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Abstract: In this paper, we have introduced a new generalization of the Fréchet distribution named as the Cubic Transmuted Fréchet

distribution (CTFD) based on cubic ranking transmutation map. Furthermore, we have derived some properties of the proposed

distribution including survival and hazard functions, moments, moment generating function, quantile function and random number

generation. The estimation of CTFD parameters has been done using Maximum Likelihood method. Finally, an application of the

proposed distribution CTFD using two uncensored data is conducted to illustrate and compare with the base Fréchet distribution and

Transmuted Freshet distribution. It has been observed that the proposed distribution CTFD provides a better fit for the two datasets as

compared to the other distributions.

Keywords: Fréchet distribution , cubic transmutation , maximum likelihood estimation, inverse Weibull distribution , extreme value

distribution

1 Introduction

Fréchet distribution also known as inverse Weibull distribution [1,2], or extreme value distribution of type II is named after
French mathematician Maurice René Fréchet, who developed it in the 1925 as a maximum value distribution[3] and it
used to model maximum value. Kotz and Nadarajah[4] described Fréchet distribution and discussed its wide applicability
in different fields such as accelerated life testing, natural calamities, horse racing, rainfall, queues in supermarkets, sea
currents wind speeds, track race records and so on.
The cumulative distribution function (cdf) and the probability density function (pdf) of Frechet random variable X are
defined, respectively, as

G(x) = e−(s/(x−m))a

; a,s ∈ (0,∞),m ∈ (−∞,∞),x > m (1)

and

g(x) =
a

s

( s

x−m

)1+a

e
−
(

s
x−m

)a

(2)

where s,m and a are the scale, location and shape parameters respectively.
Using the default value of the location parameter m = 0 (see [5] ) Eq.(1) and Eq.(2) become

G(x) = e−(s/x)a

; a,s ∈ (0,∞),x > 0 (3)

and
g(x) =

a

s
(s/x)1+ae−(s/x)a

(4)

Shaw and Buckley[6] used the rank transmutation map to propose a new method for generating family of distribution.
According to them the cumulative distribution function of the ranking quadratic transformation (QRT) map is:

F(x) = (1+λ )G(x)−λ G2(x); | λ |≤ 1 (5)
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where G(x) is the cumulative distribution function (cdf) of the base distribution. Observe that, when λ = 0 , the new
distribution becomes the original one. Using ORT of Eq.(5), Mahmoud and Mandouh[7] developed transmuted Fréchet
distribution.
Abed Al-Kadim[8] proposed generalized formula for transmuted distribution proposed by Shaw and Buckley[6], the
cumulative distribution function of the Cubic Ranking transformation (CRT) map is:

F(x) = (1+λ )G(x)−λ G2(x)+λ G3(x); | λ |≤ 1 (6)

This method used by Abed Al-Kadim and Mohammed[9] to propose cubic transmuted Weibull distribution. Another two
classes of Cubic Transmuted distributions with two transmuted parameters have been developed, one by Granzottoa et
al.[10], the other by Rahman et al.[11]. Rahman et al.[11] used method to develop new generalization for many
distributions, for examples: Pareto distribution[12] and Weibull distribution[13].
Based on the cubic ranking transmutation map approach proposed by Rahman et al.[11], the cdf and pdf respectively
given as

F(x) = (1+λ1)G(x)+ (λ2 −λ1)G
2(x)−λ2G3(x) (7)

and
f (x) = g(x)[(1+λ1)+ 2(λ2−λ1)G(x)− 3λ2G2(x)] (8)

where λ1 ∈ [−1,1],λ2 ∈ [−1,1] and − 2 ≤ λ1 +λ2 ≤ 1.
G(x) and g(x) is the cdf and pdf of the base distribution respectively.
In this article, cubic ranking transmutation map suggested by Rahman et al.[11] is used to propose a new distribution
which generalizes the Fréchet distribution. This new version of the Fréchet distribution called Cubic Transmuted Fréchet
Distribution (CTFD). Some statistical properties are studied and the model parameters are estimated using maximum
likelihood method. Moreover, an application to two real datasets from rivers is illustrated and compared with the base
Fréchet distribution, transmuted Fréchet and the others two versions of cubic transmuted Fréchet distributions.
The remainder of this paper is organized as follows: The new proposed distribution Cubic Transmuted Fréchet (CTFD) is
presented in Section 2. We have investigated some statistical properties for CTFD such as survival and hazard functions,
moments, moment generating function, quantile function and random number generation in Section 3. Section 4 provides
parameter estimation of the CTFD. An application of the CTFD to two uncensored data for the purpose of illustration is
conducted in Section 5. Finally, Section 6 gives some concluding remarks.
We are motivated the new Fréchet model because it exhibits a right skewed fat-tailed shape with leptokurtic distribution
as illustrated in Figure 1 . The justification for the practicality of the new generalized extreme value (GEV) model is based
on its ability for modeling the breaking stress of carbon fibers and the strengths of glass fibers data sets as illustrated in
Section 5 . We used the Fréchet model since it has a wide ability for modeling different shapes of real data sets, this claim
has been demonstrated in applications of Section 5.

2 Cubic Transmuted Fréchet Distribution (CTFD)

In this section, the new proposed distribution CTFD is discussed. Including the cumulative distribution function (cdf),
probability density function (pdf), survival and hazard function.

2.1 Cumulative and density functions for CTFD

Theorem 2.1 Let X be a random variable with the cubic transmuted Fréchet distribution. The cdf and pdf are defined,
respectively, as

F(x) = e−(s/x)a

[(1+λ1)+ (λ2−λ1)e
−(s/x)a −λ2e−2(s/x)a

] (9)

and
f (x) =

a

s
(s/x)1+ae−(s/x)a

[(1+λ1)+ 2(λ2−λ1)e
−(s/x)a − 3λ2e−2(s/x)a

] (10)

where a,s,x > 0,λ1 ∈ [−1,1],λ2 ∈ [−1,1]and− 2 ≤ λ1 +λ2 ≤ 1.
Proof: Consider the cdf of cubic transmuted distribution of Eq.(7) namely

F(x) = (1+λ1)G(x)+ (λ2 −λ1)G
2(x)−λ2G3(x)

= G(x)[(1+λ1)+ (λ2 −λ1)G(x)−λ2G2(x)]
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substituting G(x) of Eq.(3), we get

F(x) = e−(s/x)a

[(1+λ1)+ (λ2 −λ1)e
−(s/x)a −λ2e−2(s/x)a

]

Let y = (s/x)a ⇒ s/x = a
√

y and x = s
a
√

y
Using y in the above equation, we get

F(y) = e−y[(1+λ1)+ (λ2 −λ1)e
−y −λ2e−2y]

and now, let’s use the following derivative relation

f (x) =
dF(x)

dx
=

dF(y)

dy

dy

dx
(11)

dF(y)

dy
=−e−y[(1+λ1)+ 2(λ2−λ1)e

−y − 3λ2e−2y] (12)

dy

dx
=−(

a

s
)y a
√

y =−(
a

s
) a
√

y1+a (13)

so, using the relations of Eq.(11), Eq.(12) and Eq. (13) we get

f (x) =
a

s

a
√

y1+ae−y[(1+λ1)+ 2(λ2−λ1)e
−y − 3λ2e−2y]

=
a

s
(s/x)1+ae−(s/x)a

[(1+λ1)+ 2(λ2 −λ1)e
−(s/x)a − 3λ2e−2(s/x)a

]

Therefore, the theorem is proved.
Now we notice, using Eq.(13), that

∫ ∞

0
f (x)dx =−

∫ ∞

0
f (y)dy =

∫ ∞

0
e−y[(1+λ1)+ 2(λ2−λ1)e

−y − 3λ2e−2y]dy (14)

= (1+λ1)+ (λ2 −λ1)−λ2

= 1

Figure 1 illustrates some of possible shapes of the pdf and cdf for CTFD for selected values of parameters λ1 and λ2

where a = 2 and s = 2
From plot of pdf of Figure 1, we can observe that for the positive values of both transmuted parameters λ1 and λ2, the

distribution is a fat-tailed with more leptokurtic, this compare with the negative values of λ1 and λ2.

2.2 Survival and Hazard function

The survival function is defined as s(x) = 1−F(x) and for the CTFD is given as

s(y) = 1− e−y[(1+λ1)+ (λ2 −λ1)e
−y −λ2e−2y]; y =

( s

x

)a

The hazard function is defined as h(x) = f (x)/s(x) and for the CTFD is given as

h(y) =
a
s

a
√

y1+ae−y[(1+λ1)+ 2(λ2 −λ1)e
−y − 3λ2e−2y]

ey − [(1+λ1)+ (λ2 −λ1)e−y −λ2e−2y]
; y =

( s

x

)a

Figure 2 shows some possible shapes of the survival and hazard functions for the CTFD using different combination of
model parameters λ1 and λ2 where a = 2 and s = 2

3 Statistical Properties

In this section, some statistical properties for the proposed distribution, CTFD is demonstrated. These properties involve
moments, moment generating function, quantile function and simulation the random sample.
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Fig. 1: The pdf and cdf of CTFD for different value of λ1 and λ2 where a = 2 and s = 2.
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Fig. 2: The s(x)’s and h(x)’s of CTFD for different value of λ1 and λ2 where a = 2 and s = 2.

3.1 The Moments

Theorem 3.1 Let X be a random variable has the CTFD, then the rth moment of X about the origin is

E(X r) = srΓ (1− r/a) [(1+λ1)+
a
√

2r(λ2 −λ1)− a
√

3rλ2]; r = 0,1,2, . . . (15)

where Γ (1− r/a) is the gamma function.
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Proof. we know that

E(X r) =

∫ ∞

0
xr f (x)dx =

∫ 0

∞
(s/ a

√
y)r f (y)(

−s

a
)

1
a
√

y1+a
dy

using Eq.(14) we get

E(X r) =

∫ ∞

0
(sy−1/a)re−y[(1+λ1)+ 2(λ2 −λ1)e

−y − 3λ2e−2y]dy

= sr

∫ ∞

0
y−r/ae−y[(1+λ1)+ 2(λ2−λ1)e

−y − 3λ2e−2y]dy

= sr
[

(1+λ1)
∫ ∞

0
y−r/ae−ydy+ 2(λ2−λ1)

∫ ∞

0
y−r/ae−2ydy− 3λ2

∫ ∞

0
y−r/ae−3ydy

]

Using the relation
∫ ∞

0 tbe−atdt = Γ (1+b)

a(1+b) we get

E(X r) = srΓ (1− r/a) [(1+λ1)+
a
√

2r(λ2 −λ1)− a
√

3rλ2]

Therefore, the theorem is proved.
The mean and variance can be easily obtained by using r = 1,2 in Eq.(15).
The mean and variance of CTFD for various combinations of model parameters are given in Table 1 and Table 2. From

Table 1: Mean of the CTFD for various combinations of the parameters

λ1 =−1 λ1 =−0.5 λ1 = 1 λ1 = 0.5 λ1 = 0

a = 4

s = 2

λ2 =−1 3.2255 2.9936 2.298 2.5299 2.7618

λ2 =−0.5 3.07 2.8382 2.1426 2.3744 2.6063

λ2 = 0 2.9145 2.6827 1.9871 2.219 2.4508

λ2 = 0.5 2.7591 2.5272 - 2.0635 2.2954

λ2 = 1 2.6036 2.3718 - - 2.1399

s = 4

λ2 =−1 6.451 5.9872 4.5961 5.0598 5.5235

λ2 =−0.5 6.14 5.6763 4.2852 4.7489 5.2126

λ2 = 0 5.8291 5.3654 3.9742 4.438 4.9017

λ2 = 0.5 5.5182 5.0545 - 4.127 4.5907

λ2 = 1 5.2072 4.7435 - - 4.2798

a = 6

s = 2

λ2 =−1 2.7112 2.573 2.1583 2.2965 2.4347

λ2 =−0.5 2.6226 2.4844 2.0697 2.2079 2.3462

λ2 = 0 2.534 2.3958 1.9811 2.1193 2.2576

λ2 = 0.5 2.4455 2.3072 - 2.0308 2.169

λ2 = 1 2.3569 2.2186 - - 2.0804

s = 4

λ2 =−1 5.4224 5.1459 4.3165 4.593 4.8695

λ2 =−0.5 5.2452 4.9688 4.1394 4.4158 4.6923

λ2 = 0 5.0681 4.7916 3.9622 4.2387 4.5151

λ2 = 0.5 4.8909 4.6145 - 4.0615 4.338

λ2 = 1 4.7138 4.4373 - - 4.1608

Table 1 and Table 2 , regarding the CTFD, it is observed that, holding s constant as the shape parameter a and transmuted
parameters λ1 and λ2 increase the mean and variance decrease. Whilst, for the scale parameter s, holding other parameters
constants,the mean and variance increase.
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Table 2: Variance of the CTFD for various combinations of the parameters

λ1 =−1 λ1 =−0.5 λ1 = 1 λ1 = 0.5 λ1 = 0

a = 4

s = 2

λ2 =−1 1.8762 1.8498 1.1255 1.4745 1.7159

λ2 =−0.5 1.7282 1.6297 0.6892 1.1102 1.4237

λ2 = 0 1.5319 1.3613 0.2045 0.6976 1.0832

λ2 = 0.5 1.2873 1.0446 - 0.2367 0.6944

λ2 = 1 0.9943 0.6795 - - 0.2572

s = 4

λ2 =−1 7.5048 7.3992 4.502 5.8978 6.8636

λ2 =−0.5 6.9129 6.519 2.7566 4.4408 5.6949

λ2 = 0 6.1277 5.4453 0.8179 2.7905 4.3329

λ2 = 0.5 5.1491 4.1784 - 0.9467 2.7776

λ2 = 1 3.9771 2.718 - - 1.0289

a = 6

s = 2

λ2 =−1 0.4613 0.4878 0.3381 0.4262 0.4761

λ2 =−0.5 0.44 0.442 0.2188 0.3314 0.4058

λ2 = 0 0.403 0.3805 0.0838 0.2209 0.3198

λ2 = 0.5 0.3503 0.3033 - 0.0948 0.2182

λ2 = 1 0.2819 0.2104 - - 0.1008

s = 4

λ2 =−1 1.8451 1.9512 1.3523 1.7048 1.9044

λ2 =−0.5 1.7599 1.768 0.8752 1.3257 1.6233

λ2 = 0 1.6118 1.522 0.3353 0.8838 1.2793

λ2 = 0.5 1.4011 1.2133 - 0.3791 0.8726

λ2 = 1 1.1275 0.8418 - - 0.4031

3.2 The Moment Generating Function

Theorem 3.2 Let X be a random variable has the CTFD, then the (MGF) of X is

Mx(t) = a
∞

∑
r=0

Γ [1− a(1+ r)]Qr (16)

where Γ [1− a(1+ r)] is the gamma function and

Qr =

(

(−1)a+ar+r(st)a(r+1)

r!

)

[

(1+λ1)+ 2(r+1)(λ2 −λ1)− 3(r+1)λ2

]

Proof. We know that

MX(t) = E(etx) =
∫ ∞

−∞
etx f (x)dx

Substitute f (x) of Eq.(10) in above equation and use the alternative formula of Eq. (14) to obtain

MX (t) =

∫ ∞

0
e
( st

a√y
)
e−y[(1+λ1)+ 2(λ2 −λ1)e

−y − 3λ2e−2y]dy

=
[

(1+λ1)

∫ ∞

0
e
( st

a√y
)
e−ydy+ 2(λ2−λ1)

∫ ∞

0
e
( st

a√y
)
e−2ydy− 3λ2

∫ ∞

0
e
( st

a√y
)
e−3ydy

]

= (1+λ1)I1 + 2(λ2 −λ1)I2 − 3λ2I3 (17)
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where I1 =
∫ ∞

0 e
( st

a√y
)
e−ydy, I2 =

∫ ∞
0 e

( st
a√y

)
e−2ydy and I3 =

∫ ∞
0 e

( st
a√y

)
e−3ydy

Now, we get the value of I1 using Maclaurin expansion as

I1 =

∫ ∞

0
e
( st

a√y
)
e−ydy

=

∫ ∞

0
e
( st

a√y
)
( ∞

∑
r=0

(−y)r

r!

)

dy

=
∞

∑
r=0

(−1)r

r!

(

∫ ∞

0
e
( st

a√y
)
yrdy

)

=
∞

∑
r=0

(−1)r

r!
Ir

where Ir =
∫ ∞

0 e
( st

a√y
)
yrdy

Putting −z = ( st
a
√

y
)⇒ dy = a(−1)(a+1)(st)az(−(a+1))dz and then there are two cases:

Case I: If t > 0 then (y : 0 → ∞ ⇒ z : −∞ → 0), and so

Ir =
∫ ∞

0
e
( st

a√y
)
yrdy

=

∫ 0

−∞
e−z
[

(
−z

st
)−a
]r

a(−1)(a+1)(st)az(−(a+1))dz

=−a(−st)a(r+1)
∫ 0

−∞
z−a(r+1)e−zdz

= a(−st)a(r+1)
∫ −∞

0
z−a(r+1)e−zdz

=−a(st)a(r+1)
∫ ∞

0
z−a(r+1)e−zdz

= a(−st)a(r+1)Γ [1− a(1+ r)]

Case II: If t < 0 then (y : 0 → ∞ ⇒ z : ∞ → 0), and so

Ir =

∫ ∞

0
e
( st

a√y
)
yrdy

=

∫ 0

∞
e−z
[

(
−z

st
)−a
]r

a(−1)(a+1)(st)az−(a+1)dz

= a(−st)a(r+1)
∫ ∞

0
z−a(r+1)e−zdz

= a(−st)a(r+1)Γ [1− a(1+ r)]

from two cases we get

Ir = a(−st)a(r+1)Γ [1− a(1+ r)]

and

I1 =
∞

∑
r=0

(−1)r

r!
Ir = a

∞

∑
r=0

(−1)r(−st)a(r+1)

r!
Γ [1− a(1+ r)] (18)

following the same way to obtain

I2 =
∞

∑
r=0

(−2)r

r!
Ir = a

∞

∑
r=0

(−2)r(−st)a(r+1)

r!
Γ [1− a(1+ n)] (19)

and

I3 =
∞

∑
r=0

(−3)r

r!
Ir = a

∞

∑
r=0

(−3)r(−st)a(r+1)

r!
Γ [1− a(1+ n)] (20)
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by substituting Eq.s(18), (19) and (20) in Eq. (17), we get

Mx(t) = a
∞

∑
r=0

Γ [1− a(1+ r)]Qr

3.3 Quantile function

The quantile function for CTFD is derived by finding the value of Q for which Fx(Q) = p

Q(p,a) =
s

a
√

− ln(z)
(21)

where

z =
(

3
√

θ2 +
√

h

3
3
√

2k

)

−
(

3
√

2θ1

3k
3
√

θ2 +
√

h

)

− b

3k
(22)

θ1 = 3kc− b2,θ2 =−2b3 + 9kbc− 27k2d and h = 4(θ1)
3 +(θ2)

2

k = λ2,b = (λ1 −λ2),c =−(1+λ1),d = p

3.4 Simulating the Random Sample

Random numbers from the CTFD can be obtained by equating cdf of the distribution in Eq.(9) with a uniform random
number and inverting the expression, that is the random number from CTFD is obtained by solving F(x) = u for x. The
random sample from CTFD can be further expressed as

x =
s

a
√

− ln(z)
(23)

where z is given in Eq.(22) with d = u and u is an arbitrary continuous uniform point over (0,1).

4 Parameters estimation

This section pertains to discuss the maximum likelihood estimation (MLE) for parameters of CTFD. Let X1,X2, . . . ,Xn be
a random sample of size n from CTFD. Then the likelihood function is given by

L =
n

∏
i=1

f (yi;a,s)

=
n

∏
i=1

[a

s

a

√

y1+a
i e−yi [(1+λ1)+ 2(λ2 −λ1)e

−yi − 3λ2e−2yi

]

; yi =
( s

xi

)a

= (
a

s
)ne−(∑n

i=1 yi) a

√

n

∏
i=1

y1+a
i

n

∏
i=1

[(1+λ1)+ 2(λ2 −λ1)e
−yi − 3λ2e−2yi ]

so, the log likelihood function is

l = lnL = n ln(
a

s
)−

n

∑
i=1

[

yi −
1+ a

a
lnyi − ln[(1+λ1)+ 2(λ2 −λ1)e

−yi − 3λ2e−2yi ]
]

(24)

by differentiating the log-likelihood function in Eq. (24) with respect to the unknown parameters a,s,λ1,λ2 we obtain

∂ l

∂a
= 2n

1+ a

a2
− 1

a

n

∑
i=1

yi(1+λ1− 3λ2e−2yi)

(1+λ1)+ 2(λ2−λ1)e−yi − 3λ2e−2yi

∂ l

∂ s
=

an

s
−

n

∑
i=1

[

yi +
2(λ2 −λ1)e

−yi − 6λ2e−2yi

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi

]
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∂ l

∂λ1

=
n

∑
i=1

[ 1− 2e−yi

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi

]

∂ l

∂λ2

=
n

∑
i=1

[ 2e−yi − 3e−2yi

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi

]

Putting ∂ l
∂a

= 0, ∂ l
∂ s

= 0, ∂ l
∂λ1

= 0, and ∂ l
∂λ2

= 0 to get respectively the first, second, third and fourth likelihood equations

n

∑
i=1

yi(1+λ1− 3λ2e−2yi)

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi
= 2n

1+ a

a
(25)

n

∑
i=1

[

yi +
2(λ2 −λ1)e

−yi − 6λ2e−2yi

(1+λ1)+ 2(λ2−λ1)e−yi − 3λ2e−2yi

]

=
an

s
(26)

n

∑
i=1

[ 1− 2e−yi

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi

]

= 0 (27)

n

∑
i=1

[ 2e(−yi)− 3e(−2yi)

(1+λ1)+ 2(λ2 −λ1)e−yi − 3λ2e−2yi

]

= 0 (28)

Solutions of the equations (25), (26), (27) and (28) are called maximum likelihood estimates (MLEs). However, the
equations must be solved with numerical methods such as Newton Raphson or iteratively Reweighting algorithm.

5 Application of CTFD

In this section, the CTFD is applied to two uncensored data. The first data in Table 3 is on the breaking stress of carbon
fibers in Gba (BSC). The second data in Table 4 is generated data to simulate the strengths of glass fibers (SGF).
Summary statistics of the two datasets is reported in Table 5. The maximum likelihood estimates, the log-likelihood
value (-Log(L)), the Kolmogorov–Smirnov (k–s) test statistic and the p-value for the k–s statistic for the fitted
distributions are demonstrated in Table 6 and 7. Recently, Mahmoud and Mandouh[7] developed transmuted Fréchet
distribution fitted the data in Table 3 and 4 compared the results with the Fréchet distribution. By comparing the

Table 3: Breaking stress of carbon fibers (BSC) data

0.92 0.928 0.997 0.9971 1.061 1.117 1.162 1.183 1.187 1.192

1.196 1.213 1.215 1.2199 1.22 1.224 1.225 1.228 1.237 1.24

1.244 1.259 1.261 1.263 1.276 1.31 1.321 1.329 1.331 1.337

1.351 1.359 1.388 1.408 1.449 1.4497 1.45 1.459 1.471 1.475

1.477 1.48 1.489 1.501 1.507 1.515 1.53 1.5304 1.533 1.544

1.5443 1.552 1.556 1.562 1.566 1.585 1.586 1.599 1.602 1.614

1.616 1.617 1.628 1.684 1.711 1.718 1.733 1.738 1.743 1.759

1.777 1.794 1.799 1.806 1.814 1.816 1.828 1.83 1.884 1.892

1.944 1.972 1.984 1.987 2.02 2.0304 2.029 2.035 2.037 2.043

2.046 2.059 2.111 2.165 2.686 2.778 2.972 3.504 3.863 5.306

Table 4: The strength glass fibers (SGF) data

1.014 1.081 1.082 1.185 1.223 1.248 1.267 1.271 1.272 1.275

1.276 1.278 1.286 1.288 1.292 1.304 1.306 1.355 1.361 1.364

1.379 1.409 1.426 1.459 1.46 1.476 1.481 1.484 1.501 1.506

1.524 1.526 1.535 1.541 1.568 1.579 1.581 1.591 1.593 1.602

1.666 1.67 1.684 1.691 1.704 1.731 1.735 1.747 1.748 1.757

1.800 1.806 1.867 1.876 1.878 1.91 1.916 1.972 2.012 2.456

2.592 3.197 4.121
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Table 5: Summary Statistics for BSC and SGF datasets

n Min Max Mean Median Skewness kurtosis

BSC 100 0.92 5.306 1.657838 1.54415 3.231 15.234

SGF 63 1.014 4.121 1.615635 1.526 3.01186 12.5632

Table 6: Parameters estimates, -log (L), k-s test value and p-value for Fréchet, Transmuted Fréchet, and Cubic Transmuted
Fréchet for BSC data

Distribution Parameters estimates -log(L) k-s P-value

Fréchet s = 1.397 a = 4.3738 53.592 0.0875 0.4287

TF s = 1.5912 a = 3.3636 λ = 0.8517 52.412 0.0755 0.6189

CTF s = 1.172 a = 5.0803 λ1 =−0.7817 λ2 =−1 51.865 0.066 0.7767

Table 7: Parameters estimates, -log (L), AIC, BIC and k-s test value for Fréchet, Transmuted Fréchet, and Cubic
Transmuted Fréchet for SGF data.

Distribution Parameters estimates -log(L) k-s P-value

Fréchet s = 1.4108 a = 5.4379 20.064 0.0772 0.8187

TF s = 1.5491 a = 4.3142 λ = 0.7778 19.369 0.0635 0.9472

CTF s = 1.4591 a = 4.6668 λ1 = 0.001 λ2 = 0.652 19.25 0.0643 0.9416
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Fig. 3: The pdf of Fréchet, TF and CTF for BSC and SGF datasets

goodness of fit statistics in Table 6 among the three distributions, it is clear that all distributions are competitors and fit
the breaking stress of carbon fibers data well but the proposed distribution CTFD fits it best (see Figure 3 on the left) .
Moreover, basing on -2log (L) criteria (the smaller the better), CTFD performs better than other distributions. Regarding
the SGF data, from Table 7 basing on -2log (L) criteria among the three distributions, it is observed that the CTFD
performs better than the other distributions. While the Transmuted Fréchet fits the data best (see Figure 3 on the right).
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6 Conclusions

In this paper, a new generalization of the Fréchet distribution called the Cubic Transmuted Fréchet (CTFD) distribution is
suggested. Furthermore, some properties of the CTFD including survival and hazard functions, mean, variance, quantile
function and random number generation are derived. The estimation of the distribution parameters is performed using
maximum Likelihood method. In order to test a goodness of fit for CTFD, the distribution is fitted to a two uncensored
data and compared with some related distributions. It is observed that CTFD works better than these distributions.
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[3] M. Fréchet, Sur la loi de probabilité de l’écart maximum, Annales de la societe Polonaise de Mathematique,6, 93-116 (1927).

[4] S. Kotz , S. Nadarajah, Extreme value distributions: theory and applications, World Scientific, (2000).

[5] N. CELIK, Some Cubic Rank Transmuted Distributions, Journal of Applied Mathematics, Statistics and Informatics, 14(2) 27-43

(2018).

[6] W. Shaw and I. Buckley. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew kurtotic-normal

distribution from a rank transmutation map, Conference on Computational Finance, IMA, 0901–0434, Research Report, (2019).
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