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Abstract: The daily returns from financial market variables, such as stock indices, exhibit empirical distributions that are often heavy

or semi-heavy or more Gaussian-like tailed. Estimating value-at-risk (VaR) and other risk measures such as conditional VaR (expected

shortfall) depend highly on the distributional characteristics of the stock returns. The main objective of this study is to investigate the

relative performance of the generalized hyperbolic skew Student-t and Pearson type-IV distributions governing the generalized

autoregressive conditional heteroscedasticity (GARCH) innovations in estimation of the VaR for the daily returns from the FTSE/JSE

growth index (J280). The results show that the ARMA(1,1)-EGARCH(1,1) model with a generalized hyperbolic skew Student-t

distribution governing the innovations outperforms the competing models at estimating the VaR at a 95% level. Results also show that

the ARMA(1,1)-EGARCH(1,1) model with a Pearson type-IV distribution governing the innovations outperforms the other competing

models at estimating the VaR at all levels for the long position. This study recommends that the ARMA(1,1)-EGARCH(1,1) model

with generalized hyperbolic skew Student-t and Pearson type-IV distributions be used in the modeling of daily returns from stock

indices.

Keywords: FTSE/JSE Growth index, GARCH-type models, heavy-tailed distributions, value-at-risk.

1 Introduction

The FTSE/JSE growth index is designed to reflect portfolios focusing on earnings and revenue growth, weighted towards
those companies with identifiable growth characteristics, providing investors with a comprehensive measure of
performance of the South African stock market. The growth computes 3-year historical earnings per share growth, 3-year
historical sales growth, 2-year forward earnings per share growth, 2-year forward sales growth, and return on equity
times (1-payout ratio). The FTSE/JSE growth index evaluates the denationalisation of the South African financial market
[1]. There are 60 companies from different Industry Classification Benchmark (ICB) sectors that constitute the
FTSE/JSE growth index with total full gross market capital before the invest-ability weight of ZAR2 392 995 million.
The top ten companies with a total net market capital of ZAR2 392 995 million and their respective ICB sector are
shown in Table 1.

The South African market, just like other emerging markets, is highly volatile and unpredictable, making it a risky
market. As well-known in the finance literature, the majority of the financial returns exhibit two stylized facts: heavy
tails and volatility clustering [2,3,4]. In this paper, we consider the two stylized facts but focus on the returns of the daily
FTSE/JSE growth index. We introduce two types of heavy-tailed distributions i.e. the generalized hyperbolic skewed
Student-t and the Pearson type-IV distributions into the generalized autoregressive conditional heteroscedasticity
(GARCH) framework as in Bollerslev [5]. We compare the relative performance of the two heavy-tailed distributions
against the Student-t and the skewed Student-t distributions. We are interested in determining if the newly developed
generalized hyperbolic skewed Student-t or the Pearson type-IV distributions outperform the Student-t and the skewed
Student-t distributions in fitting the returns of the FTSE/JSE growth index. Literature is quite rich in models describing
the stylized properties of financial returns. These include the autoregressive conditional heteroscedasticity (ARCH)
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Table 1 FTSE/JSE Growth index: Top 10 constituents

Rank Company Name ICB Sector

1 BHP Billiton Mining

2 Anglo American Mining

3 SAB Miller Beverages

4 Sasol Oil & Gas Producers

5 MTN Group Mobile Telecommunications

6 Compagnie Financiere Richemont AG Personal goods

7 Naspers Media

8 Kamba Iron Ore Mining

9 Gold Fields Mining

10 Liberty International Real Estate

Source:FTSE-JSE Growth Index Fact Sheet (2018)

model [6], GARCH [5] and typical variants of the GARCH-type model such as the exponential GARCH [7], integrated
GARCH [8], GARCH-in-mean [9], long memory GARCH [10] and stable mixture GARCH [11]), to name a few. In
order to obtain good estimates for risk management, the challenge is to choose the appropriate GARCH-type model
which adequately captures volatility clustering and, at the same time, capturing the heavy-tailed-ness characteristic
(leptokurtosis) of financial returns. For instance, Bollerslev [5] considered the GARCH combined with the Student-t
distribution so that the Student-t distribution could capture conditional heavy tails of a variety of foreign exchange and
stock price indices returns. Paolella [12] and Tavares et al. [13] used the stable-APARCH model to capture both the
asymmetric effect and heavy tails of S&P 500 and FTSE returns. Su and Hung [14] showed that the GARCH model with
generalized error, normal and skewed normal distributions provide accurate value-at-risk (VaR) estimates of a range of
stock indices across international stock markets during the period of the United States of America subprime mortgage
crisis. Sin et al. [15] used the TARCH model combined with the generalized error distribution to model crude oil index
returns. In literature, there is no agreement on the type of GARCH model and heavy-tailed distribution to be used in
order to capture both volatility clustering and heavy tails of financial returns.

In this paper, we follow the model framework in Guo [16] and are particularly interested in the relative performance
of the GARCH-type model combined with generalized hyperbolic skewed Student-t and Pearson type-IV distributions in
estimating VaR for returns of the FTSE/JSE growth index. We are not aware of any literature relating to an application
of the GARCH-type model combined the generalized hyperbolic skewed Student-t and Pearson type-IV distributions to
the returns of the FTSE/JSE growth index. Actually, to the best of our knowledge, there is limited research on combining
dynamic volatility models with heavy-tailed distributions in modeling South African financial data, more specifically,
returns of the FTSE/JSE growth index.

The rest of the paper is organized as follows: the data used in this study is described in Section 2. In section 3, we
provide background theory on GARCH-type models, the generalized hyperbolic skewed Student-t distribution and
Pearson type-IV distribution, VaR and backtesting. Section 4 presents the empirical results and discussions. Finally,
Section 5 concludes this work.

2 Data

In this paper, the data examined consist of the daily closing price of the FTSE/JSE growth index (J280) for the period
4 July 2007 to 19 April 2018 obtained from IRESS. We divide the data into the in-sample dataset (4 July 2007 to 31
December 2014), which gives 1874 observations and an out-of-sample dataset (2 January 2015 to 31 December 2019),
which gives 1311 observations. The in-sample data is used for the model estimation and forecasting risk, while the out-
sample data is used for testing the value-at-risk (VaR) forecast. Investors are interested in the return of their investment.
We, therefore, obtain the daily log returns (rt) of South Africa’s (SAs) growth index. The log-returns are given by

rt = ln

(

Pt

Pt−1

)

, (1)

where rt is the natural logarithmic return of the daily price of South Africas growth index at time t, Pt is the daily closing
price of South Africas growth index at time t and Pt is the daily closing price of South Africas growth index at time t −1.
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Fig. 1 Time series plot of (Left Panel) daily FTSE/JSE Growth Index (Right Panel) daily returns of FTSE/JSE Growth Index from 4

July 2007-31 December 2014 (in-sample data set)

Figure 1(Left Panel) shows the times series plot of SA’s growth index, and Figure 1(Right Panel) shows the log-returns
plots of the in-sample data.

The time series plot shows that the daily growth index has a trend. This is confirmed by Mann-Kendall tau test statistic
(0.6540) with a p-value< 0.001 thus, rejecting the null hypothesis of no trend at 5% significance level. Therefore, it seems
to be non-stationary in the mean and variance. From Figure 1(Right Panel), it seems FTSE/JSE Growth Index returns are
stationary in the mean but with a non-constant variance indicating volatility clustering. The augmented-Dickey-Fuller
(ADF) test is used to test for stationarity in the mean and variance formally. The null hypothesis is that the log-return
series is non-stationary. The ADF statistic is −12.67 with a p-value < 0.001 thus, rejecting the null hypothesis at 5%
significance level, indicating that the growth index log-returns are stationary. Table 2 presents the descriptive statistics of
the daily returns of the FTSE/JSE growth index.

Table 2 Descriptive statistics for daily returns of FTSE/JSE growth index (J280)

No. of Mean Std. Min Max Skewness Excess p-value p-value

obs dev. Kurtosis of Ljung-Box of ARCH LM

statistic statistic

1873 0.0003 0.0149 −0.0832 0.0819 −0.0394 3.9620 0.0017 < 0.0001

The table reports summary statistics for the daily log returns (rt ) of FTSE/JSE growth index. The Ljung-Box Q(15) statistic test

for serial correlation up to 15 lags for rt .

The mean of the log-returns is close to zero and a significant moment of excess kurtosis (3.9620) illustrates the non-
normality (asymmetric property of the log-returns) of returns from the FTSE/JSE growth index. Since the p-value (0.0017)
for the Ljung-Box Q statistic is less than 0.05, we reject the null hypothesis of no presence of serial correlation in the log
returns. The p-value (< 0.0001) for the ARCH Lagrange Multiple (ARCH LM) statistic is less than 0.05. Thus, we reject
the null hypothesis of the absence of potential time-varying volatility (no arch effect) up to lag 15. These findings led to
the adoption of GARCH-type models, as discussed in Section 3.

3 Methodology

In this section, we present background theory on GARCH-type models combined with generalized hyperbolic skewed
Student-t and Pearson type-IV distributions. We also discuss VaR and backtesting procedures.
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3.1 GARCH-type models

A common finding in financial time series modeling is that the financial returns are correlated with their own lagged
values. Autoregressive moving average (ARMA) models are widely used to predict financial returns time series, and the
models’ properties are well documented in the literature. An ARMA(p,q) specification is of the form

rt = µ +
p

∑
i=1

φirt−i +
q

∑
j=1

θ jεt− j + εt , (2)

where µ is a constant term, φi is the ith autoregressive (AR) coefficient, θ j is the jth moving average (MA) coefficient
and εt the error term (innovation) at time t. p and q are the orders of AR and MA terms, respectively.

The GARCH-type models were first described and used by Engle [6]) and Bollerslev [5] and have been used
extensively in financial time series analysis that displays time-varying volatility. Engle [6] found that large returns often
follow large returns, or small returns often follow small returns, i.e. large returns or small returns often appear in clusters,
which is called conditional heteroscedasticity or the ARCH effect [17]. The ARCH effect explains the variation of the
returns as not a constant but rather dependent on the value of the previous volatility term. Assuming that the innovation
εt follows a GARCH-type process, the specification of the ARMA(p,q)-GARCH(m,s) model is of the form

rt = µ +
p

∑
i=1

φirt−i +
q

∑
j=1

θ jεt− j + εt ,

at = σtεt ,

σ2
t = α0 +

m

∑
i=1

αia
2
t−i +

s

∑
j=1

β jσ
2
t− j (3)

where α0 and β j are constant coefficients, mand s are orders and εt is a white noise sequence with mean 0 and
variance 1. When m and s are both equal to 1, the GARCH(1,1) model is also called the standard GARCH model, denoted
as the sGARCH model in this study. There are some variants of the GARCH-type models which capture the nonlinear
property of financial returns. We briefly describe the exponential GARCH (EGARCH) model used in this study. Nelson
[7] proposed the EGARCH model to overcome some weaknesses of the GARCH model, such as it responds equally
to positive and negative shocks, and the tail behavior of the GARCH model remains too short even with heavy-tailed
distributions governing the innovations. Formally, an ARMA(p,q)-EGARCH(m,s) model is defined as

rt = µ +
p

∑
i=1

φirt−i +
q

∑
j=1

θ jεt− j + εt ,

ln(σ2
t ) = α0 +

m

∑
i=1

αiln(α
2
t−i)+

s

∑
j=1

β jg(zt− j)

g(zt− j) = θ zt− j + γ(|zt− j|)−
√

2

π
at = σtεt (4)

where γ is usually set to 1. The GARCH model in (3) imposes the nonnegative constraints on the parameters αi and
β j; however in the EGARCH model, these restrictions are removed [18]. In this study, an ARMA(p,q)-EGARCH(m,s)
model that adds a heteroscedasticity term into the mean equation to show the impact of the volatility of the FTSE/JSE
growth index returns is used.

3.2 Distributions

An ARMA-GARCH-type model with Gaussian innovations usually fails to capture the heavy tailed-ness of financial
returns. In practice, the Student-t and the skewed Student-t distributions have been used to govern the innovations of
ARMA-GARCH-type models to capture the non-normality stylized property of financial returns. In this study, we explore
the performance of the generalized hyperbolic skewed Student-t and Pearson’s type-IV distributions.

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 1, 29-39 (2022) / www.naturalspublishing.com/Journals.asp 33

The generalized hyperbolic skewed Student-t distribution

The generalized hyperbolic skewed Student-t distribution is a special case of the widely used generalized hyperbolic
distribution (GHD). Barndorff-Nielsen and Halgreen [19] introduced the generalized hyperbolic distributions and at first
applied them to model grain size distributions of wind-blown sands. An important aspect is that GHDs embrace many
special cases, respectively limiting distributions of hyperbolic, normal inverse Gaussian (NIG), Student-t,
variance-gamma, and normal distributions. All of them have been used to model financial returns. The probability
density function of the GHD is given by

fGHD(x) =
(α2 −β 2)

λ
2 Kλ− 1

2
(α
√

δ 2 +(x− µ)2)exp(β (x− µ))
√

2παλ− 1
2 δ λ Kλ (δ

√

(α2 −β 2))(
√

δ 2 +(x− µ)2)
1
2−λ

(5)

where Kλ (.) is the modified Bessel function of the third kind with index λ and

δ ≥ 0, |β |< α if λ > 0

δ > 0, |β |< α if λ = 0

δ > 0, |β | ≤ α if λ < 0

λ is the parameter influencing the kurtosis, α is the parameter that determines the shape, β determines the skewness of
the distribution and satisfying 0 ≤ |β |< α . µ is the location parameter, and δ is the scale parameter. Letting λ =− ν

2
and

α → |β |, we have the generalized hyperbolic skewed Student-t distribution (GHtD) as

fGHtD(x) =
2

1−ν
2 |β | ν+1

2 K (ν+1)
2

(
√

β 2(δ 2 +(x− µ)2))exp(β (x− µ))

Γ
(

ν
2

)√
π(
√

δ 2 +(x− µ)2)
ν+1

2

(6)

where δ > 0 and Kν(.)∼
√

n
2x

exp(−x) for x→±∞ is also the modified Bessel function. The distribution has the important
property that one tail has a polynomial and the other an exponential behavior [19]. Another property of the GHtD is that
the distribution is almost tractable and the maximum likelihood estimation of its parameters is quite straight forward
using the EM-algorithm, making it very useful for financial application [20,21]. The GHtD was briefly mentioned by
Prause [22], Barndorff-Nielsen and Shepard [23], Mencia and Sentana [24] and Stefano and McNeil [25]. Aas and Haff
[20] showed that the GHtD fitted well to four different kinds of market variables; the total index for Norwegian stocks,
the SSBWG hedged bond index for international bonds, the Norwegian Krones/EUR exchange rate, and the EURIBOR
5-year interest rate.

The Pearson type-IV distribution

The generalized family of frequency curves, now known as the Pearsonian system of curves, was first developed by Karl
Pearson [26]. The Pearsons family includes members such as the normal, Student-t, F, gamma, beta, inverse Gaussian,
Pareto, and Pearson type-IV distributions. The probability density function (pdf) of Pearson type-IV distribution (PIVD)
is given by

fPIV D(x) = k

[

1+

(

x−λ

a

)2
]−m

exp

[

−vtan−1

(

x−λ

a

)]

(7)

where m >
1
2
, v,a > 0, λ are real-valued parameters, and −∞ < x < ∞. k =

22m−2|Γ (m− iv
2 )|2

πaΓ (2m−1)
is a normalization constant that

depends on m,v and a. The pdf of the PIVD is invariant under simultaneous change (a to −a, v to v). We specify a > 0
so that the curve is always bell-shaped. λ and a are the location and scale parameters, respectively, and v is the skewness
parameter. If v > 0, then the distribution is positive, while if v < 0, the distribution is negative. Parameter m controls
the tail thickness and can thus be regarded as a kurtosis parameter. If m is decreased, the kurtosis is increased, and for
smaller values of m, the tails of PIVD are much heavier than those of a Gaussian distribution. The PIVD is essentially
an asymmetric version of the Student-t distribution i.e. when v = 0. In literature, the PIVD has been used to model
returns from financial stock indices. Zhu and Li [27] showed that the PIVD fits well to the daily DJIA, FTSE, HSI, and
NASDAQ indexes from 3 January 2000, to 27 December 2007. Stavroyiannis et al. [3] compared the relative performance
of the GARCH(1,1)-PIVD model against the skewed Student-t distribution in estimating VaR of daily returns of DJIA,
NASDAQ Composite, FTSE100, CAC40, DAX, and S&P500. Bhattacharyya et al. [28] used a combination of PIVD and
GARCH(1,1) model to estimate VaR for stock indices of 14 countries.
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3.3 Value-at-Risk and Backtesting

Value-at-Risk (VaR) is a risk management tool that has become a benchmark for measuring market risks. This risk measure
is used to evaluate the maximum possible loss for a portfolio over a given time period [29]. According to Brooks and
Persand [30], there are two main approaches to calculating VaR for financial data, namely the parametric method and
the non-parametric method. In this paper, we estimate VaR using the proposed distributions (the parametric method) and
compare them with the historical VaR values derived through a non-parametric method.

For a random variable X with distribution function F over a specified time period, the VaR (for a given probability p)
can be defined as the p-th quantile of F , i.e.,

VaRp = F−1(1− p),

where F−1 is the quantile function [31].
The strength of a model is its ability to forecast accurate VaR estimates for adequate capitalization. In this work, we test

VaR model identification and effectiveness by utilizing the widely accepted Kupiec likelihood ratio (LR) unconditional
coverage test [32]. The Kupiec test utilizes the fact that a good model should have its proportion of violations of VaR
estimates close to the corresponding tail probability, α . The method consists of calculating xα , the number of times the
observed returns fall below (for long positions) or above (for short positions) the VaR estimate at level α , i.e., rt < VaRα

or rt > VaRα , and then comparing the corresponding failure rates to α [33, 34]. The null hypothesis is that the expected
proportion of violations is equal to α . Under this null hypothesis, where N is the sample size, the Kupiec statistic, given
by

LRUC = 2ln

(

(

xα

N

)xα (

1− xα

N

)N−xα)

− 2ln
(

αxα
(1−α)N−xα

)

, (8)

is asymptotically distributed according to a chi-square distribution with one degree of freedom.

3.4 Approach

In this paper, the following steps are used for calculating VaR and then backtesting using the Kupiec test. An
ARMA(1,1)-EGARCH(1,1) model is fitted to the return using the pseudo maximum likelihood procedure and using a
normal distribution governing the innovations.

(a)The standardized residuals are extracted from the model.
(b)The GHtD (Model 1) and PIVD (Model 2) are fitted to the standardized residuals using the maximum likelihood

estimation.
(c)The VaR is calculated for the two models.

4 Empirical Results

This section presents the empirical evidence from the returns of the FTSE/JSE growth index dataset. In this section, we
report the parameter estimates for all the models proposed in Section 3 and the accuracy of VaR forecast.

4.1 GARCH-type model fitting

In the first step, we fit the GARCH type models to the returns and check its adequacy as the returns have a significant
moment of excess kurtosis. The GARCH(1,1) and the EGARCH(1,1) models are fitted to the FTSE/JSE growth index
log-returns using the MLE method. Table 3 shows the maximum likelihood parameter estimates and the standard errors in
brackets for the GARCH-type models with normal distribution innovations. The Akaike information criterion (AIC) and
Bayesian information criterion (BIC) model selection criteria are also reported in Table 3.

From Table 3, it is observed that the ML parameters estimates for the GARCH-type models fitted to the returns
of the FTSE/JSE growth index are significant at a 5% level of significance. The ARMA(1,1)-EGARCH (1,1) model
has the lowest AIC and BIC values and is thus selected as the best GARCH-type model. The extracted standardized
residuals of the ARMA(1,1)-EGARCH(1,1) model has no serial correlation since the p-value of the Ljung-Box statistic
= 0.3779 > 0.05. In addition, the model has captured the volatility clustering with a p-value of the ARCH-LM statistic
= 0.1488 > 0.05. Table 4 shows the descriptive statistics of the extracted standardized residuals.
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Table 3 ML Parameter estimates of GARCH-type models

Parameter estimate ARMA(1,1)- sGARCH ARMA(1,1)- EGARCH (1,1)

µ̂ 0.0014(0.0038)∗∗ −
φ̂1 −0.9749(0.0001)∗∗∗ −0.6608(0.0415)∗∗∗

θ̂1 0.9849(0.0001)∗∗∗ 0.6960(0.0397)∗∗∗

α̂0 0.0001(0.0054)∗∗ −0.0939(0.0014)∗∗∗

α̂1 0.0727(0.0001)∗∗∗ 0.1077(0.0094)∗∗∗

β̂1 0.9209(0.0001)∗∗∗ 0.9891(0.0000)∗∗∗

γ̂ − 0.0850(0.0058)∗∗∗

AIC −5.9725 −6.0047

BIC −5.9548 −5.9870

Note: ∗,∗∗,∗∗∗ indicates p-value that is significant at 10%, 5%, and 1% level of significance respectively.

Table 4 Descriptive statistics of standardized residuals of the ARMA(1,1)-EGARCH(1,1) model

No. of Mean Std. Min Max Skewness Excess p-value p-value

obs dev. Kurtosis of Ljung-Box of ARCH LM

statistic statistic

1873 0.0211 0.9996 −3.5200 4.6038 −0.1521 0.3234 0.3779 < 0.1488

The table reports summary statistics for the standardized residuals

From Table 4, it is observed that the moment of excess kurtosis (0.3234) of the standardized residuals from the fitted
the ARMA(1,1)-EGARCH(1,1) model with a normal distribution governing the innovation is significantly different from
zero. This indicates that there is still relatively more value in the tail; therefore, the standardized residuals seem to have
a tail heavier than that of the normal distribution. To check for the non-normality of the standardized residuals, the Q-Q
plot and Jarque-Bera test are employed. Figure 2 shows the Q-Q plot of the standardized residuals.

Fig. 2 Q-Q plot of standardized residuals of the ARMA(1,1)-EGARCH(1,1) model with normal distribution governing the innovations

From Figure 2, the Q-Q plot suggests that the standardized residuals seem to diverge from the normal distribution
at the tails. This is confirmed by the Jarque-Bera test statistic (13.5808) with a p-value(0.0011)> 0.05. This confirms
that the standardized residuals of the ARMA(1,1)-EGARCH(1,1) model have a much heavier tail than that of the normal
distribution. This suggests that the standardized residuals are realized from a heavy-tailed distribution. Thus, justifying
the use of heavy-tailed distributions to model the extracted standardized residuals from the ARMA(1,1)-EGARCH(1,1)
model.
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In this study, we fit the generalized hyperbolic skewed Student-t (GHt) and the Pearson type-IV (PIV) distributions
to the standardized residuals from the ARMA(1,1)-EGARCH(1,1) model. We also fit the Student-t and the skewed
Student-t distributions. In literature, the Student-t distribution (StD) and the skewed Student-t distribution (SStD) are
most commonly used to estimate market risk. Fitting a statistical distribution usually assumes that the data are
independent and identically distributed, i.e. randomness, with no serial correlation and no heteroscedasticity. We tested
for randomness using the Bartels rank test. The null hypothesis is independent and identically distributed (i.i.d.). The
p-value of the Bartels rank test statistic is 0.7136 > 0.05, indicating that the standardized residuals are i.i.d. From Table
3, we noted that the standardized residuals are not serially correlated and have no heteroscedasticity. The parameters are
estimated using the method of maximum likelihood. Table 5 reports the ML parameter estimates with standard errors in
brackets of the fitted distributions.

Table 5 ML Parameter estimates of GARCH-type models

Model µ̂ δ̂ σ̂ η̂ AD-statistic

StD 0.0268 − 0.9919 24.7950 0.9986(0.3580)
SStD 0.0207 0.8999 0.9996 23.6687 0.1158(0.9999)
GHtD 0.6121 4.5930 −0.6127 23.83668 0.2083(0.9880)
PIVD 11.5479 4.3386 0.92389 4.3910 0.1894(0.9930)

Note: p-value of the AD statistics is given in parenthesis

From Table 5, it is evident that the distributions fit the extracted standardized residuals well with the p-values of the
AD statistic> 0.05. We then calculate VaR estimates for each model. The VaR estimates are calculated for both the long
and the short positions. The VaR for the short position is associated with the right quantiles of the distribution at a given
probability level. The VaR for the long position is associated with the left quantiles of the distribution at a given probability
level. Table 6 presents the VaR estimates for the ARMA(1,1)-EGARCH(1,1)-StD, ARMA(1,1)-EGARCH(1,1)-SStD,
ARMA(1,1)-EGARCH(1,1)- GHtD and ARMA(1,1)-EGARCH(1,1)- PIVD models at different levels of significance for
both the long and short position.

From Table 6, we note that the ARMA(1,1)-EGARCH(1,1) with the StD governing the innovations produced high
VaR estimates at the short position, and low VaR estimates at the long position. This suggests that the ARMA(1,1)-
EGARCH(1,1)-StD model is inadequate to fully capture the ’stylized facts’ exhibited by the FTSE/JSE SA’s growth index
returns. This phenomenon is well known in the literature.

In order to check model adequacy in estimating the VaR estimate, the VaR estimates are backtested using the Kupiec
likelihood ratio test. Table 7 shows the p-value of the Kupiec likelihood ratio test statistic at different levels for the
in-sample data.

From Table 7, the VaR estimates from the ARMA(1,1)-EGARCH(1,1)-StD model produced the lowest p-value for
the Kupiec likelihood ratio test statistic at all VaR levels. The ARMA(1,1)-EGARCH(1,1)- StD model produced a p-value
< 0.05 for the Kupiec likelihood ratio test statistic at a 95% VaR level. This indicates that the ARMA(1,1)-EGARCH(1,1)-
StD model performs weakly in estimating VaR for the FTSE/JSE growth index returns. The best model for VaR estimation
for the FTSE/JSE growth index returns differ for different VaR levels. We observe that for the long position, at a 2.5% VaR
level, the ARMA(1,1)-EGARCH(1,1)-PIVD model produced the highest and significant p-value. This indicates that at
this level, the best VaR model is the ARMA(1,1)-EGARCH(1,1)-PIVD model. While at a 5% VaR level, the ARMA(1,1)-
EGARCH(1,1)-SStD model produced the highest p-value. At a 10% VaR level, the ARMA(1,1)-EGARCH(1,1)-GHtD
and ARMA(1,1)-EGARCH(1,1)-PIVD models produced the highest p-values. For the short position, we observe the
ARMA(1,1)-EGARCH(1,1)- SStD model outperforming the other models under investigation at all VaR levels. We also

Table 6 VaR estimates for the ARMA(1,1)-EGARCH(1,1) model combined with different distributions

Distribution VaR estimates

governing the Long position Short position

innovations 2.5% 5% 10% 97.5% 95% 90%

StD -1.9471 -1.6101 -1.2346 2.0007 1.6638 1.2882

SStD -2.0423 -1.6742 -1.2669 1.9022 1.5960 1.2529

GHtD -2.0302 -1.6589 -1.2535 1.9204 1.6130 1.2647

PIVD -2.0358 -1.6623 -1.2547 1.9160 1.6092 1.2622
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Table 7 : In-sample dataset: VaR backtesting of returns of FTSE/JSE growth index

Distribution In-Sample dataset

governing the the p-value of Kupiec likelihood ratio test statistic

innovations Long position Short position

2.5% 5% 10% 97.5% 95% 90%

StD 0.1451 0.2806 0.8356 0.4677 0.0088 0.1765

SStD 0.6420 0.7239 0.8591 0.7857 0.8607 0.9570

GHtD 0.5423 0.4414 0.9816 0.6728 0.4111 0.9202

PIVD 0.6421 0.5052 0.9816 0.6728 0.5453 0.9201

Note: Values in Bold are the highest p-values at a given probability level

Table 8 : Out-of-sample dataset: VaR backtesting of returns of FTSE/JSE growth index

Distribution Out-of-Sample dataset

governing the the p-value of Kupiec likelihood ratio test statistic

innovations Long position Short position

2.5% 5% 10% 97.5% 95% 90%

StD 0.0521 0.2223 0.2222 0.0191 0.0260 0.0877

SStD 0.8974 0.9808 0.9721 0.9247 0.6520 0.9353

GHtD 0.8974 0.8922 0.9353 0.8974 0.9808 0.7884

PIVD 0.8974 0.9808 0.9722 0.9247 0.8922 0.8797

Note: Values in Bold are the highest p-values at a given probability level

checked the performance of the models in the out-of-sample dataset. Table 8 shows the p-value of the Kupiec likelihood
ratio test statistic at different levels for the out-of-sample data.

From Table 8, it is observed that for the long position, all the models under investigation adequately estimate the
VaR. At a 2.5% VaR level, the ARMA(1,1)-EGARCH(1,1)-SStD, ARMA(1,1)-EGARCH(1,1)-GHtD and ARMA(1,1)-
EGARCH(1,1)-PIVD models produced the highest p-values. While at a 5% VaR level, the ARMA(1,1)-EGARCH(1,1)-
SStD and ARMA(1,1)-EGARCH(1,1)-PIVD models produced the highest p-values. At 10% VaR level, the ARMA(1,1)-
EGARCH(1,1)-PIVD model outperforms the other models. For the short position; at a 97.5% VaR level, the ARMA(1,1)-
EGARCH(1,1)-SStD and ARMA(1,1)-EGARCH(1,1)-PIVD models are the best VaR estimating models and at a 95%
VaR level, the ARMA(1,1)-EGARCH(1,1)-GHtD model outperforms the other models in estimating VaR. At a 90% VaR
level, the best performing model is the ARMA(1,1)-EGARCH(1,1)- SStD model.

5 Conclusion

In this paper, we examined the suitability of using the ARMA(1,1)-EGARCH(1,1) framework combined with
heavy-tailed distributions for modeling VaR for the FTSE/JSE Growth Index log returns. The
ARMA(1,1)-EGARCH(1,1) framework was used to capture volatility and asymmetric characteristics exhibited by
financial returns, while the heavy-tailed distributions are used to capture the heavy-tailed-ness of the actual return
distributions. The GHt and PIV distributions are applied to the independent and identically standardized residuals from
the ARMA(1,1)-EGARCH(1,1) model with normal innovations, and the VaR is calculated at different levels. The VaR
models are compared to the ARMA(1,1)-EGARCH(1,1) models with the StD and SStD governing the innovations.
Adequacy of the resulting VaR estimates was tested using the Kupiec likelihood ratio test. Backtesting using the Kupiec
likelihood ratio test has shown that the ARMA(1,1)-EGARCH(1,1) with the PIVD governing the innovations is the most
robust model for both the long and short positions. The ARMA(1,1)-EGARCH(1,1) with a GHtD governing the
innovation is the most robust model at a 95% VaR level. Thus, for the long position, the backtesting procedure
emphasized the superiority of PIVD model over the Student-t distribution and the GHtD models. While, for the short
position, the backtesting procedure emphasized the superiority of the GHtD model over the other competing models at a
95% VaR level, thus providing an excellent candidate as an alternative distributional scheme for estimating VaR. For
future studies, we recommend developing a VaR estimating framework using a GHt-normal- PIV distribution mixture
model.

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


38 R. Chifurira, K. Chinhamu: Estimating South Africa’s growth risk using...

Acknowledgement

The authors acknowledges the financial support by the University Capacity Development Programme (UCDP) National
Collaborative Project: Strengthening Academic Staff Development in Mathematical and Statistical Sciences in South
Africa.
The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that
improved this paper.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] M.R. Makhwiting, C. Sigauke and M Lesaoana, Modeling tail behavior of returns using the generalized extreme value distribution.

Economics, Management and Financial Markets, 9(1), 41-52, (2014).

[2] A. Maree, P. Card, A. Murphy and P. Kidman, GARCH models with a new class of heavy-tailed distribution for the silver returns.

Working paper, (2017).

[3] S. Stavroyiannis, I. Makris, V. Nikolaidis and L. Zarangas, Econometric modeling and value-at-risk using the Pearson type-IV

distribution. International Review of Financial Analysis, 22, 10-17 , (2012).

[4] B. Mandelbrot, The variation of some other speculative prices. The Journal of Business, 40(4), 393-413 , (1967).

[5] T. Bollerslev, A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of economics

and statistics, 542-547,(1987).

[6] R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica,

987-1007, (1982).

[7] D.B. Nelson, Conditional Heteroskedasticity in Asset Return: A New Approach. Econometrica, 59, 347-370 , (1991).

[8] R.F. Engle and T. Bollerslev, Modeling the persistence of conditional variances. Econometric Reviews, 5(1), 1-50,(1986).

[9] R.F. Engle, D.M. Lilien and R.P. Robins, Estimating time-varying risk premia in the term structure: The ARCH-M model.

Econometrica: Journal of the Econometric Society, 391-407 , (1987).

[10] C. Conrad and M. Karanasos, The impulse response function of the long memory GARCH process. Economics Letters, 90(1),

34-41,(2006).

[11] S.A. Broda, M. Haas, J. Krause, M. S. Paolella and S.C. Steude, Stable mixture GARCH models. Journal of Econometrics, 172(2),

292-306, (2013).

[12] M.S. Paolella, Stable-GARCH models for financial returns: fast estimation and tests for stability. Econometrics, 4(2), 1-28, (2016).

[13] A. Tavares, J. Curto and G. Tavares, Modeling heavy tails and asymmetry using ARCH-type models with stable Paretian

distributions. Nonlinear Dynamics, 51(1), 231-243, (2008).

[14] J.B. Su and J.C. Hung, An empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation. Economic

Modelling, 28(3), 1117-1130, (2011).

[15] K.J. Sin, C.W. Cheong and T.S. Hooi, Level shift two-components autoregressive conditional heteroscedasticity modeling for WTI

crude oil market, In AIP Conference Proceedings , (2017).

[16] Z.Y. Guo, GARCH models with fat-tailed distributions and the Hong Kong stock market returns. International Journal of Business

and Management, 12(9), 28, (2017).

[17] E. J. Lee, N. Klumpe, J. Vlk and S.H. Lee, Modeling Conditional Dependence of Stock Returns Using a Copula-based GARCH

Model. International Journal of Statistics and Probability, 6(2), 32-41 , (2017).

[18] D.B. Nelson and C.Q. Cao, Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics,

10(2), 229-235, (1992).

[19] O. E. Barndorff-Nielsen and C. Halgreen, , Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 38(4), 309-311, (1977).

[20] K. Aas and I. H. Haff, The generalized hyperbolic skew Student-t distribution. Journal of financial econometrics, 4(2), 275-

309,(2006).

[21] M.C. Jones and M.J. Faddy, A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 65(1), 159-174 , (2003).

[22] K. Prause, The generalized hyperbolic model: Estimation, financial derivatives, and risk measures, PhD thesis, University of

Freiburg, Germany, (1999).

[23] O.E. Barndorff-Nielsen, and N. Shephard, Non-Gaussian OrnsteinUhlenbeck-based models and some of their uses in financial

economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 167-241, (2001).

[24] J. Menca and E. Sentana, Estimation and testing of dynamic models with generalized hyperbolic innovations, (2004),

https://ssrn.com/abstract=790704.

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 1, 29-39 (2022) / www.naturalspublishing.com/Journals.asp 39

[25] D. Stefano and A. McNeil, The t copula and related copulas,(2004), http://www, math. ethz. ch/–mcneil/ftp/tCopula, pdf.

[26] R. Cheng, Using Pearson type IV and other cinderella distributions in simulation, Proceedings of the 2011 Winter Simulation

Conference, University of Southampton, 457-468 , (2011).

[27] K. Zhu and W.K. Li, A new Pearson-type QMLE for conditionally heteroscedastic models. Journal of Business and Economic

Statistics, 33(4), 552-565, (2015).

[28] M. Bhattacharyya, A. Chaudhary and G. Yadav, Conditional VaR estimation using Pearsons type IV distribution. European Journal

of Operational Research, 191(2), 386-397, (2008).

[29] A. J. McNeil and R. Frey, Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value

approach. Journal of empirical finance, 7(3-4), 271-300 , (2000).

[30] C. Brooks and G. Persand, The effect of asymmetries on stock index return Value-at-Risk estimates. The Journal of Risk Finance,

4(2), 29-42, (2003).

[31] R.S. Tsay, An introduction to the analysis of financial data with R,John Wiley and Sons, New Jersey, (2014).

[32] P. Kupiec, Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 2, 173-184 , (1995).

[33] R. Chifurira and K. Chinhamu, Using the generalized Pareto and Pearson type-iv distributions to measure value-at-risk for the

daily South African mining index. Studies in Economics and Econometrics, 41(1), 33-54, (2017).

[34] K. Chinhamu, C. K. Huang, C.S. Huang and J. Hammujuddy, Empirical Analyses of Extreme Value Models for the South African

Mining Index. South African Journal of Economics, 83(1), 41-55, (2015).

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Data
	Methodology
	Empirical Results
	Conclusion

