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Abstract: The constant-partially accelerated life tests (PALTs) model under progressive first-failure censoring based on compound

Rayleigh distribution is considered in this paper. For this model, the maximum likelihood estimates (MLEs) of its parameters, as well

as the corresponding observed Fisher information matrix, are derived. The likelihood equations do not lead to closed form expressions

for the MLE, and they need to be solved by using an iterative procedure, such as the Newton-Raphson method. We then evaluate the

bias, and mean square error of these estimates; and provide asymptotic, and bootstrap confidence intervals for the parameters. The

results in the cases of first-failure censoring, progressive Type II censoring, Type II censoring and complete sample are a special cases.

One set of real data has been analyzed for illustrative purposes. Different methods have been compared using Monte Carlo simulations.

Keywords: Compound Rayleigh distribution, constant-partially accelerated life tests, Progressive first-failure censoring, Maximum

likelihood estimator, Bootstrap, Monte Carlo simulation

1 Introduction

Accelerated life test sampling plans provide information quickly on the lifetime distribution of products by testing them
at higher-than-usual stress level to induce early failures and reduce the testing efforts. The accelerated life-testing, which
may be performed either at constant high stress level or linearly increasing stress levels, will enable one to examine
the effects of stress factors such as load, pressure, temperature, and voltage on the lifetimes of experimental units. Data
collected at such accelerated conditions are then extrapolated through a physically appropriate statistical model to estimate
the lifetime distribution at normal use conditions. In PALTs items are tested at both accelerated and use conditions. There
are two types of PALTs, one is called step PALTs and the other is called constant PALTs. For more extensive research
on ALTs, see [1] and [2]. Constant-stress ALTs, in which the stress remains constant through the test, were studied by
several authors. Among others, are [3] and [4]. [5,6] applied constant ALTs to finite mixtures of distributions using Bayes
and maximum likelihood methods of estimation, respectively. Step-stress ALT is a special kind of ALT in which the test
condition is changed at a given time or upon the occurrence of a specified number of failures; see [7], [8], [9], [10] and
[11]. When a test involves two levels of stress with the first one being the normal level and a specific time point for
changing the stress, it is referred to as a step PALT. Several authors have dealt with this type of ALT, including, [12] and
[13]. Recently, the constant-partially accelerated life tests has received considerable interest among the statisticians. See
for example, [14], [15] and [16].

There are many situations in life-testing and reliability studies in which the experimenter may be unable to obtain
complete information on failure times of all experimental items. There are also situations wherein the removal of items
prior to failure is pre-planned in order to reduce the cost and time associated with testing. The most common censoring
schemes are Type-I and Type-II censoring, but the conventional Type-I and Type-II censoring schemes do not have the
flexibility of allowing removal of items at points other than the terminal point of the experiment. A generalization of
Type-II censoring is the progressive Type-II censoring which allows for units to be removed from the test at points other
than the final termination point. Inference, sampling design and generalization based on progressively censored samples
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were studied by [17], [18], [19], [20], [21] and [22]. [23] described a life test in which the experimenter might decide
to group the test units into several sets, each as an assembly of test units, and then run all the test units simultaneously
until occurrence the first failure in each group. Such a censoring scheme is called a first-failure censoring scheme. If an
experimenter desires to remove some sets of test units before observing the first failures in these sets this life test plan is
called a progressive first-failure-censoring scheme (first-failure censoring scheme is combined with progressive censoring
scheme which introduced by [24].

The two-parameter compound Rayleigh distribution which is denoted by CRD(α,β ) provides a population model
which is useful in several areas of statistics, including life testing and reliability. The probability density function (PDF),
cumulative distribution function (CDF), survival function (SF), and hazard rate function (HRF) of the two-parameter
compound Rayleigh distribution are given, respectively, by

f1(t) = 2αβ αt(β + t2)−(α+1), t > 0, (β > 0, α > 0), (1)

F1(t) = 1−β α(β + t2)−α , t > 0, (2)

S1(t) = β α(β + t2)−α , t > 0, (3)

and
H1(t) = 2αt(β + t2)−1, t > 0, (4)

where α and β are the shape and scale parameters respectively.
This paper considers the constant PALT applied to items whose lifetimes under design condition are assumed to follow

CRD(α,β ) distribution under the progressively first-failure-censored. In Section 2, a description of the model is presented.
The MLEs of the involved parameters and approximate confidence intervals are derived in Section 3. In Section 4, the
parametric bootstrap confidence intervals are discussed. A simulated data set from CRD(α,β ) is analyzed in Section 5. In
Section 6, the different methods are compared using Monte Carlo simulations. Some concluding remarks are finally made
in Section 7.

2 Model Description and Basic Assumptions

In this section, first-failure censoring scheme is combined with progressive censoring scheme as in [24]. n1 test
independent groups with k1 items within each group are randomly chosen among n test independent groups with k1 items
within each group is allocated to use condition and n2 = n − n1 remaining independent groups with k2 items are
subjected to an accelerated condition. progressive first-failure censoring scheme is applied as follows: R j1 groups and the

group in which the first failure is observed are randomly removed from the test as soon as the first failure (say tR
j1:m j :n j :k j

)

has occurred, R j2 groups and the group in which the second failure is observed are randomly removed from the test as

soon as the second failure (say tR
j2:m j :n j :k j

) has occurred, and finally R jm (m j ≤ n j) groups and the group in which the

m j − th failure is observed are randomly removed from the test when the m j − th failure (say tR
jm j :m j :n j :k j

) has occurred.

The observations tR
j1:m j :n j :k j

< tR
j2:m j :n j :k j

< ... < tR
jm j :m j :n j :k j

are called progressively first-failure-censored order statistics

with progressive censoring scheme R = (R j1,R j2, ...,R jm). It is clear that for j = 1,2, m j is the number of the first failure
observed (1 < m j ≤ n j) and n j = m j +R j1 +R j2 + ...+R jm. If the failure times of the n j × k j items originally in the test
are from a continuous population with distribution function Fj(x) and probability density function f j(x), the joint

probability density function for tR
j1:m j :n j :k j

, tR
j2:m j :n j :k j

, ..., tR
jm j :m j :n j :k j

is given by

L(α,β ,λ |t) =
2

∏
j=1

C jk
m j

j

m j

∏
i=1

f j(t
R
ji:m j :n j :k j

)(1−F(tR
ji:m j :n j :k j

))k j(R ji+1)−1, (5)

0 < tR
j1:m j :n j :k j

< tR
j2:m j :n j :k j

< ... < tR
jm j :m j :n j :k j

< ∞,

where
C j = n j(n j −R j1 − 1)(n j −R j1 −R j2 − 1)...(n j −R j1 −R j2 − ...R j(m j−1)−m j + 1).

Special cases
It is clear from (5) that the progressive first-failure censored scheme containing the following censoring schemes as

special cases:
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1.The first-failure censored scheme when R = (0,0, ...,0).
2.The progressive Type II censored order statistics if k j = 1.
3.Usually Type II censored order statistics when k j = 1 and R = (0,0, ...,n j −m j).
4.The complete sample case when k = 1 and R = (0,0, ...,0).

Also, It should be noted that tR
j1:m j :n j :k j

, tR
j2:m j :n j :k j

, ..., tR
jm j :m j :n j :k j

can be viewed as a progressive Type II censored

sample from a population with distribution functions 1− (1−Fj(t))
k j . For this reason, results for progressive Type II

censored order statistics can be extend to progressive first-failure censored order statistics easily. Also, the progressive
first-failure-censored plan has advantages in terms of reducing the test time, in which more items are used, but only m j of
n j × k j items are failures.
For more application about progressive-first-failure censoring data the readers may refer to [25], [26], and [27], [28] and
[29].

Suppose that the lifetime of an n1 test independent groups with k1 items tested at use condition follows a CRD(α,β )
with PDF, CDF, SF and HRF, given in (1)-(4). The hazard rate of an item tested at accelerated condition is given by H2(t)=
λ H1(t), where λ is an acceleration factor satisfying λ > 1. Therefore the HRF, SF, CDF and PDF under accelerated
condition are given, for t > 0, (α, β ) > 0, λ > 1, respectively, by

H2(t) = 2αλ t(β + t2)−1, (6)

S2(t) = exp

(

−
∫ t

0
H2(z)dz

)

= β αλ (β + t2)−αλ , (7)

F2(t) = 1−β αλ(β + t2)−αλ , (8)

and
f2(t) = 2αλ β αλ (β + t2)−(αλ+1). (9)

3 Maximum Likelihood Estimation

In this section, we first estimate the parameters α , β and λ ; by considering the maximum likelihood (ML) methods and
then we compute the observed Fisher information based on the likelihood equations. These will enable us to develop
pivotal quantities based on the limiting normal distribution, the resulting pivotal quantities can be used to develop
approximate confidence interval for the parameters. Finally, using the ML estimates, we construct the parametric
bootstrap confidence intervals.

3.1 MLEs

Let, for j = 1,2, and T
R j
j1;m j ,n j

< T
R j
j2;m j ,n j

< ...< T
R j
jm j ;m j ,n j

denote two progressively Type-II censored samples from two

populations whose CDFs and PDFs are as given in (2), (1) and (8), (9), with R j = (R j1, R j2, ..., R jm j
). the log-likelihood

function ℓ(α,β ,λ |t) = logL(α,β ,λ |t) without normalized constant is then given by

ℓ(α,β ,λ |t) = (m1 +m2) logα +m2 logλ +α(k1n1 +λ k2n2) logβ

−
m1

∑
i=1

(αk1(R1i + 1)+ 1)log(β + t2
1i)−

m2

∑
i=1

(αλ k2(R2i + 1)+ 1)log(β + t2
2i). (10)

Calculating the first partial derivatives of (10) with respect to α, β and λ and equating each to zero, we get the likelihood
equations as

∂ℓ(α,β ,λ |t)
∂α

=
m1 +m2

α
+(k1n1 +λ k2n2) logβ − k1

m1

∑
i=1

(R1i + 1) log(β + t2
1i)

−λ k2

m2

∑
i=1

(R2i + 1) log(β + t2
2i) = 0 , (11)

∂ℓ(α,β ,λ |t)
∂β

=
α(k1n1 +λ k2n2)

β
−

m1

∑
i=1

αk1(R1i + 1)+ 1

β + t2
1i

−
m2

∑
i=1

αλ k2(R2i + 1)+ 1

β + t2
2i

= 0, (12)
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and
∂ℓ(α,β ,λ |t)

∂λ
=

m2

λ
+αk2n2 logβ −αk2

m2

∑
i=1

(R2i + 1) log(β + t2
2i) = 0. (13)

From (11), (12) and (13) we obtain the ML estimates of λ , α and β as

λ̂ (α,β ) =
m2

αk2η2(t,β )
, (14)

α̂(β ) =
m1

k1η1(t,β )
, (15)

and
m1

η1(t,β )

m1

∑
i=1

(R1i + 1)t2
1i

β (β + t2
1i)

+
m2

η2(t,β )

m2

∑
i=1

(R2i + 1)t2
2i

β (β + t2
2i)

−
m1

∑
i=1

1

β + t2
1i

−
m2

∑
i=1

1

β + t2
2i

= 0, (16)

where

η1(t,β ) =
m1

∑
i=1

(R1i + 1) log(1+
t2
1i

β
), (17)

and

η2(t,β ) =
m2

∑
i=1

(R2i + 1) log(1+
t2
2i

β
). (18)

Thus, the ML estimate β̂ of the parameter β can be obtained by solving the nonlinear likelihood Equation (16) using, for

example, the Newton–Raphson iteration scheme. The corresponding ML estimates α̂ and λ̂ of the parameters α and λ
are computed from Equations (15) and (14), respectively.

3.2 Approximate interval estimation

The asymptotic variances and covariances of the MLE for parameters α , β and λ are given by elements of the inverse of
the Fisher information matrix. From the log-likelihood function in (10), we have

∂ 2ℓ(α,β ,λ |t)
∂α2

=−m1 +m2

α2
, (19)

∂ 2ℓ(α,β ,λ |t)
∂β 2

=−α(k1n1 +λ k2n2)

β 2
+

m1

∑
i=1

αk1(R1i + 1)+ 1

(β + t2
1i)

2
+

m2

∑
i=1

αλ k2(R2i + 1)+ 1

(β + t2
2i)

2
, (20)

∂ 2ℓ(α,β ,λ |t)
∂λ 2

=−m2

λ 2
, (21)

∂ 2ℓ(α,β ,λ |t)
∂α∂β

=
∂ 2ℓ(α,β ,λ |t)

∂β ∂α
=

k1n1 +λ k2n2

β
− k1

m1

∑
i=1

(R1i + 1)

β + t2
1i

−λ k2

m2

∑
i=1

(R2i + 1)

β + t2i

, (22)

∂ 2ℓ(α,β ,λ |t)
∂α∂λ

=
∂ 2ℓ(α,β ,λ |t)

∂λ ∂α
=−η2(t,β ), (23)

and
∂ 2ℓ(α,β ,λ |t)

∂β ∂λ
=

∂ 2ℓ(α,β ,λ |t)
∂λ ∂β

=−αk2

m2

∑
i=1

(R2i + 1)t2
2i

β
(

β + t2
2i

) . (24)

The observed Fisher information matrix I (α,β ,λ ), for the MLEs (α̂, β̂ and λ̂ ), see [30], is the 3× 3 symmetric matrix
of negative second partial derivatives of the log-likelihood function with respect to (α, β and λ ). In practice , we usually

estimate I−1 (α,β ,λ ) by I−1(α̂, β̂ , λ̂ )

I−1
0 (α̂, β̂ , λ̂ ) =









− ∂ 2ℓ(α ,β ,λ |t)
∂α2

− ∂ 2ℓ(α ,β ,λ |t)
∂α∂β − ∂ 2ℓ(α ,β ,λ |t)

∂α∂λ

− ∂ 2ℓ(α ,β ,λ |t)
∂β ∂α − ∂ 2ℓ(α ,β ,λ |t)

∂β 2
− ∂ 2ℓ(α ,β ,λ |t)

∂β ∂λ

− ∂ 2ℓ(α ,β ,λ |t)
∂λ ∂α − ∂ 2ℓ(α ,β ,λ |t)

∂λ ∂β − ∂ 2ℓ(α ,β ,λ |t)
∂λ 2









−1

(α̂ ,β̂ ,λ̂ )

. (25)
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Table 1: Simulated progressively censored samples with constant PALTs.

Ri 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

t1 0.1037 0.1141 0.1275 0.1359 0.1828 0.1934 0.2019 0.2460 0.2477 0.2690

0.2850 0.3133 0.3489 0.3543 0.3558 0.3614 0.3750 0.3755 0.3849 0.4044

0.4198 0.4277 0.4756 0.5249 0.5271 0.5688 0.7789 0.8191 0.9419 1.0810

Ri 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

t2 0.1121 0.1249 0.1443 0.1491 0.1512 0.2313 0.2339 0.2398 0.2430 0.2511

0.2916 0.2998 0.3265 0.3641 0.4253 0.4294 0.4323 0.4389 0.4798 0.8150

Table 2: MLEs, MSEs, RABs and (90%-95%) approximate confidence intervales.

Parameters (.)ML RAB MSE 90% 95%

α = 0.5 0.4781 0.0437 0.0219 (-0.1995, 1.1558) (0.2003, 0.7560)

β = 0.8 0.8083 0.0104 0.0083 (-0.5533, 2.1699) (0.2500, 1.3666)

λ = 1.5 1.4681 0.0212 0.0319 (0.7497, 2.1866) (1.1735, 1.7628)

Table 3: Percentile bootstrap CIs and Bootstrap-t CIs based on 10000 replications.

Parameters Bootstrap-p Bootstrap-t

(.)Boot P RAB MSE 95% (.)Boot t RAB MSE 95%

α = 0.5 0.4641 0.0718 0.0359 (0.3628, 0.5450) 0.3887 0.2226 0.1113 (0.3015, 0.5258)

β = 0.8 0.7658 0.0427 0.0342 (0.5895, 0.9269) 0.6661 0.1675 0.1340 (0.4852, 0.8927)

λ = 1.5 1.5422 0.0281 0.0422 (1.2168, 1.7923) 1.4099 0.0601 0.0901 (1.1610, 1.7287)

0.5 1.0 1.5 2.0 2.5 3.0
t

0.1

0.2

0.3

0.4

0.5

0.6

f Ht L

f2HtL

f1HtL

Fig. 1: Plot the density functions f1(t) and f2(t).

Thus, the 100(1− γ)% approximate confidence intervals for α,β and λ are

α̂ ∓ z γ
2

√
v11, β̂ ∓ z γ

2

√
v22 and λ̂ ∓ z γ

2

√
v33, (26)

where v11, v22 and v33 are the elements on the main diagonal of the covariance matrix I−1(α̂, β̂ , λ̂ ) and z γ
2

is the percentile

of the standard normal distribution with right-tail probability
γ
2
.
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Table 4: MLEs, MSEs and RABs for the parameters ( α ,β ,λ ) at (0.7, 0.3, 1.5) with k1= k2= k.

(k,n,m) CS AVG MSE RAB

α̂ β̂ λ̂ α̂ β̂ λ̂ α̂ β̂ λ̂
(1,40,30) I 0.889 0.379 1.434 0.346 0.186 0.362 0.269 0.263 0.144

II 0.892 0.382 1.532 0.356 0.193 0.433 0.273 0.317 0.197

III 0.921 0.454 1.664 0.467 0.275 0.537 0.3167 0.514 0.199

(1,40,35) I 0.833 0.304 1.404 0.225 0.204 0.287 0.172 0.246 0.147

II 0.821 0.398 1.534 0.240 0.217 0.326 0.181 0.296 0.153

III 0.831 0.385 1.573 0.312 0.224 0.459 0.197 0.382 0.169

(1,50,30) I 0.727 0.333 1.630 0.209 0.162 0.464 0.039 0.111 0.137

II 0.842 0.376 1.637 0.243 0.187 0.497 0.191 0.381 0.148

III 0.874 0.421 1.676 0.328 0.202 0.523 0.248 0.402 0.162

(1,50,40) I 0.784 0.362 1.543 0.156 0.165 0.329 0.120 0.206 0.112

II 0.798 0.371 1.570 0.184 0.174 0.346 0.139 0.319 0.132

III 0.810 0.396 1.590 0.213 0.186 0.454 0.157 0.386 0.143

(1,70,50) I 0.642 0.290 1.562 0.096 0.130 0.338 0.056 0.065 0.043

II 0.651 0.312 1.578 0.129 0.158 0.342 0.068 0.087 0.058

III 0.698 0.318 1.597 0.156 0.161 0.352 0.084 0.099 0.065

(1,70,60) I 0.657 0.221 1.422 0.112 0.104 0.227 0.032 0.030 0.022

II 0.719 0.247 1.475 0.136 0.112 0.231 0.042 0.070 0.037

III 0.757 0.321 1.513 0.145 0.128 0.280 0.082 0.071 0.039

(5,40,30) I 0.818 0.368 1.574 0.334 0.179 0.449 0.169 0.226 0.130

II 0.987 0.437 1.617 0.429 0.234 0.453 0.342 0.347 0.114

III 1.001 0.455 1.707 0.608 0.286 0.469 0.441 0.517 0.158

(5,40,35) I 1.011 0.442 1.499 0.504 0.215 0.294 0.385 0.306 0.046

II 1.023 0.450 1.509 0.534 0.249 0.0349 0.391 0.341 0.064

III 0.997 0.487 1.637 0.636 0.348 0.404 0.446 0.424 0.035

(5,50,30) I 0.707 0.294 1.493 0.284 0.107 0.378 0.101 0.021 0.044

II 0.702 0.311 1.532 0.325 0.128 0.342 0.192 0.108 0.057

III 0.852 0.388 1.721 0.458 0.219 0.455 0.217 0.295 0.147

(5,50,40) I 0.896 0.337 1.377 0.391 0.181 0.343 0.324 0.315 0.035

II 0.901 0.348 1.398 0.432 0.201 0.354 0.329 0.323 0.041

III 0.935 0.401 1.481 0.660 0.253 0.307 0.336 0.337 0.044

(5,70,50) I 0.797 0.409 1.453 0.371 0.177 0.272 0.282 0.332 0.025

II 0.783 0.410 1.480 0.375 0.181 0.291 0.327 0.363 0.031

III 0.966 0.425 1.472 0.427 0.197 0.314 0.380 0.417 0.038

(5,70,60) I 0.826 0.368 1.301 0.321 0.134 0.277 0.180 0.225 0.027

II 0.875 0.375 1.371 0.431 0.147 0.0219 0.172 0.391 0.029

III 0.893 0.479 1.472 0.507 0.298 0.307 0.562 0.595 0.029

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence intervals,
but it can also be used to estimate bias and variance of an estimator or calibrate hypothesis tests. More survey of the
nonparametric and parametric bootstrap methods [31], [32]. In this section, the two confidence intervals based on the
parametric bootstrap methods are proposed: percentile bootstrap method (Boot-p) based on the idea of [33]. (ii) bootstrap-
t method (Boot-t) based on the idea of [34]. The algorithms for estimating the confidence intervals of parameters using
both methods are illustrated below.

1Based on the original progressively first-failure censored sample, (t j1;m j ,n j ,k j
< t j2;m j ,n j ,k j

< .. . < t jm j ;m j ,n j ,k j
), obtain

α̂ , β̂ , and λ̂ , j = 1,2.
2Based on the values of n j, m j and k j(1 < m j < n j) with the same values of R ji, (i = 1, 2, . . . , m j), j = 1,2, generate
two independent random samples of sizes m1 and m2 from compound Rayleigh distribution, t∗ =(t∗j1;m j ,n j

< t∗j2;m j ,n j
<

.. . < t∗jm j ;m j ,n j
) by using the algorithm described in [35] with distribution functions 1− (1−Fj(t))

k j .

3As in step 1 based on t∗ compute the bootstrap sample estimates of α̂, β̂ , and λ̂ say α̂∗, β̂ ∗ and λ̂ ∗.
4Repeat the above steps 2 and 3 N∗ times representing N∗ different bootstrap samples. The value of N∗ has been taken
to be 1000.

5Arrange all α̂∗, β̂ ∗ and λ̂ ∗ in an ascending order to obtain the bootstrap sample (ϕ̂
∗[1]
ℓ , ϕ̂

∗[2]
ℓ , . . . , ϕ̂

∗[B]
ℓ ), ℓ = 1,2,3

where (ϕ∗
1 = α∗, ϕ∗

2 = β ∗, ϕ∗
3 = λ ∗).

Percentile bootstrap confidence interval:

Let G(z) = P(ϕ̂∗
ℓ 6 z) be cumulative distribution function of ϕ̂∗

ℓ . Define ϕ̂∗
ℓboot = G−1(z) for given z. The approximate

bootstrap 100(1− γ)% confidence interval of ϕ̂∗
ℓ given by

[

ϕ̂∗
ℓboot(

γ

2
), ϕ̂∗

ℓboot(1−
γ

2
)
]

. (27)

Bootstrap-t confidence interval
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Table 5: Comparisons of (AC) and (CP) of 95% confidence intervals (α ,β ,λ ) at (0.7,0.3,1.5) with k1 = k2 = k.

(k,n,m) CS MLE Boot-P Boo-t

α β λ α β λ α β λ
(1,40,30) I 1.622 0.925 1.715 1.367 0.637 1.555 1.023 0.521 1.615

(0.953) (0.392) (0.962) (0.942) (0.962) (0.963) (0.915) (0.931) (0.923)

II 1.543 1.018 1.754 1.427 0.641 1.645 1.216 0.563 1.742

(0.923) (0.903) (0.933) (0.931) (0.943) (0.925) (0.930) (0.889) (0.925)

III 1.978 1.247 1.789 1.525 0.666 1.969 1.371 0.684 1.865

(0.923) (0.906) (0.921) (0.89) (0.944) (0.923) (0.902) (0.932) (0.954)

(1,40,35) I 0.852 0.677 1.338 0.912 0.421 1.355 0.697 0.513 1.398

(0.934) (0.952) (0.961) (0.923) (0.962) (0.944) (0.934) (0.946) (0.907)

II 0.948 0.732 1.432 0.954 0.498 1.428 0.743 0.564 1.436

(0.943) (0.927) (0.918) (0.933) (0.936) (0.938) (0.942) (0.947) (0.934)

III 1.079 0.806 1.547 1.031 0.653 1.712 0.835 0.664 1.574

(0.945) (0.930) (0.955) (0.947) (0.958) (0.932) (0.908) (0.939) (0.961)

(1,50,30) I 0.778 0.606 1.458 0.936 0.610 1.609 0.703 0.432 1.513

(0.950) (0.943) (0.961) (0.928) (0.962) (0.959) (0.951) (0.963) (0.963)

II 0.845 0.786 1.564 0.972 0.651 1.732 0.864 0.479 1.564

(0.937) (0.935) (0.961) (0.945) (0.953) (0.952) (0.949) (0.954) (0.946)

III 1.903 1.405 1.775 1.351 0.670 1.923 1.084 0.523 1.787

(0.945) (0.960) (0.966) (0.933) (0.950) (0.925) (0.919) (0.931) (0.948)

(1,50,40) I 0.721 0.606 1.222 0.822 0.572 1.416 0.660 0.463 1.443

(0.950) (0.966) (0.967) (0.952) (0.955) (0.962) (0.965) (0.957) (0.971)

II 0.843 0.649 1.320 0.876 0.611 1439 0.764 0.514 1.397

(0.944) (0.963) (0.954) (0.964) (0.947) (0.962) (0.946) (0.939) (0.941)

III 1.021 0.772 1.391 1.051 0.631 1.517 0.811 0.540 1.451

(0.965) (0.790) (0.966) (0.962) (0.950) (0.963) (0.974) (0.963) (0.960)

(1,70,50) I 0.541 0.403 1.287 0.635 0.461 1.395 0.522 0.391 1.212

(0.967) (0.958) (0.972) (0.964) (0.942) (0.956) (0.963) (0.960) (0.964)

II 0.654 0.511 1.302 0.739 0.487 1.412 0.543 0.412 1.259

(0.953) (0.961) (0.949) (0.944) (0.957) (0.968) (0.950) (0.964) (0.958)

III 0.836 0.612 1.312 0.907 0.589 1.429 0.623 0.433 1.311

(0.953) (0.960) (0.953) (0.954) (0.956) (0.966) (0.937) (0.971) (0.963)

(1,70,60) I 0.567 0.403 1.028 0.659 0.454 1.139 0.542 0.389 1.058

(0.976) (0.968) (0.956) (0.929) (0.962) (0.953) (0.956) (0.978) (0.958)

II 0.539 0.434 1.104 0.743 0.513 1.154 0.563 0.399 1.119

(0.959) (0.974) (0.966) (0.973) (0.959) (0.964) (0.957) (0.948) (0.966)

III 0.672 0.468 1.117 0.807 0.556 1.262 0.593 0.420 1.177

(0.965) (0.976) (0.975) (0.967) (0.952) (0.945) (0.958) (0.965) (0.965)

First, find the order statistics δ
∗[1]
ℓ < δ

∗[2]
ℓ < .. . < δ

∗[B]
ℓ , where

δ
∗[ j]
ℓ =

ϕ̂
∗[ j]
ℓ − ϕ̂ℓ

√

var
(

ϕ̂
∗[ j]
ℓ

)

, j = 1,2, . . . ,B, ℓ= 1,2,3, (28)

where ϕ̂1 = α̂, ϕ̂2 = β̂ , ϕ̂3 = λ̂ .
Let H(z) = P(δ ∗

ℓ < z) be the cumulative distribution function of δ ∗
ℓ . For a given z, define

ϕ̂ℓboot−t = ϕ̂ℓ+
√

Var(ϕ̂ℓ)H
−1(z). (29)

The approximate 100(1− γ)% confidence interval of ϕ̂ℓ is given by

(

ϕ̂ℓboot−t(
γ

2
), ϕ̂ℓboot−t(1−

γ

2
)
)

. (30)

5 Illustrative Example

Let us consider the simulated data presented in Table 1 with sample size m1 = 30 and m2 = 20 of n1 = 60 and n2 = 50
with k1 = k2 = 5 are generated from compound Rayleigh distribution with parameters (α,β ,λ ) = (0.5,0.8,1.5) and two
progressive censoring scheme R1 and R2. Figure 1 shows the probability density functions under normal conditions and
accelerate conditions. By substituting from Eq. (14) and Eq. (15) in Eq. (10), we plot the profile log-likelihood function
of β as in Figure 2. It is a unimodal function. We can use any iteration procedure such as quasi-Newton Raphson or fixed
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Table 6: Continue

(k,n,m) CS MLE Boot-P Boo-t

α β λ α β λ α β λ
(5,40,30) I 1.375 1.511 1.567 1.561 0.616 1.627 1.307 0.416 1.643

(0.920) (0.934) (0.944) (0.921) (0.932) (0.954) (0.934) (0.922) (0.946)

II 1.409 1.563 1.654 1.627 0.634 1.733 1.345 0.457 1.709

(0.947) (0.926) (0.935) (0.947) (0.954) (0.942) (0.957) (0.945) (0.937)

III 1.502 1.557 1.675 1.687 0.647 1.767 1.461 0.543 1.772

(0.945) (0.943) (0.945) (0.963) (0.954) (0.964) (0.919) (0.954) (0.964)

(5,40,35) I 1.627 1.715 1.549 1.478 0.631 1.537 1.364 0.454 1.476

(0.922) (0.932) (0.944) (0.929) (0.948) (0.974) (0.965) (0.956) (0.971)

II 1.754 1.869 1.501 1.543 0.639 1.576 1.437 0.501 1.522

(0.945) (0.935) (0.965) (0.954) (0.955) (0.945) (0.938) (0.945) (0.966)

III 1.868 2.971 1.512 1.656 0.649 1.606 1.557 0.531 1.542

(0.935) (0.961) (0.934) (0.933) (0.941) (0.946) (0.908) (0.964) (0.933)

(5,50,30) I 1.275 1.037 1.567 1.616 0.514 1.698 1.028 0.323 1.614

(0.922) (0.942) (0.921) (0.942) (0.955) (0.976) (0.943) (0.932) (0.953)

II 1.341 1.231 1.458 1.637 0.534 1.736 1.114 0.354 1.774

(0.955) (0.957) (0.939) (0.946) (0.953) (0.963) (0.961) (0.925) (0.944)

III 1.458 1.482 1.898 1.668 0.658 1.941 1.239 0.492 1.896

(0.929) (0.901) (0.932) (0.943) (0.966) (0.954) (0.928) (0.973) (0.953)

(5,50,40) I 1.454 1.512 1.341 1.432 0.555 1.332 1.245 0.476 1.282

(0.965) (0.963) (0.967) (0.959) (0.962) (0.986) (0.973) (0.954) (0.962)

II 1.453 1.537 1.351 1.543 0.618 1.453 1.321 0.488 1.297

(0.971) (0.963) (0.956) (0.966) (0.954) (0.964) (0.939) (0.965) (0.971)

III 1.567 1.559 1.355 1.574 0.636 1.534 1.379 0.585 1.343

(0.976) (0.965) (0.948) (0.965) (0.975) (0.949) (0.967) (0.970) (0.961)

(5,70,50) I 1.509 1.346 1.223 1.411 0.627 1.198 1.084 0.424 1.180

(0.965) (0.974) (0.977) (0.956) (0.971) (0.965) (0.973) (0.953) (0.966)

II 1.675 1.447 1.221 1.522 0.634 1.227 1.118 0.476 1.231

(0.968) (0.975) (0.973) (0.959) (0.978) (0.953) (0.976) (0.968) (0.955)

III 1.739 1.748 1.238 1.542 0.645 1.258 1.126 0.501 1.314

(0.967) (0.954) (0.971) (0.954) (0.975) (0.968) (0.973) (0.934) (0.963)

(5,70,60) I 1.349 1.017 0.972 1.362 0.684 1.155 1.034 0.409 1.126

(0.972) (0.964) (0.966) (0.982) (0.975) (0.967) (0.967) (0.956) (0.965)

II 1.364 1.231 0.984 1.408 0.698 1.219 1.117 0.432 1.131

(0.977) (0.968) (0.980) (0.975) (0.969) (0.967) (0.985) (0.982) (0.967)

III 1.416 1.415 1.093 1.501 0.705 1.236 1.291 0.444 1.133

(0.967) (0.955) (0.972) (0.973) (0.959) (0.958) (0.947) (0.971) (0.962)

Table 7: Comparisons of (AC) and (CP) of 95% confidence intervals (α ,β ,λ ) at (1, 0.7, 2) with k1 = k2 = k.

(k,n1,m1 ,n2,m2) CS MLE Boot-P Boo-t

α β λ α β λ α β λ
(1,60,40,50,30) I 0.999 1.056 1.792 0.844 0.663 1.583 0.844 0.762 1.554

(0.934) (0.921) (0.954) (0.923) (0.933) (0.941) (0.962) (0.937) (0.937)

II 1.249 1.273 1.865 0.867 0.669 1.612 0.965 0.798 1.637

(0.934) (0.929) (0.917) (0.943) (0.908) (0.922) (0.931) (0.932) (0.908)

III 1.827 1.439 1.978 0.934 0.675 1.679 1.054 0.815 1.822

(0.925) (0.907) (0.944) (0.939) (0.941) (0.938) (0.960) (0.938) (0.932)

(1,60,50,50,40) I 0.915 0.914 1.668 0.827 0.619 1.571 0.799 0.676 1.504

(0.952) (0.949) (0.964) (0.972) (0.933) (0.948) (0.965) (0.955) (0.947)

II 1.129 1.218 1.733 0.843 0.637 1.645 0.863 0.743 1.660

(0.939) (0.954) (0.950) (0.944) (0.967) (0.964) (0.946) (0.955) (0.948)

III 1.337 1.381 1.789 0.858 0.651 1.719 0.977 0.835 1.770

(0.943) (0.948) (0.955) (0.959) (0.964) (0.976) (0.954) (0.972) (0.965)

(5,60,40,50,30) I 1.544 1.654 1.567 0.801 0.453 1.673 1.262 0.656 1.542

(0.964) (0.943) (0.957) (0.982) (0.966) (0.954) (0.954) (0.967) (0.957)

II 1.672 1.774 1.870 0.883 0.511 1.708 1.331 0.697 1.654

(0.949) (0.955) (0.938) (0.973) (0.954) (0.960) (0.939) (0.966) (0.950)

III 1.896 1.970 1.925 0.931 0.522 1.806 1.519 0.719 1.721

(0.964) (0.966) (0.948) (0.953) (0.955) (0.967) (0.976) (0.947) (0.956)

(5,60,50,50,40) I 1.507 1.597 1.659 0.714 0.508 1.560 0.884 0.648 1.519

(0.975) (0.977) (0.967) (0.980) (0.971) (0.965) (0.973) (0.968) (0.972)

II 1.602 1.609 1.763 0.811 0.533 1.640 0.973 0.674 1.640

(0.974) (0.980) (0.966) (0.949) (0.958) (0.977) (0.981) (0.972) (0.964)

III 1.736 1.719 1.866 0.934 0.653 1.691 1.223 0.761 1.747

(0.972) (0.965) (0.945) (0.939) (0.957) (0.963) (0.974) (0.967) (0.960)
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Fig. 2: Profile log-likelihood function of β .

point algorithm to compute the MLE with the initial guess of 0.73. The point estimates and relate relative absolute biases
(RABs) and mean squared errors (MSEs) of the parameters as well as (90% and 95%) approximate confidence intervals
are presented in Table 2. Also the point estimates and relate (RABs and MSEs) of the parameters as well as (90% and
95%) percentile bootstrap and bootstrap-t confidence intervals are presented in Table 3. We, observed that the percentile
bootstrap and bootstrap-t confidence intervals always include the population parameter values.

6 Simulation Studies

In order to obtain the MLEs of (α,β ,λ ) and study the properties of their estimates through the MSEs and RABs. A Monte
Carlo simulation study is carried out in order to calculate the MLEs, MSEs, RABs and 90% approximate confidence
intervals of the model parameters, based on N 1000 Monte Carlo simulations. Based on N∗ 1000 bootstrap replications,
then the average of MLE, MSE and RAB of ψℓ, ℓ = 1,2,3 (Where ψ1 ≡ α, ψ2 ≡ β , ψ3 ≡ λ ) over the N samples are
given, respectively, by

ψ̂ℓ =
1

N

N

∑
i=1

ψ̂ℓi,

MSE(ψ̂ℓ) =
1

N

N

∑
i=1

(ψ̂ℓi −ψℓ)
2,

RAB(ψ̂ℓ) =
|ψ̂ℓ−ψℓ|

ψℓ
.

The different confidence intervals, namely the confidence intervals obtained by using asymptotic distributions of the
MLEs and the two different bootstrap confidence intervals in terms of the average confidence lengths (ACL) and coverage
percentages (CP) are calculated and compared. For each simulated sample under a particular setting, we computed 95%
confidence intervals and checked whether the true value lay within the interval and recorded the length of the confidence
interval. In our study we have used three different censoring schemes (C.S), namely:

Scheme I: R1 = n−m,Ri = 0 for i 6= 1.
Scheme II: R m

2
= n−m,Ri = 0 for i 6= m

2
if m even

and R m+1
2

= n−m,Ri = 0 for i 6= m+1
2

if m odd.

Scheme III: Rm = n−m,Ri = 0 for i 6= m.
We consider two cases separately to draw inference on parameters, namely: (i) The parameter values (α = 0.7,β =
0.3,λ = 1.5), for different choices of sample sizes (n1 = n2 = n), and observed failure times (m1 = m2 = m), with k1 =
k2 = k and (ii) The parameter values (α = 1.0,β = 0.7,λ = 2), based on different values of n1, n2,m1 and m2, with
k1 = k2 = k.
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7 Perspective

In this article, we have considered the constant-partially accelerated life tests with progressive first-failure censoring when
the observed data comes from compound Rayleigh distribution. We have obtained the MLEs and parametric bootstrap
methods are used for estimating the unknown parameters of compound Rayleigh distribution. The progressive first-failure
censored sampling plan has an advantage in terms of shorter test-time, a saving of resources, and in which a specific
fraction of individuals at risk may be removed from the experiment at each of several ordered failure times. The familiar
complete, Type II right censored, first-failure censored and progressively Type II right censored samples are special cases
of the progressive first-failure censored sampling plan. From empirical evidence in Tables 4 and 5, we have:

(i)The censoring scheme I namely, (R = (n−m, ...,0), in the sense for fixed n and m, n−m items are removed at the time
of the first failure) is most efficient for all choices, it seems to usually provide the smallest MSEs and RABs for all
estimators.

(ii)For fixed values of the sample size, by increasing the failure times the MSEs and RABs of the considered parameters
decrease.

(iii)We observe that from Tables 5 and 6, in most cases the estimated coverage probability is close to the nominal level of
0.95 based on different effective sample sizes m, different k.

(iv)The bootstrap confidence intervales give more accurate results than the approximate confidence intervales since the
lengths of the former are less than the lengths of latter, for different sample sizes, observed failures and schemes.

(v)For fixed k, when the effective sample proportion m/n increases, the MSEs and the average confidence interval lengths
of the ML and parametric bootstrap estimators are reduced.

(vi)The MSEs and average confidence interval lengths for the estimates of the parameters and for the proposed progressive
first-failure censoring (k = 5) are similar to those for progressive Type-II censoring (k = 1).
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[24] S.J. Wu., C. Kuş, On estimation based on progressive first-failure-censored sampling, Computational Statistics and Data Analysis

53 (10),3659-3670 (2009).

[25] A.A. Soliman, A.H. Abd Ellah, N. A. Abou-Elheggag, G.A. Abd-Elmougod, A simulation-based approach to the study of

coefficient of variation of Gompertz distribution under progressive first-failure censoring, Indian Journal of Pure and Applied

Mathematics 42(5), 335-356 (2011).

[26] A.A. Soliman, A.H. Abd Ellah, N. A. Abou-Elheggag, A.A. Modhesh, Estimation of the coefficient of variation for non-normal

model using progressive first-failure-censoring data, Journal of Applied Statistics 39(12): 2741-2758 (2012).

[27] A.A. Soliman, A.H. Abd Ellah, N. A. Abou-Elheggag, A.A. Modhesh, Estimation from Burr type XII distribution using progressive

first-failure censored data, Journal of Statistical Computation and Simulation 83(12), 2270-2290 (2013).

[28] V.M. Ahmadi, M, Doostparast, J. Ahmadi, Estimating the lifetime performance index with Weibull distribution based on

progressive first-failure censoring scheme, Journal of Computational and Applied Mathematics 239, 93-102 (2013).

[29] A.A. Modhesh, Bayesian Analysis of Progressively First-Failure Censored Competing Risks Data, Far East Journal of Theoretical

Statistics 46, 2, 91-113 (2014).

[30] W. Nelson, Accelerated Testing: Statistical Models, Test Plans and Data Analysis.Wiley, New York (1990).

[31] A.C Davisonn, D.V Hinkley, Bootstrap Methods and their Applications, 2nd, Cambridge University Press, Cambridge United

Kingdom (1997).

[32] B. Efron, R.J. Tibshirani, An introduction to the bootstrap, New York Chapman and Hall (1993).

[33] B. Efron, The jackknife, the bootstrap and other resampling plans. In: CBMS-NSF Regional Conference Series in Applied

Mathematics. SIAM, Phiadelphia, PA ; 38 (1982).

[34] P., HallTheoretical comparison of bootstrap confidence intervals, Annals of Statistics 16, 927-953 (1988).

[35] N. Balakrishnan, R.A. Sandhu, A simple simulation algorithm for generating progressively Type-II censored samples, The

American Statistician 49, 229-230 (1995).

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Model Description and Basic Assumptions
	Maximum Likelihood Estimation
	Bootstrap Confidence Intervals
	Illustrative Example
	Simulation Studies
	Perspective

