
J. Stat. Appl. Pro. 11, No. 1, 75-88 (2022) 75

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/110106

Characterizations and Testing NBRUL Class of Life

Distributions Based on Laplace Transform Technique

Rashad M. EL-Sagheer1,∗, Shaban E. Abu-Youssef1, Amr Sadek1, Khairi Mohamed Omar2 and Walid B. H. Etman1

1 Mathematics Department, Faculty of Science, AL-Azhar University, Nasr City 11884, Cairo, Egypt
2 Business Administration Department, College of Administrative Sciences, Applied Science University, Kingdom of Bahrain

Received: 14 Aug. 2021, Revised: 12 Sep. 2021, Accepted: 30 Sep. 2021

Published online: 1 Jan. 2022

Abstract: In this paper, we investigate the probabilistic characteristics for the new better than renewal used in laplace transform order

class, the closure properties under various reliability operations such as convolution, mixture, mixing, homogeneous Poisson shock

model are studied. Moreover, a new hypothesis test is constructed to test exponentiality against the new better than renewal used in

laplace transform order based on Laplace transform technique. Pitman’s asymptptic efficiency of the test are studied and compared

with other tests. Furthermore, the powers of these test are calculated for some commonly used distributions in reliability such as Linear

Failure Rate, Gamma and Weibull distributions. Finally, sets of real data are used as a practical applications of the proposed test.

Keywords: Convolution; Mixture; Mixing; Poisson shock model; Laplace transform order.

ACRONYMS
DLT TF Decreasing Laplace transform of time to failure
HNBUE(HWBUE) Harmonic new better (worse) than used in expectation
IFR(DFR) Increasing (decreasing) failure rate
IFRA(DFRA) Increasing (decreasing) failure rate average
NBAFR New better than average failure rate
NBRU(NWRU) New better (worse) than renewal used
NBRUE New better than renewal used in expectation
NBRUL(NWRUL) New better (worse) than renewal used in Laplace transform
NBU(NWU) New better (worse) than used
NBUE(NWUE) New better (worse) than used in expectation
NBURFR− t0 New better than used renewal failure rate at specific age
ODLlt Overall decreasing life in Laplace transform order
RNBUmg f Renewal new better than used in moment generating function

1 Introduction

Certain classes of life distributions and their different versions have been introduced in reliability, the applications of these
classes of life distributions can be seen in biological science, biometrics, engineering, maintenance, and social, and also
there are many aging criteria in reliability engineering that describe the deterioration of coherent engineering systems or
their units. These criteria are useful for maintenance engineers and design in constructing optimal maintenance policies.
Stochastic comparisons between probability distributions also play a basic role in probability, statistics, and some related
areas, such as reliability theory, survival analysis, economics, and actuarial science. Therefore, statisticians and reliability
analysts have shown a growing interest in modelling survival data using classifications of life distributions based on some
aspects of ageing.
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During the past decades, various classes of life distributions have been proposed in order to model different aspects of
aging. The best known of these classes are IFA, IFRA, NBU, NBUE, HNBUE, DMRL and NBRU. Bryson and Siddiqui
[1] and Barlow and Proschan [2] present the properties for these aging concepts and their duals DFR, DFRA, NWE,
NWUE, IFR and NBU. Klefsjo [3] studied properties for HNBUE and HNWUE classes. Abouammoh et al. [4] studied
properties for NBRU class. El-Arishy et al. [5,6] studied characterizations and testing hypotheses for RNBUmg f class and
DLTT F class.

Testing exponentiality against some classes of life distributions has been introduced by many researchers. For testing
exponentiality versus NBU class see Kumazawa [7]. Hassan et al [8] for NBRUmg f class. Abu-Youssef et al. [9] for
UBAC(2) class. Mahmoud et al. [10,11] for NBRUL class and Mahmoud et al [12] for ODLlt class.

Here we will use Laplace transform technique for the class of NBRUL, and apply it for testing. Many authors proposed
tests for exponentiality versus some classes of life distributions based on Laplace transform order was studied by some
authors, Atallah et al. [13], Mahmoud et al. [12], Gadallah [14], Abu-Youssef et al. [15].

The rest of this paper can be organized as follows. In Section 2, we discuss preservation under convolution, mixture,
mixing, homogeneous poisson shock model for NBRUL class of life distribution. In Section 3, we present testing
exponentiality against NBRUL class based on Laplace transform technique. The Pitman asymptotic for several common
alternatives is obtained in Section 4. In section 5, Monte Carlo null distribution critical points and the power estimates
are simulated. In section 6, a proposed test is presented for right censored data. Finally, we discuss some application to
demonstrate the utility of the proposed statistical test in Section 7.

1.1 Renewal classes

Let X be a random variable represents life time of a device (system or component) with a continuous life distribution
F (t) . Upon arising the failure of the device, it can be substituted by a sequence of mutually independent devices which
are identically distributed with the same life distribution F (t) . The following stationary renewal distribution constitutes
the remaining life distribution of the device under operation at time t.

Wf (x) = µ−1
∫ t

0
F (y)dy, t ≥ 0, (1)

where µ =
∫ ∞

0 F (u)du.
It is easy to show that

W f (x) = µ−1
∫ ∞

x
F (y)dy, t ≥ 0. (2)

For extra details, see Barlow and Proschan [2] and Abouammoh and Ahmed [16]. Now we need to present the definitions
of the NBRU (NWRU) and NBRUL (NWRUL) classes of life distributions.

Definition 1.Abouammoh et al. [17]. If X is a random variable with survival function F̄ (x) , then X is said to have new

better (worse) than renewal used property, denoted by NBRU (NWRU), if

WF (x|t)≤ (≥)F (x|0) , x ≥ 0, t ≥ 0,

or

WF (x+ t)≤ (≥)WF (t)F (x) , x ≥ 0, t ≥ 0. (3)

Depending on the definition (1), Mahmoud et al. [10] defined a new class which is called new better (worse) than
renewal used in Laplace transform order NBRUL (NWRUL) as follows

Definition 2.X is said to be NBRUL (NWRUL) if
∫ ∞

0
e−sxWF (x+ t)dx ≤ (≥)WF (t)

∫ ∞

0
e−sxF (x)dx, x, t,s ≥ 0. (4)

Using (2), then (4) is equivalent to
∫ ∞

0

∫ ∞

x+t
e−sxF(u)dudx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(u)dudx, (5)

and (5) is equivalent to
∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(y)dydx, (6)

It is obvious that NBRU⇒NBRUL⇒NBRUE.

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 1, 75-88 (2022) / www.naturalspublishing.com/Journals.asp 77

2 Some Properties of The NBRUL Class

In this section we study the closure properties of the new better than renewal used in laplace transform order under some
reliability operations such as convolution, mixture and the shock model in homogeneous case.

2.1 Convolution properties

The aim of this subsection is to discuss preservation under convolution properties of NBRUL class.

Theorem 1.The NBRUL class is preserved under convolution.

Proof.Suppose that F1 and F2 are two independent NBRUL lifetime distribution and their convolution is given by

F(z) =

∫ ∞

0
F1(z− u)dF2(u).

Therefore
∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx =

∫ ∞

0
e−sx

∫ ∞

t

∫ ∞

0
F1(x+ y− u)dF2(u)dydx

=
∫ ∞

0

∫ ∞

0

∫ ∞

t
e−sxF1(x+ y− u)dydxdF2(u).

Since F̄1 is NBRUL, then
∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx ≤

∫ ∞

0

∫ ∞

0

∫ ∞

t
e−sxF1(x)F1(y− u)dydxdF2(u)

≤
∫ ∞

0
e−sxF1(x)

∫ ∞

t

∫ ∞

0
F1(y− u)dF2(u)dydx

≤
∫ ∞

0
e−sxF1(x)

∫ ∞

t
F(y)dydx,

by using F i(z)≤ F(z) for i = 1,2 we get

∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(y)dydx,

which complete the proof.

The following example is presented to show that the NW RUL class is not preserved under convolution.

Example 1.The convolution of the exponential distribution F(u) = 1− e−u with itself yields the gamma distribution of
order 2: G(u) = 1− (1+ u)e−u, with strictly increasing failure rate. Thus G(u) is not NW RUL.

2.2 Mixture properties

The following theorem is stated and proved to show that the NW RUL class is preserved under mixture.

Theorem 2.The NWRUL class is preserved under mixture.

Proof.Suppose that F(x) is the mixture of Fα , where each Fα is NW RUL since

F(x) =

∫ ∞

0
Fα(x)dG(α),

then
∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx =

∫ ∞

0

∫ ∞

t

∫ ∞

0
e−sxFα(x+ y)dG(α)dydx

=

∫ ∞

0

∫ ∞

0

∫ ∞

t
e−sxFα(x+ y)dydxdG(α),
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since Fα is NWRUL, then

∫ ∞

0

∫ ∞

0

∫ ∞

t
e−sxFα(x+ y)dydxdG(α)≥

∫ ∞

0
{
∫ ∞

0

∫ ∞

t
e−sxFα(x)Fα(y)dydx}dG(α).

Upon using Chebyshev inequality for similarity ordered functions, we get

∫ ∞

0

∫ ∞

t
e−sxF(x+ y)dydx ≥

∫ ∞

0

∫ ∞

0
e−sxFα(x)dG(α)dx.

∫ ∞

t

∫ ∞

0
Fα(y)dG(α)dy

≥
∫ ∞

0
e−sxF(x)dx.

∫ ∞

t
F(y)dy

≥
∫ ∞

0

∫ ∞

t
e−sxF(x)F(y)dydx,

which complete the proof.

The following example shows that the NBRUL class is not preserved under mixtures.

Example 2.Let Fα(x) = e−αx and G(x) =
∫ ∞

0 Fα(x)e
−α dα = (x+1)−1. Then the failure rate function is rg(x) = (x+1)−1,

which is strictly decreasing thus G(x) is not NBRUL.

2.3 Mixing properties

The following example illustrates that the NBRUL class is not preserved under mixing.

Example 3.Let F1 = e−2x and F2 = e−3x. Let F = 1
2
F1 +

1
2
F2,it follows that both F1 and F2 are NBRUL but F is not

NBRUL.

2.4 Homogeneous poisson shock model

Suppose that a device is subjected to a sequence of shocks occurring randomly in the time according to a Poisson process
with intensity λ . Suppose further that the device has probability Pk of surviving the first k shock, where 1 = P0 ≥ P1 ≥
·· · · · · . Denote p j = P j−1 −P j, j ≥ 1. Then the survival function of the device is given by

H(t) =
∞

∑
k=0

Pk

(λ t)k

k!
e−λ t , t ≥ 0. (7)

This shock model has been studied by Esary et al. [18] for different ageing properties such as IFR, IFRA, NBU , and
NBUE , Klefsjo [19] for HNBUE and Mahmoud et al. [20] for NBURFR− t0.

Definition 3.A discrete distribution pk,k = 0,1, · · · · · · ,∞ is said to have discrete new better (worse) than renewal used in

laplace transform order (NBRUL) (NWRUL) if

∞

∑
i=0

∞

∑
j=l

zi pi+ j ≤ (≥)
∞

∑
i=0

∞

∑
j=l

zi pi p j , 0 ≤ z ≤ 1. (8)

Theorem 3.If Pk is discrete NBRUL, then H(t) given by (7) is NBRUL.

Proof.It must be shown that

∫ ∞

0

∫ ∞

t
e−sxH(x+ y)dydx ≤

∫ ∞

0

∫ ∞

t
e−sxH(x)H(y)dydx.
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Upon using (7), we get

∫ ∞

0

∫ ∞

t
e−sxH(x+ y)dydx =

∫ ∞

0

∫ ∞

t
e−sx

∞

∑
m=0

Pm
[λ (x+ y)]m

m!
e−λ (x+y)dydx

=

∫ ∞

0
e−sxe−λ x

∫ ∞

t

∞

∑
m=0

Pm
λ m−n+n

m!

m

∑
n=0

(

m

n

)

xm−nyne−λ ydydx

=

∫ ∞

0
e−x(s+λ )

∞

∑
m=0

m

∑
n=0

Pm
(λ .x)m−n

n!(m− n)!

∫ ∞

t
(λ .y)ne−λ ydydx.

=
∞

∑
n=0

∞

∑
m=n

Pm
e−λ t

n!(m− n)!
.
(m− n)!

λ (s+λ )
.[

λ

s+λ
]m−n

n

∑
l=0

n!(λ .t)l

l!

=
n

∑
l=0

∞

∑
n=0

∞

∑
m=n

Pm
e−λ t

λ (s+λ )
[

λ

s+λ
]m−n.

(λ .t)l

l!
,

let i = m− n,

∫ ∞

0

∫ ∞

t
e−sxH(x+ y)dydx =

∞

∑
i=0

∞

∑
n=0

n

∑
l=0

Pi+n
e−λ t

λ (s+λ )
[

λ

s+λ
]i.
(λ .t)l

l!

=
∞

∑
i=0

∞

∑
l=0

∞

∑
n=l

Pi+n[
λ

s+λ
]i

e−λ t

λ (s+λ )
.
(λ .t)l

l!
,

since F is NBRUL

∫ ∞

0

∫ ∞

t
e−sxH(x+ y)dydx ≤

∞

∑
i=0

∞

∑
l=0

∞

∑
n=l

PiPn[
λ

s+λ
]i

e−λ t

λ (s+λ )
.
(λ .t)l

l!

=
∞

∑
i=0

∞

∑
n=0

n

∑
l=0

PiPn[
λ

s+λ
]i

e−λ t

λ (s+λ )
.
(λ .t)l

l!

=
∞

∑
i=0

Pi

∞

∑
n=0

Pn

n

∑
l=0

(λ .t)l

l!
.
e−λ t

λ
.

1

(s+λ )
[

λ

s+λ
]m−n

=

∫ ∞

0
e−sx

∞

∑
i=0

Pi

(λ .x)m−n

(m− n)!
e−λ x.

∫ ∞

t

∞

∑
n=0

Pn

(λ .y)n

n!
e−λ ydydx

=

∫ ∞

0
e−sx

∞

∑
i=0

Pi
(λ .x)i

i!
e−λ x.

∫ ∞

t

∞

∑
n=0

Pn
(λ .y)n

n!
e−λ ydydx

=

∫ ∞

0
e−sxH(x).

∫ ∞

t
H(y)dydx.

The proof for the NWRUL class is obtained by reversing the inequality.

3 Testing Against NBRUL Alternatives

In this section, we test the null hypothesis H0 : F is exponential against H1 : F is NBRUL class and not exponential. The
following lemma is needed.

Lemma 1.Let X be a NBRUL random variable with distribution function F, then, based on Laplace transform technique,

(s2 − sβ )φ(β )φ(s)+ (s2β − sβ 2)µφ(s)+ (sβ − s2)φ(s)+ sβ φ(β )− sβ ≥ β 2φ(s)−β 2,s,β ≥ 0,s 6= β . (9)

where

φ(s) = Ee−sX =−
∞
∫

0

e−sxdF (x)
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Proof.since F is NBRUL then
∫ ∞

0
e−sxWF (x+ t)dx ≤WF (t)

∫ ∞

0
e−sxF (x)dx, , x, t ≥ 0.

Consider the following integral
∫ ∞

0

∫ ∞

0
e−β te−sxWF (x+ t)dxdt ≤

∫ ∞

0
e−β tWF (t)

∫ ∞

0
e−sxF(x)dxdt. (10)

Setting

I1 =

∫ ∞

0

∫ ∞

0
e−β te−sxWF (x+ t)dxdt,

hence

I1 =

∫ ∞

0

∫ ∞

v
e−β ve−s(u−v)WF (u)dudv

=

∫ ∞

0

∫ v

0
e−β ue−s(v−u)WF (v)dudv

=
1

β − s
[

∫ ∞

0
e−svWF (v)dv−

∫ ∞

0
e−β vWF (v)dv],s 6= β

Note that
∫ ∞

0
e−svWF (v)dv = µ−1

F

∫ ∞

0
e−sv

∫ ∞

v
F (y)dydv

=
µ−1

F

s
[µ − 1

s
(1−φ(s))],

therefore

I1 =
1

β − s
{µ−1

F

s
[µ − 1

s
(1−φ(s))]− µ−1

F

β
[µ − 1

β
(1−φ(β ))]},s 6= β . (11)

Setting

I2 =

∫ ∞

0
e−β tWF (t)

∫ ∞

0
e−sxF(x)dxdt, gives

I2 = E

∫ ∞

0
e−β tWF (t)

∫ ∞

0
e−sxI(X > x)dxdt.

=
1

s
(1−φ(s))

∫ ∞

0
e−β tWF (t)dt

therefore

I2 = µ−1
F [

1

β
µ − 1

β 2
(1−φ(β ))][

1

s
(1−φ(s))]. (12)

Substituting (11) and (12) into (10), we get

(s2 − sβ )φ(β )φ(s)+ (s2β − sβ 2)µφ(s)+ (sβ − s2)φ(s)+ sβ φ(β )− sβ ≥ β 2φ(s)−β 2.

This completes the proof.

Let X1,X2, · · · ,Xn be a random sample from a population with distribution F . Using the pervious Lemma 3.1 and
δ (s,β ), as a measure of departure from exponentiality as follows:

δ (s,β ) = (s2 − sβ )φ(β )φ(s)+ (s2β − sβ 2)µφ(s)

+ (sβ − s2 −β 2)φ(s)+ sβ φ(β )+β 2 − sβ .
(13)

Note that under H0,δ (s,β ) = 0, while under H1,δ (s,β )> 0. The empirical estimate δ̂ (s,β ) of δ (s,β ) can be obtained
as

δ̂ (s,β ) =
1

n2

n

∑
i=1

n

∑
j=1

[(s2 − sβ )e−β Xie−sX j +(s2β − sβ 2)Xie
−sX j

+(sβ − s2 −β 2)e−sXi + sβ e−β Xi +β 2 − sβ ].
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To make the test invariant, let ∆(s,β ) = δ (s,β )
µ which estimated by ∆̂(s,β ) = δ̂ (s,β )

X
where X is the sample mean. Then

∆̂(s,β ) =
1

n2X

n

∑
i=1

n

∑
j=1

[(s2 − sβ )e−β Xie−sX j +(s2β − sβ 2)Xie
−sX j

+(sβ − s2 −β 2)e−sXi + sβ e−β Xi +β 2 − sβ ].

One can note that ∆̂(s,β ) is an unbiased estimator of δ (s,β ).
Now, set

φ(Xi,X j) = (s2 − sβ )e−β Xie−sX j +(s2β − sβ 2)Xie
−sX j

+(sβ − s2 −β 2)e−sXi + sβ e−β Xi +β 2 − sβ ,

and define the symmetric kernel

ψs(Xi,X j) =
1

2!
∑φs(Xi,X j),

where the summation over all arrangements of Xi,X j, then ∆̂(s,β ) in (14) is equivalent to the Un statistic given by

Un =
1

(n
2)

n

∑
i< j

ψs(Xi,X j). (14)

The asymptotic normality of ∆̂(s,β ) can be summarized in the following theorem.

Theorem 4.(i) As n → ∞,
√

n(∆̂(s,β )−∆(s,β )) is asymptotically normal with mean 0 and variance σ2(s,β ), where

σ2(s,β ) =Var{(s2 − sβ )e−β Xφ(s)+ (s2β − sβ 2)Xφ(s)+ (sβ − s2 −β 2)e−sX

+ sβ e−β X +(s2 − sβ )e−sX φ(β )+ (s2β − sβ 2)µe−sX

+(sβ − s2 −β 2)φ(s)+ sβ φ(β )+ 2β 2 − 2sβ}.
(15)

(ii) Under H0, the variance σ2
0 (s,β ) is

σ2
0 (s,β ) =

s4(s−β )2β 4(5+ s+ 7β + 2sβ + 2β 2)

(1+ s)2(1+ 2s)(1+β )2(1+ s+β )(1+ 2β )
. (16)

Proof.Using standard U-statistics theory, see Lee [21], yields

σ2 =V{E[φ(X1,X2) | X1]+E[φ(X1,X2) | X2]}.
Using (15) we can find E[φ(X1,X2) | X1] and E[φ(X1,X2) | X2] as follows

E(φ(X1,X2) | X1) = (s2 − sβ )e−β X

∫ ∞

0
e−sxdF(x)+ (s2β − sβ 2)X

∫ ∞

0
e−sxdF(x)

+ (sβ − s2 −β 2)e−sX + sβ e−β X +β 2 − sβ ,

and

E(φ(X1,X2) | X2) = (s2 − sβ )e−sX

∫ ∞

0
e−β xdF(x)+ (s2β − sβ 2)e−sX

∫ ∞

0
xdF(x)

+ (sβ − s2 −β 2)

∫ ∞

0
e−sxdF(x)+ sβ

∫ ∞

0
e−β xdF(x)+β 2 − sβ ,

therefore

σ2(s,β ) =Var{(s2 − sβ )e−β Xφ(s)+ (s2β − sβ 2)Xφ(s)+ (sβ − s2 −β 2)e−sX

+ sβ e−β X +(s2 − sβ )e−sX φ(β )+ (s2β − sβ 2)µe−sX

+(sβ − s2 −β 2)φ(s)+ sβ φ(β )+ 2β 2 − 2sβ}.
Under H0

σ2
0 (s,β ) =

s4(s−β )2β 4(5+ s+ 7β + 2sβ + 2β 2)

(1+ s)2(1+ 2s)(1+β )2(1+ s+β )(1+ 2β )
.
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4 The PAE of ∆̂(s,β )

To verdict on the quality of this procedure, the PAEs are computed and compared with some other tests based on the
following alternative distributions:

(i)Weibull distribution: F̄1(x) = e−xθ
,x ≥ 0,θ ≥ 1.

(ii)Linear failure rate distribution: F̄2(x) = e−x− θ
2 x2

,x ≥ 0,θ ≥ 0.

(iii)Makeham distribution: F̄3(x) = e−x−θ(x+e−x−1),x ≥ 0,θ ≥ 0.

Note that For θ = 1, F̄1(x) reduces to exponential distribution while for θ = 0, F̄2(x) and F̄3(x) reduce to exponential

distribution. The PAE of ∆̂ (s,β ) is defined by

PAE(∆(s,β )) =
1

σ◦ (s,β )

∣

∣

∣

∣

d

dθ
∆(s,β )

∣

∣

∣

∣

θ→θ◦

. (17)

At s = 1.2,β = 1.65,

δθ (s,β ) = (s2 − sβ )φθ (β )φθ (s)+ (s2β − sβ 2)µθ φθ (s)+ (sβ − s2 −β 2)φθ (s)+ sβ φθ (β )+β 2 − sβ ,

where

µθ =

∫ ∞

0
Fθ (x)dx,φθ (s) =

∫ ∞

0
e−sxdFθ (x).

Hence,

d

dθ
δθ (s,β ) = (s2 − sβ )[φθ (β )φ

′
θ (s)+φ ′

θ (β )ζθ (s)]+ (s2β − sβ 2)[µθ φ ′
θ (s)+ µ ′

θ φθ (s)]

+ (sβ − s2 −β 2)φ ′
θ (s)+ sβ φ ′

θ (β ),

where

µ 8

θ =

∫ ∞

0
F
8

θ (x)dx,φ 8

θ (s) =−
∫ ∞

0
e−sxdF

8

θ (x).

Upon using the definition of the PAE in (19), we obtain

PAE(δ (s,β ) =
1

σ0

| (s
2 − sβ )[φθ (β )φ

′
θ (s)+φ ′

θ (β )ζθ (s)]+ (s2β − sβ 2)[µθ φ ′
θ (s)+ µ ′

θ φθ (s)]
+(sβ − s2 −β 2)φ ′

θ (s)+ sβ φ ′
θ (β )

|θ→θ0
.

When s = 1.2,β = 1.65, this leads to:

PAE [∆(1.2,1.65),Weibull] = 1.15842, PAE[∆(1.2,1.65),LFR] = 0.901371 and

PAE [∆(1.2,1.65),Makeham] = 0.286589, where σ0(1.2,1.65) = 0.210182.

Table 1: Comparison between the PAE of our test and some other tests

Test Weibull LFR Makeham

Kango [22] 0.132 0.433 0.144

Mugdadi and Ahmad [23] 0.170 0.408 0.039

Abdel - Aziz [24] 0.223 0.535 0.184

Our test ∆̂ (1.2,1.65) 1.158 0.901 0.287

It is obvious that ∆̂ (1.2,1.65) is better than the other tests based on the PAEs.
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5 Monte Carlo Null Distribution Critical Points

In this section, the Monte Carlo null distribution critical points of ∆̂(s,β ) are simulated based on 10000 generated samples
of size n = 5(5)50,29,43. From the standard exponential distribution by using Mathematica 8 program. Table 2 gives the

upper percentile points of statistic ∆̂(1.2,1.65) for different confidence levels 90%,95% and 99%.

Table 2: Critical values of the statistic ∆̂(1.2,1.65)

n 90% 95% 99%

5 0.143557 0.167444 0.212644

10 0.092752 0.111232 0.143396

15 0.075286 0.088315 0.114424

20 0.066082 0.079013 0.101269

25 0.057624 0.070131 0.089956

29 0.053816 0.064950 0.085194

30 0.052566 0.064135 0.082944

35 0.048597 0.058774 0.079260

40 0.045069 0.054272 0.071701

43 0.044186 0.053492 0.069444

45 0.042472 0.051877 0.069252

50 0.041004 0.049830 0.065399

Fig. 1: Relation between critical values, sample size and confidence levels

It can be noticed from Table 2 and Fig. 1 that the critical values are increasing as the confidence level increases and
are almost increasing as the sample size increases.

5.1 Power estimates of the test ∆̂ (s,β )

In this section the power of our test ∆̂(s,β ) will be estimated at (1−α)% confidence level, α = 0.05 with suitable
parameters values of θ at n = 10,20 and 30 for some commonly used distributions such as Weibull and Gamma
distributions based on 10000 samples.

Table 3 shows that the power estimates of our test ∆̂ (1.2,1.65) are good power for all alternatives and increases when
the value of the parameter θ and the sample sizes increasing.
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Table 3: The Power Estimates of ∆̂(1.2,1.65)

n θ Weibull Gamma

10

2

3

4

0.5841

0.9287

0.9918

0.5641

0.8654

0.9462

20

2

3

4

0.9315

0.9999

1.0000

0.7713

0.9865

0.9989

30

2

3

4

0.9944

1.0000

1.0000

0.8960

0.9988

1.0000

6 Testing for Censored Data

In this section, a test statistic is proposed to test H◦ versus H1 with randomly right-censored data. Such a censored data is
usually the only information available in a life-testing model or in a clinical study where patients may be lost (censored)
before the completion of a study. This experimental situation can formally be modeled as follows. Suppose n objects
are put on test, and X1,X2, · · · ,Xn denote their true life time. We let that X1,X2, · · · ,Xn be independent and identically
distributed (i.i.d.) according to a continuous life distribution F . Let Y1,Y2, · · · ,Yn be (i.i.d.) according to a continuous life
distribution G . Also we assume that X’s and Y ’s are independent. In the randomly right-censored model, we observe the
pairs (Z j ,δ j), j = 1, · · · ,n, where Z j = min(X j,Yj) and

δ j =

{

1, if Z j = X j (j-th observation is uncensored)
0, if Z j = Yj (j-th observation is censored)

Let Z(0) = 0 < Z(1) < Z(2) < · · · . < Z(n) denote the orderd Z’s and δ( j) is δ j corresponding to Z( j). Using the censored

data (Z j,δ j), j = 1, · · · ,n. Kaplan and Meier [25] proposed the product limit estimator,

F̄n(X) = ∏
[ j:Z( j)≤X ]

{(n− j)/(n− j+ 1)}δ( j),X ∈ [0,Z(n)].

Now, for testing H◦ : φ̂c = 0 against H1 : φ̂c > 0, using the randomly right-censored data, we propose the following
test statistic

φ̂c = (s2 − sβ )φ(β )φ(s)+ (s2β − sβ 2)µφ(s)+ (sβ − s2 −β 2)φ(s)+ sβ φ(β )+β 2 − sβ .

where φ(s) =
∞
∫

0

e−sxdFn(x). For computational purpose, φ̂c may be rewritten as

φ̂c = (s2 − sβ )τη +(s2β − sβ 2)Ωη +(sβ − s2 −β 2)η + sβ τ +β 2 − sβ ,

where

Ω =
n

∑
k=1

[
k−1

∏
m=1

C
δ (m)
m

(

Z(k)−Z(k−1)

)

],

η =
n

∑
j=1

e
−sZ( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ],

τ =
n

∑
j=1

e
−β Z( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ],

and
dFn(Z j) = F̄n(Z j−1)− F̄n(Z j),ck = [n− k] [n− k+ 1]−1 .

To make the test invarient, let

∆̂c =
φ̂c

Z̄
,where Z̄ =

n

∑
i=1

Z(i)

n
.
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Table (4) below gives the upper percentile of ∆̂c test for sample sizes n=10(10)80,51,81. The Monte Carlo null

distribution critical values of ∆̂c at s = 1.2,β = 1.65 for samples sizes n=10(10)80,51,81 with 10000 replications are
simulated from the standard exponential distribution by using Mathematica 8 program. Table 4 gives the critical values

percentiles points of the statistic ∆̂c.

Table 4: The upper percentile of ∆̂c at s = 1.2,β = 1.65

n 90% 95% 99%

10 0.337507 0.402862 0.534374

20 0.241152 0.290811 0.384251

30 0.196601 0.239162 0.318664

40 0.160513 0.195560 0.258967

50 0.144987 0.176517 0.235611

51 0.138862 0.169872 0.230025

60 0.129742 0.157761 0.215909

70 0.118407 0.143743 0.190618

80 0.110184 0.135442 0.182909

81 0.107611 0.131956 0.181564

Fig. 2: Relation between critical values, sample size and confidence levels

It can be noticed from Table 4 and Fig. 2 that the critical values are increasing as the confidence level increases and
decreasing as the sample size increases.

6.1 Power estimates of the test ∆̂c(s,β )

In this section the power of our test ∆̂c(s,β ) will be estimated at (1−α)% confidence level, α = 0.05 with suitable
parameters values of θ at n = 10,20 and 30 for some commonly used distributions such as Weibull and Gamma
distributions based on 10000 samples.
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Table 5: The Power Estimates of ∆̂c(1.2,1.65)

n θ Weibull Gamma

10

2

3

4

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

20

2

3

4

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

30

2

3

4

0.9996

1.0000

1.0000

0.9971

1.0000

1.0000

Table 5 shows that the power estimates of our test ∆̂c(1.2,1.65) are good power for all alternatives and increases when
the value of the parameter θ and the sample sizes increasing.

7 Applications to Real Data

In this section, we apply our test to some real data-sets in the both non censored and censored data at 95% confidence
level.

7.1 Non censored data

Example 4.Consider the following data set is from Kotz and Johnson [26] and represents the survival times (in years) after
diagnosis of 43 patient with certain kind of leukemia.

Since ∆̂(1.2,1.65) = 0.0554508 and this value greater than the corresponding critical value in Table 2. Then we
conclude that this data set have NBRUL property and not exponential.

Example 5.Consider the data in Abouammoh et al. [17]. These data represent set of 40 patients suffering from blood
cancer (Leukemia) from one ministry of health hospital in Saudi Arabia

Since ∆̂(1.2,1.65) = 0.138068 and this value greater than the corresponding critical value in Table 2. Then we
conclude that this data set have NBRUL property and not exponential.

Example 6.We consider a classical real data in Keating et al. [27] set on the times, in operating days, between successive
failures of air conditioning equipment in an aircraft.

In this case, ∆̂(1.2,1.65) = 0.0700803 which is greater than the corresponding critical value in Table 2. Then we
accept H1which states that the data set have NBRUL property.

7.2 Censored data

Example 7.The following data sets are associated with 101 patients with advanced acute myelogenous leukemia reported
to the International Bone Marrow Transplant Registry (see Ghitany and Al-Awadhi [28]). Fifty of these patients had an
allogeneic bone marrow transplant where marrow from an HLA (Histocompatibility Leukocyte Antigen) matched sibling
was used to replenish their immune systems. Fifty-one patients had an autologous bone marrow transplant in which, after
high doses of chemotherapy, their own marrow was reinfused to replace their destroyed immune system. The leukemia
free-survival times (in months) for the 50 allogeneic transplant patients (+ indicates censored observations)are:

0.030 0.493 0.855 1.184 1.283 1.480 1.776 2.138
2.500 2.763 2.993 3.224 3.421 4.178 4.441+ 5.691

5.855+ 6.941+ 6.941 7.993+ 8.882 8.882 9.145+ 11.480
11.513 12.105+ 12.796 12.993+ 13.849+ 16.612+ 17.138+ 20.066

20.329+ 22.368+ 26.776+ 28.717+ 28.717+ 32.928+ 33.783+ 34.221+
34.770+ 39.539+ 41.118+ 45.033+ 46.053+ 46.941+ 48.289+ 57.401+
58.322+ 60.625+
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Taking into account the whole set of survival data (both censored and uncensored).

We get ∆̂c(1.2,1.65) =−0.0337921 which is less than the critical value of the Table 4. Then, H1 which states that the set
of data have NBRUL property is rejected.
The leukemia free-survival times (in months) for the 51 autologous transplant patients are:

0.658 0.822 1.414 2.500 3.322 3.816 4.737 4.836+
4.934 5.033 5.757 5.855 5.987 6.151 6.217 6.447+
8.651 8.717 9.441+ 10.329 11.480 12.007 12.007+ 12.237

12.401+ 13.059+ 14.474+ 15.000+ 15.461 15.757 16.480 16.711
17.204+ 17.237 17.303+ 17.664+ 18.092 18.092+ 18.750+ 20.625+
23.158 27.730+ 31.184+ 32.434+ 35.921+ 42.237+ 44.638+ 46.480+

47.467+ 48.322+ 56.086

Taking into account the whole set of survival data (both censored and uncensored).

We get ∆̂c(1.2,1.65) =−0.0113224 which is less than the critical value of the Table 4. Then, H1 which states that the set
of data have NBRUL property is rejected.

Example 8.Consider the data in Susarla and Vanryzin [29]. These data represent 46 survival times of patients of melanoma.
Of them 35 represent whole life times( non-censored data). The ordered censored observations are:

16 21 44 50 55 67 73 76 80 81 86 93
100 108 114 120 124 125 129 130 132 134 140 147
148 151 152 152 158 181 190 193 194 213 215

Taking into account the whole set of survival data (both censored and uncensored).

We get ∆̂c(1.2,1.65) = −6.08646× 10−10 which is less than the critical value of the Table 4. Then, H1 which states that
the set of data have NBRUL property is rejected.

8 Conclusion

We studied the probabilistic characteristics for NBRUL class, the closure properties under various reliability operations
such as convolution, mixture, mixing, homogeneous Poisson shock model. A testing hypothesis is proposed to test
exponentiality against this new class based on Laplace transform. We calculated PAEs and compared them to some old
tests of all alternatives used. Critical values and the powers of our test are calculated in case of censored and non
censored. At the end of the article, our test was applied to some real engineering and medical data to show the usefulness
of the test.
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