0281 0.0103 0.0157 0.0468 0.0086 0.0200

AAB 0.1347 0.0805 0.1002 0.1702 0.0704 0.1084

(75,55) (20,0∗54) MSE 0.0268 0.0093 0.0145 0.0448 0.0063 0.0182

AAB 0.1331 0.0769 0.0977 0.1686 0.0609 0.1063

(0∗54,20) MSE 0.0175 0.0081 0.0096 0.0329 0.0051 0.0121

AAB 0.1093 0.0731 0.0788 0.1507 0.0544 0.0971

(0∗27,20,0∗27) MSE 0.0257 0.0088 0.0140 0.0464 0.0072 0.0197

AAB 0.1290 0.0740 0.0942 0.1740 0.0651 0.1123

(75,65) (10,0∗64) MSE 0.0260 0.0091 0.0142 0.0434 0.0059 0.0177

AAB 0.1336 0.0769 0.0975 0.1699 0.0612 0.1084

(0∗64,10) MSE 0.0210 0.0081 0.0107 0.0389 0.0045 0.0140

AAB 0.1210 0.0718 0.0848 0.1649 0.0527 0.0978

(0∗32,10,0∗32) MSE 0.0227 0.0080 0.0122 0.0405 0.0058 0.0165

AAB 0.1221 0.0716 0.0892 0.1628 0.0602 0.1028

7 Conclusion

In this paper, the problem of estimating the unknown parameters, and the accelerated factor under PT-IICS in CSPALT
was studied. For classical estimation the MLEs and ACIs were computed. Furthermore, the Bayes estimates using PT-
IICS was considered. It cannot be given in explicit form, so Gibbs sampling technique with MCMC has been used to
compute the Bayes estimators and constructed the CRIs. A real data set and a simulated data were analyzed for illustrative
purposes. Also, a simulation study was presented to compare the proposed methods. For future work, these methods can
be extended for other censoring schemes.
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Table 7: The AAB and the MSE of ML and Bayes estimates of parameters θ and γ under different PT-IICSs. (n1 = n2 = n and

m1 = m2 = m)

(n,m) CS θ γ
MLE SELF BSELF MLE SELF BSELF

(40,30) (15,0∗29) MSE 0.0366 0.0081 0.0167 0.2035 0.2573 0.2220

AAB 0.1533 0.0707 0.1045 0.3316 0.3538 0.3373

(0∗29,15) MSE 0.0283 0.0080 0.0139 0.2514 0.3299 0.2816

AAB 0.1327 0.0669 0.0928 0.3650 0.3952 0.3736

(0∗14,15,0∗15) MSE 0.0326 0.0083 0.0156 0.2131 0.2594 0.2294

AAB 0.1472 0.0893 0.1018 0.3343 0.3435 0.3326

(45,40) (5,0∗39) MSE 0.0335 0.0088 0.0164 0.1739 0.2023 0.1832

AAB 0.1487 0.0739 0.1039 0.3125 0.3155 0.3104

(0∗39,5) MSE 0.0316 0.0083 0.0147 0.1652 0.1955 0.1762

AAB 0.1445 0.0700 0.0988 0.3139 0.3251 0.3162

(0∗19,5,0∗20) MSE 0.0371 0.0095 0.0180 0.1578 0.1772 0.1632

AAB 0.1552 0.0740 0.1075 0.2986 0.3017 0.2965

(75,55) (20,0∗54) MSE 0.0322 0.0093 0.0162 0.1143 0.1279 0.1191

AAB 0.1470 0.0759 0.1038 0.2580 0.2616 0.2579

(0∗54,20) MSE 0.0276 0.0089 0.0132 0.1281 0.1491 0.1363

AAB 0.1366 0.0717 0.0940 0.2784 0.2844 0.2809

(0∗27,20,0∗27) MSE 0.0331 0.0094 0.0166 0.1209 0.1296 0.1233

AAB 0.1485 0.0744 0.1035 0.2577 0.2564 0.2553

(75,65) (10,0∗64) MSE 0.0305 0.0102 0.0159 0.0831 0.0875 0.0840

AAB 0.1408 0.0789 0.1020 0.2244 0.2234 0.2223

(0∗64,10) MSE 0.0253 0.0094 0.0124 0.0940 0.1077 0.01986

AAB 0.1305 0.0753 0.0903 0.2387 0.2468 0.2413

(0∗32,10,0∗32) MSE 0.0305 0.0097 0.0157 0.0863 0.0923 0.0878

AAB 0.1412 0.0776 0.1010 0.2290 0.2301 0.2284

Table 8: The AAB and the MSE of ML and Bayes estimates of parameters λ and µ under different PT-IICSs.

(n1,m1) R1 λ µ
(n2,m2) R2 MLE SELF BSELF MLE SELF BSELF

(50,30) (20,0∗29) MSE 0.0325 0.0133 0.0186 0.0498 0.0141 0.0236

(35,20) (15,0∗19) AAB 0.1454 0.0885 0.1079 0.1779 0.0955 0.1170

(0∗29,20) MSE 0.0163 0.01113 0.0114 0.0279 0.0241 0.0189

(0∗19,15) AAB 0.1015 0.0857 0.0857 0.1340 0.1321 0.1126

(0∗15,20,0∗14) MSE 0.0280 0.0108 0.0157 0.0459 0.0203 0.0242

(0∗9,15,0∗10) AAB 0.1346 0.0831 0.1009 0.1715 0.1219 0.1219

(50,40) (10,0∗39) MSE 0.0286 0.0105 0.0155 0.0501 0.0101 0.0223

(35,30) (5,0∗29) AAB 0.1397 0.0812 0.1010 0.1778 0.0782 0.1150

(0∗39,10) MSE 0.0221 0.0101 0.0128 0.0387 0.0149 0.0194

(0∗29,5) AAB 0.1232 0.0792 0.0912 0.1631 0.1014 0.1145

(0∗20,10,0∗19) MSE 0.0295 0.0112 0.0167 0.0512 0.0147 0.0248

(0∗15,5,0∗14) AAB 0.1401 0.0828 0.1046 0.1801 0.0963 0.1203

(75,50) (25,0∗49) MSE 0.0281 0.0110 00157 0.0472 0.0072 0.0197

(55,40) (15,0∗39) AAB 0.1360 0.0835 0.1012 0.1732 0.0651 0.1102

(0∗49,25) MSE 0.0162 0.0088 0.0098 0.0307 0.0136 0.0156

(0∗39,15) AAB 0.1033 0.0748 0.0797 0.1450 0.0956 0.1031

(0∗24,25,0∗25) MSE 0.0264 0.0086 0.0143 0.0460 0.0109 0.0209

(0∗20,15,0∗19) AAB 0.1342 0.0753 0.0980 0.1741 0.0825 0.1123

(75,65) (10,0∗64) MSE 0.0267 0.0106 0.0145 0.0474 0.0063 0.0197

(55,50) (5,0∗49) AAB 0.1328 0.0822 0.0980 0.1728 0.0607 0.1112

(0∗64,10) MSE 0.0230 0.0083 0.0122 0.0405 0.0080 0.0179

(0∗49,5) AAB 0.1280 0.0715 0.0914 0.1660 0.0713 0.1098

(0∗32,10,0∗32) MSE 0.0237 0.0087 0.0126 0.0457 0.0072 0.0195

(0∗25,5,0∗24) AAB 0.1249 0.0754 0.0914 0.1720 0.0656 0.1106
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Table 9: The AAB and the MSE of ML and Bayes estimates of parameters θ and γ under different PT-IICSs.

(n1,m1) R1 θ γ
(n2,m2) R2 MLE SELF BSELF MLE SELF BSELF

(50,30) (20,0∗29) MSE 0.037 0.0073 0.0161 0.3175 0.5369 0.4036

(35,20) (15,0∗19) AAB 0.1556 0.0699 0.1048 0.3965 0.4928 0.4281

(0∗29,20) MSE 0.0292 0.0059 0.0124 0.3602 0.6411 0.4746

(0∗19,15) AAB 0.1362 0.0654 0.0907 0.4177 0.5440 0.4650

(0∗15,20,0∗14) MSE 0.0370 0.0064 0.0148 0.2500 0.4008 0.3077

(0∗9,15,0∗10) AAB 0.1547 0.0678 0.1003 0.3621 0.4397 0.3864

(50,40) (10,0∗39) MSE 0.0330 0.0075 0.0153 0.1656 0.2524 0.1971

(35,30) (5,0∗29) AAB 0.1479 0.0695 0.1017 0.3070 0.3621 0.3253

(0∗39,10) MSE 0.0287 0.0062 0.0126 0.2242 0.3411 0.2718

(0∗29,5) AAB 0.1372 0.0645 0.0924 0.3521 0.4185 0.3778

(0∗20,10,0∗19) MSE 0.0339 0.0066 0.0147 0.2178 0.3169 0.2565

(0∗15,5,0∗14) AAB 0.1503 0.0654 0.1001 0.3391 0.3884 0.3557

(75,50) (25,0∗49) MSE 0.0320 0.0070 0.0147 0.1453 0.2059 0.1679

(55,40) (15,0∗39) AAB 0.1447 0.0682 0.0990 0.2874 0.3297 0.3022

(0∗49,25) MSE 0.0258 0.0052 0.0109 0.1733 0.2378 0.1986

(0∗39,15) AAB 0.1299 0.0599 0.0857 0.3030 0.3371 0.3144

(0∗24,25,0∗25) MSE 0.0348 0.0069 0.0154 0.1317 0.1700 0.1447

(0∗20,15,0∗19) AAB 0.1523 0.0666 0.1013 0.2788 0.2972 0.2824

(75,65) (10,0∗64) MSE 0.0296 0.0078 0.0145 0.1072 0.1552 0.1247

(55,50) (5,0∗49) AAB 0.1392 0.0703 0.0970 0.2552 0.2934 0.2678

(0∗64,10) MSE 0.0268 0.0057 0.0121 0.0993 0.1393 0.1133

(0∗49,5) AAB 0.1333 0.0601 0.0906 0.2428 0.2719 0.2521

(0∗32,10,0∗32) MSE 0.0318 0.0066 0.0147 0.1045 0.1507 0.1215

(0∗25,5,0∗24) AAB 0.1471 0.0662 0.1008 0.2474 0.2858 0.2612

Technology Development Fund, STDF, Egypt (Grants No. 5480 & 7972). The authors are grateful to the referees for
their constructive comments.

Appendix 1To prove Lemma 1, we want to prove that
∂ 2 log(ν1(λ |µ,θ ,γ,t))

∂λ 2 and
∂ 2 log(ν2(µ|λ ,θ ,γ,t))
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and the second derivative of log(ν2(µ |λ ,θ ,γ, t)) w.r.t. µ can be written as

∂ 2 log(ν2(µ |λ ,θ ,γ, t))
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> 1 for λ > 0, µ > 0, θ > 0 and t ji > 0, i = 1, ...,m and j = 1,2, then the result

is satisfied.

Appendix 2To prove Lemma 2, we want to prove that
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)

> 1 for λ > 0, µ > 0, θ > 0 and t ji > 0, i = 1, ...,m and j = 1,2, then the result

is satisfied.
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