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Abstract: The constant-partially accelerated life tests (PALTSs) model under progressive first-failure censoring based on compound
Rayleigh distribution is considered in this paper. For this model, the maximum likelihood estimates (MLEs) of its parameters, as well
as the corresponding observed Fisher information matrix, are derived. The likelihood equations do not lead to closed form expressions
for the MLE, and they need to be solved by using an iterative procedure, such as the Newton-Raphson method. We then evaluate the
bias, and mean square error of these estimates; and provide asymptotic, and bootstrap confidence intervals for the parameters. The
results in the cases of first-failure censoring, progressive Type II censoring, Type II censoring and complete sample are a special cases.
One set of real data has been analyzed for illustrative purposes. Different methods have been compared using Monte Carlo simulations.

Keywords: Compound Rayleigh distribution, constant-partially accelerated life tests, Progressive first-failure censoring, Maximum
likelihood estimator, Bootstrap, Monte Carlo simulation

1 Introduction

Accelerated life test sampling plans provide information quickly on the lifetime distribution of products by testing them
at higher-than-usual stress level to induce early failures and reduce the testing efforts. The accelerated life-testing, which
may be performed either at constant high stress level or linearly increasing stress levels, will enable one to examine
the effects of stress factors such as load, pressure, temperature, and voltage on the lifetimes of experimental units. Data
collected at such accelerated conditions are then extrapolated through a physically appropriate statistical model to estimate
the lifetime distribution at normal use conditions. In PALTSs items are tested at both accelerated and use conditions. There
are two types of PALTs, one is called step PALTs and the other is called constant PALTs. For more extensive research
on ALTs, see [1] and [2]. Constant-stress ALTs, in which the stress remains constant through the test, were studied by
several authors. Among others, are [3] and [4]. [5,6] applied constant ALTs to finite mixtures of distributions using Bayes
and maximum likelihood methods of estimation, respectively. Step-stress ALT is a special kind of ALT in which the test
condition is changed at a given time or upon the occurrence of a specified number of failures; see [7], [8], [9], [10] and
[11]. When a test involves two levels of stress with the first one being the normal level and a specific time point for
changing the stress, it is referred to as a step PALT. Several authors have dealt with this type of ALT, including, [12] and
[13]. Recently, the constant-partially accelerated life tests has received considerable interest among the statisticians. See
for example, [14], [15] and [16].

There are many situations in life-testing and reliability studies in which the experimenter may be unable to obtain
complete information on failure times of all experimental items. There are also situations wherein the removal of items
prior to failure is pre-planned in order to reduce the cost and time associated with testing. The most common censoring
schemes are Type-I and Type-II censoring, but the conventional Type-I and Type-II censoring schemes do not have the
flexibility of allowing removal of items at points other than the terminal point of the experiment. A generalization of
Type-II censoring is the progressive Type-II censoring which allows for units to be removed from the test at points other
than the final termination point. Inference, sampling design and generalization based on progressively censored samples
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were studied by [17], [18], [19], [20], [21] and [22]. [23] described a life test in which the experimenter might decide
to group the test units into several sets, each as an assembly of test units, and then run all the test units simultaneously
until occurrence the first failure in each group. Such a censoring scheme is called a first-failure censoring scheme. If an
experimenter desires to remove some sets of test units before observing the first failures in these sets this life test plan is
called a progressive first-failure-censoring scheme (first-failure censoring scheme is combined with progressive censoring
scheme which introduced by [24].

The two-parameter compound Rayleigh distribution which is denoted by CRD(a, ) provides a population model
which is useful in several areas of statistics, including life testing and reliability. The probability density function (PDF),
cumulative distribution function (CDF), survival function (SF), and hazard rate function (HRF) of the two-parameter
compound Rayleigh distribution are given, respectively, by

filt) =20B%(B+1%)" D 1 >0, (B>0, a>0), (1)

Fi(t)=1-B*(B+1*)"% 1>0, )

Si(1)=B*(B+1*)"% 1>0, 3)

o Hy (1) =2at(B+1*)~", >0, 4)

where a and  are the shape and scale parameters respectively.

This paper considers the constant PALT applied to items whose lifetimes under design condition are assumed to follow
CRD(¢, B) distribution under the progressively first-failure-censored. In Section 2, a description of the model is presented.
The MLEs of the involved parameters and approximate confidence intervals are derived in Section 3. In Section 4, the
parametric bootstrap confidence intervals are discussed. A simulated data set from CRD(¢, 3) is analyzed in Section 5. In
Section 6, the different methods are compared using Monte Carlo simulations. Some concluding remarks are finally made
in Section 7.

2 Model Description and Basic Assumptions

In this section, first-failure censoring scheme is combined with progressive censoring scheme as in [24]. n; test
independent groups with k; items within each group are randomly chosen among n test independent groups with k; items
within each group is allocated to use condition and n; = n — n; remaining independent groups with k; items are
subjected to an accelerated condition. progressive first-failure censoring scheme is applied as follows: R j; groups and the
group in which the first failure is observed are randomly removed from the test as soon as the first failure (say % lmjinjk;)
has occurred, R, groups and the group in which the second failure is observed are randomly removed from the test as

soon as the second failure (say & ik ) has occurred, and finally Rj, (m; < n;) groups and the group in which the

j2mjin;
—th failure is observed are randomly removed from the test when the m; —th failure (say R mjmjn gk ) has occurred.
The observations & lmjon gk < thzzmj:”j:kj <. < ﬁnj:mj:nj:kj are called progressively first-failure- censored order statistics

with progressive censoring scheme R = (Rj1,R 2, ...,Rjp). It is clear that for j = 1,2, m; is the number of the first failure
observed (1 <mj <nj)andnj=mj+Rji +Rj+ ...+ Rjn. If the failure times of the n; x k; items originally in the test
are from a continuous population with distribution function F;(x) and probability density function f;(x), the joint

probability density function for tjl mjmj k],tj2 ik jm o ok is given by

L(aB.Alr) = HC k’"’Hf, R (1= F((R, L, ) RO )

0<R

Jjlimjnjk; <t

J2imjinjk; <. <t

jmjmjin;:

kj < oo,
where
Cj:nj(nj_le_ 1)(I’lj—Rj1—Rjz—])...(I’lj—le—Rjz—...Rj(mj,])—mj'-i-l).

Special cases
It is clear from (5) that the progressive first-failure censored scheme containing the following censoring schemes as
special cases:
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1.The first-failure censored scheme when R = (0,0, ...,0).

2.The progressive Type II censored order statistics if k; = 1.

3.Usually Type II censored order statistics when k; = 1 and R = (0,0,...,n; —m;).
4.The complete sample case when k = 1 and R = (0,0, ...,0).

Also, It should be noted that t]1 o ,thz Sy ,t]lfnj mjinj:
sample from a population with dlstrlbutlon functions 1 — (1 — Fj(r )) 7. For this reason, results for progressive Type II
censored order statistics can be extend to progressive first-failure censored order statistics easily. Also, the progressive
first-failure-censored plan has advantages in terms of reducing the test time, in which more items are used, but only m; of
nj x k; items are failures.

For more application about progressive-first-failure censoring data the readers may refer to [25], [26], and [27], [28] and
[29].

Suppose that the lifetime of an n; test independent groups with &, items tested at use condition follows a CRD(a, 3)
with PDF, CDF, SF and HREF, given in (1)-(4). The hazard rate of an item tested at accelerated condition is given by H, (1) =
AH;(t), where A is an acceleration factor satisfying A > 1. Therefore the HRF, SF, CDF and PDF under accelerated
condition are given, forz > 0, (o, ) > 0, A > 1, respectively, by

k; can be viewed as a progressive Type II censored

Hy(t) =204t (B +1%) 7", (6)
salt) =exp (- [ Ha(andz) = BB ) 0
Fy(t) =1=B**(B+17)"*, )
nd
' ft) =202 B (B +1%)(*A+D), ©)

3 Maximum Likelihood Estimation

In this section, we first estimate the parameters &, 8 and A; by considering the maximum likelihood (ML) methods and
then we compute the observed Fisher information based on the likelihood equations. These will enable us to develop
pivotal quantities based on the limiting normal distribution, the resulting pivotal quantities can be used to develop
approximate confidence interval for the parameters. Finally, using the ML estimates, we construct the parametric
bootstrap confidence intervals.

3.1 MLEs

Let, for j = 1,2, and TR < TN << TN denote two progressively Type-II censored samples from two

Jlimj,n; j2mj.n; Jmjmj.n;
populations whose CDF's and PDF's are as given in (2), (1) and (8), (9), with R; = (R i1 Rjas oo jm,) the log-likelihood
function (e, B, A|t) = logL(a, B, Alt) without normalized constant is then given by
La,B,Alt) = (m +mp)logo + mylog A + ot(kiny + Akny) log B

my

- %(akl(Rli‘i‘ 1)+ 1)log(B+13;) — Y (adka(Ryi + 1) + 1) log(B +13)). (10)

i=1 i=1
Calculating the first partial derivatives of (10) with respect to ¢, B and A and equating each to zero, we get the likelihood
equations as

ol A m
(@B, Al _—_ ;mg + (kiny + Akanp)log B — ky Z(R1j+ 1)log(B +t]2i)

Ja i=1
my
~Ak2 Y (Roi+1)log(B+13) =0, (11)
i=1
M(a,ﬁ,Mz) (k1n1 + A,kznz Lok Rlz +1) m2 (X)ykz Rz; +1)+1
=0, (12)
B B ; B+ Z? B+13;
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and
ol A i’
W = % + (sznzlogﬁ — 0tky Z(Rzi+ 1)10g(ﬁ +t22i> =0. (13)
i=1
From (11), (12) and (13) we obtain the ML estimates of A, & and 3 as
N mo
Ao, )= —2— 14
(B) = em@p) (1
~ mi
= 15
(F) kimi(t,B) (1>
and 2 2 2
my i (R[,' + 1)t1i nmy n (RZi + 1)t2i i 1 el 1
+ — - =0, (16)
ni(t,B) ,:Zi B(B+1)  mait,B) ,:Zi B(B +13;) z; B+ z; B+
where 5
mj t .
mp) = Z(Rwl)log(uﬁ), (17
i=1
and )
my 12,
Mt B) = Z(R2i+1)10g(1+%)- (18)
i=1

Thus, the ML estimate ﬁ of the parameter f3 can be obtained by solving the nonlinear likelihood Equation (16) using, for

example, the Newton—Raphson iteration scheme. The corresponding ML estimates ¢ and 2 of the parameters o and A
are computed from Equations (15) and (14), respectively.

3.2 Approximate interval estimation

The asymptotic variances and covariances of the MLE for parameters &, § and A are given by elements of the inverse of
the Fisher information matrix. From the log-likelihood function in (10), we have

PU(LBAD)  mitm

(o, B Alt)  alking+2Akony) & oki(Rii+1)+1 W adk(Ry+1)+1
= + , 20
B o L e L Gy e
(o, BAl)  my
o A @h
82€(a,ﬁ,l|z) _ 82£(a,ﬁ,l|g) _ king +),k2n2 Z R1,+1 f R21+1 7 22)
dodp dBda B B +1t? 7 B+t
9% (o, B,Alt)  9*(a,B,AlE)
and ) ,
°l(a, B,Alt)  d°l(a,PB, Mt B kzz R2,+1 tzl (24)

IBIA JAJB (B+3)

The observed Fisher information matrix 7 (a, 3,4 ), for the MLEs (&, [3 and l), see [30], is the 3 x 3 symmetric matrix
of negative second partial derivatives of the log-likelihood function with respect to (¢, 8 and A). In practice , we usually
estimate I~! («, B,A) by I (&, B,A)

_Puaparl) _ Puaprly _ Puapan

, Jda2 B R dadp , dadi
e B A) = 9 l(aBAl) _ 9l(aBAl)  9l(aB.Al)
Iy (&.p,A)= | - dpda ~__Ip2  ~_JpdA : 25)
*(apAl) _ 2(aBAlD) _ I*(aBAl)
T oxda  JAdp a2 (@pi)
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Table 1: Simulated progressively censored samples with constant PALTs.

1 1 1 1

1 1 1

R 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
5] 0.1037  0.1141  0.1275  0.1359  0.1828  0.1934  0.2019  0.2460  0.2477  0.2690
0.2850 03133 0.3489  0.3543  0.3558 03614  0.3750  0.3755  0.3849  0.4044
0.4198 04277 04756  0.5249  0.5271  0.5688  0.7789  0.8191 0.9419 1.0810
Ri 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
%) 0.1121 0.1249  0.1443  0.1491 0.1512  0.2313 02339  0.2398  0.2430  0.2511
0.2916  0.2998  0.3265  0.3641 0.4253  0.4294 04323 04389 04798  0.8150
Table 2: MLEs, MSEs, RABs and (90%-95%) approximate confidence intervales.
Parameters OML RAB MSE 90% 95%
a=0.5 0.4781 0.0437 | 0.0219 | (-0.1995, 1.1558) | (0.2003, 0.7560)
B =038 0.8083 | 0.0104 | 0.0083 | (-0.5533,2.1699) | (0.2500, 1.3666)
A=15 1.4681 | 0.0212 | 0.0319 | (0.7497, 2.1866) (1.1735, 1.7628)
Table 3: Percentile bootstrap CIs and Bootstrap-t CIs based on 10000 replications.
Parameters Bootstrap-p Bootstrap-t
(DBoot_P RAB MSE 95% (OBoot_t RAB MSE 95%
o=0.5 0.4641 0.0718 | 0.0359 | (0.3628, 0.5450) 0.3887 0.2226 | 0.1113 | (0.3015, 0.5258)
B =08 0.7658 0.0427 | 0.0342 | (0.5895,0.9269) 0.6661 0.1675 | 0.1340 | (0.4852,0.8927)
A=15 1.5422 0.0281 0.0422 | (1.2168, 1.7923) 1.4099 0.0601 0.0901 (1.1610, 1.7287)
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Fig. 1: Plot the density functions fj(t) and f>(t).

Thus, the 100(1 — )% approximate confidence intervals for a, B and A are

d:FZ%/\/V]], B:FZ%’\/VZQ andiq:z%q/w S

(26)

where vy, v22 and v33 are the elements on the main diagonal of the covariance matrix / -1 (&,B,A) and z Y is the percentile

of the standard normal distribution with right-tail probability %/ .

@© 2022 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

168 NS e A. A. Modhesh: Constant-partially accelerated life tests for ...

Table 4: MLEs, MSEs and RABs for the parameters ( & , ,A4 ) at (0.7, 0.3, 1.5) with k;= ko= k.
onm) | CS | AVG MSE RAB

(1,40,30) 1 0.889  0.379 1.434 | 0346  0.186 0.362 0.269 0263  0.144
1 0.892  0.382 1.532 | 0356  0.193 0.433 0.273 0317 0.197
11 | 0921 0.454 1.664 | 0467 0.275 0.537 0.3167 0.514  0.199
(1,40,35) 1 0.833  0.304 1.404 | 0225  0.204 0.287 0.172 0.246  0.147
1 0.821  0.398 1.534 | 0.240 0217 0.326 0.181 0296  0.153
111 | 0.831  0.385 1.573 | 0312 0.224 0.459 0.197 0.382  0.169
(1,50,30) 1 0.727  0.333 1.630 | 0.209  0.162 0.464 0.039 0.111  0.137
1 0.842 0376  1.637 | 0.243  0.187 0.497 0.191 0.381  0.148

11 | 0874  0.421 1.676 | 0.328  0.202 0.523 0.248 0.402  0.162
(1,50,40) 1 0.784  0.362  1.543 | 0.156  0.165 0.329 0.120 0.206  0.112
1 0.798  0.371 1.570 | 0.184  0.174 0.346 0.139 0319 0.132

11 | 0810  0.396 1.590 | 0213  0.186 0.454 0.157 0.386  0.143
(1,70,50) 1 0.642  0.290 1.562 | 0.096  0.130 0.338 0.056 0.065  0.043
1 0.651 0.312 1.578 | 0.129  0.158 0.342 0.068 0.087  0.058
111 | 0.698 0.318 1.597 | 0.156  0.161 0.352 0.084 0.099  0.065
(1,70,60) 1 0.657  0.221 1.422 | 0.112  0.104 0.227 0.032 0.030  0.022
1 0.719  0.247 1.475 | 0.136  0.112 0.231 0.042 0.070  0.037
11 | 0.757 0.321 1.513 | 0.145  0.128 0.280 0.082 0.071  0.039
(5,40,30) 1 0.818  0.368 1.574 | 0334  0.179 0.449 0.169 0.226  0.130
1 0.987  0.437 1.617 | 0429 0234 0.453 0.342 0347  0.114
111 1.001 0.455 1.707 | 0.608  0.286 0.469 0.441 0.517  0.158
(5,40,35) 1 1.011 0.442 1.499 | 0.504  0.215 0.294 0.385 0.306  0.046
1 1.023  0.450 1.509 | 0.534  0.249  0.0349 0.391 0.341 0.064
11 | 0997  0.487 1.637 | 0.636  0.348 0.404 0.446 0.424  0.035
(5,50,30) 1 0.707  0.294 1.493 | 0.284  0.107 0.378 0.101 0.021 0.044
1 0.702  0.311 1.532 | 0325 0.128 0.342 0.192 0.108  0.057
II1 | 0.852  0.388 1.721 | 0458  0.219 0.455 0.217 0.295  0.147
(5,50,40) 1 0.896  0.337 1.377 | 0391  0.181 0.343 0.324 0315 0.035

11 | 0935  0.401 1.481 0.660  0.253 0.307 0.336 0.337  0.044
(5,70,50) 1 0.797  0.409 1.453 | 0371  0.177 0.272 0.282 0332 0.025

(5,70,60) 1 0.826  0.368 1.301 0.321 0.134 0.277 0.180 0.225  0.027

4 Bootstrap Confidence Intervals

The bootstrap is a resampling method for statistical inference. It is commonly used to estimate confidence intervals,
but it can also be used to estimate bias and variance of an estimator or calibrate hypothesis tests. More survey of the
nonparametric and parametric bootstrap methods [31], [32]. In this section, the two confidence intervals based on the
parametric bootstrap methods are proposed: percentile bootstrap method (Boot-p) based on the idea of [33]. (ii) bootstrap-
t method (Boot-t) based on the idea of [34]. The algorithms for estimating the confidence intervals of parameters using
both methods are illustrated below.

1Based on the original progressively first-failure censored sample, (tjl;mj,n,-,kj <tizmjnik; <o <Limim;njki ), obtain
&, B,and A, j=1,2.

2Based on the values of nj, m; and k;(1 < m; < n;) with the same values of Rj;, (i =1, 2,..., m;), j = 1,2, generate
two independent random samples of sizes m; and m, from compound Rayleigh distribution, t* :(t]fl;mj‘nj < ;z;m,"nj <
<o <Bjym; n; ) DY using the algorithm described in [35] with distribution functions 1 — (1 — Fj(t))~i.

3As in step 1 based on t* compute the bootstrap sample estimates of &, ﬁ, and A say &, ﬁ* and 1*.
4Repeat the above steps 2 and 3 N* times representing N* different bootstrap samples. The value of N* has been taken
to be 1000.
5Arrange all &*, B* and A* in an ascending order to obtain the bootstrap sample ((I)Zm, (f);[z], e AZ[B}), {=1,2,3
where (¢ = a*, 3 = B, @5 = 1%).
Percentile bootstrap confidence interval:
Let G(z) = P(¢; < z) be cumulative distribution function of ¢;. Define @}, ,, = G~'(z) for given z. The approximate
bootstrap 100(1 — )% confidence interval of ¢ given by
Ak Y\ A * Y
|:(P€boot ( E )7 Pevoor (] - E) (27)

Bootstrap-t confidence interval
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Table 5: Comparisons of (AC) and (CP) of 95% confidence intervals (¢, 3,4) at (0.7,0.3,1.5) with k; =k, = k.
(k,n,m) CS MLE Boot-P Boo-t
o A o B A o B A
(1,4030) | 1 1622 0925 1715 1367  0.637 1.555 1023 0.521 1.615
(0.953)  (0.392)  (0.962) | (0.942) (0.962) (0.963) | (0.915) (0.931)  (0.923)
| 1.543 1.018 1754 | 1427 0.641 1.645 1216  0.563 1.742
(0.923)  (0.903)  (0.933) | (0.931) (0.943)  (0.925) | (0.930) (0.889)  (0.925)
| 1.978 1247 1789 1525 0.666 1969 | 1371 0.684 1.865
(0.923)  (0.906)  (0.921) | (0.89)  (0.944) (0.923) | (0.902) (0.932)  (0.954)
(14035) | 1 | 0852 0677 1338 | 0912 0421 1355 | 0697 0513 1.398
(0.934)  (0.952)  (0.961) | (0.923) (0.962) (0.944) | (0.934) (0.946)  (0.907)
| 0948 0732 1432 | 0954 0498 1428 | 0743 0564 1436
0.943)  (0.927)  (0.918) | (0.933)  (0.936)  (0.938) | (0.942)  (0.947)  (0.934)
mr | 1079 0806  1.547 1.031 0.653 1712 | 0835  0.664 1.574
(0.945)  (0.930)  (0.955) | (0.947) (0.958)  (0.932) | (0.908)  (0.939)  (0.961)
(1,5030) | 7 | 0778  0.606 1458 | 0936  0.610 1609 | 0703 0432 1513
(0.950)  (0.943)  (0.961) | (0.928) (0.962)  (0.959) | (0.951) (0.963)  (0.963)
| 0845 078 1564 | 0972 0651 1732 | 0864 0479 1.564
(0.937)  (0.935)  (0.961) | (0.945) (0.953)  (0.952) | (0.949) (0.954)  (0.946)
mr | 1.903 1.405 1.775 1351 0670 1923 1.084 0523 1.787
(0.945)  (0.960)  (0.966) | (0.933)  (0.950)  (0.925) | (0.919) (0.931)  (0.948)
(1,5040) | 1 | 0.721 0606 1222 | 0822 0572 1416 | 0660 0463 1.443
(0.950)  (0.966)  (0.967) | (0.952)  (0.955) (0.962) | (0.965) (0.957)  (0.971)
n | 0843 0649 1320 | 0876 0611 1439 0764 0514 1397
(0.944)  (0.963)  (0.954) | (0.964) (0.947)  (0.962) | (0.946) (0.939)  (0.941)
or |12t 0772 1391 1051 0.631 1517 | 0811 0540 1451
(0.965)  (0.790)  (0.966) | (0.962)  (0.950)  (0.963) | (0.974)  (0.963)  (0.960)
(1,7050) | 1 | 0541 0403 1287 | 0635 0461 1395 | 0522 0301 1212
0.967)  (0.958)  (0.972) | (0.964) (0.942)  (0.956) | (0.963)  (0.960)  (0.964)
n | 0654 0511 1302 | 0739 0487 1412 | 0543 0412 1.259
(0.953)  (0.961)  (0.949) | (0.944) (0.957) (0.968) | (0.950) (0.964)  (0.958)
or | 086 0612 1312 | 0907 0580 1429 | 0623 0433 1311
(0.953)  (0.960)  (0.953) | (0.954) (0.956) (0.966) | (0.937) (0.971)  (0.963)
(1,7060) | I | 0567 0403 T028 | 0659 0454  1.130 | 0542 0380 1.058
0.976)  (0.968)  (0.956) | (0.929)  (0.962)  (0.953) | (0.956) (0.978)  (0.958)
m | 0539 0434 1104 | 0743 0513 1.154 | 0563  0.399 1.119
(0.959)  (0.974)  (0.966) | (0.973)  (0.959) (0.964) | (0.957)  (0.948)  (0.966)
mr | 0672 0468 1117 | 0807 0556 1262 | 0593 0420 1177
0.965)  (0.976)  (0.975) | (0.967) (0.952)  (0.945) | (0.958) (0.965)  (0.965)
First, find the order statistics 5[* [1] < 5[* 2 <...<9, [B], where
o e
5 = - ,j=12,...,B, {=1,23, (28)
A k[ ]
var ((p[ )
where @y =0, g =, 3 = A.
Let H(z) = P(6; < z) be the cumulative distribution function of ;. For a given z, define
A _ A -1
Pevoot—t = Q¢+ Var((PZ)H (Z) 29)
The approximate 100(1 — )% confidence interval of @ is given by
. Y\ 4 Y
(q’ébootft(i)a (Pébootft(] - E)) . (30)

5 Illustrative Example

Let us consider the simulated data presented in Table 1 with sample size m; = 30 and my = 20 of n; = 60 and ny = 50
with k; =k, = 5 are generated from compound Rayleigh distribution with parameters (a, B,A) = (0.5,0.8,1.5) and two
progressive censoring scheme R; and R,. Figure 1 shows the probability density functions under normal conditions and
accelerate conditions. By substituting from Eq. (14) and Eq. (15) in Eq. (10), we plot the profile log-likelihood function
of B as in Figure 2. It is a unimodal function. We can use any iteration procedure such as quasi-Newton Raphson or fixed
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Table 6: Continue
(k,n,m) CS MLE Boot-P Boo-t
o B A o B A o B A
(5,40,30) 1 1.375 1.511 1.567 1.561 0.616 1.627 1.307 0.416 1.643
(0.920) (0.934) (0.944) (0.921) (0.932) (0.954) (0.934) (0.922) (0.946)
11 1.409 1.563 1.654 1.627 0.634 1.733 1.345 0.457 1.709
0.947)  (0.926)  (0.935) | (0.947) (0.954) (0.942) | (0.957) (0.945)  (0.937)
111 1.502 1.557 1.675 1.687 0.647 1.767 1.461 0.543 1.772
(0.945) (0.943) (0.945) (0.963) (0.954) (0.964) (0.919) (0.954) (0.964)
(5,40,35) 1 1.627 1.715 1.549 1.478 0.631 1.537 1.364 0.454 1.476
(0.922) (0.932) (0.944) (0.929) (0.948) (0.974) (0.965) (0.956) (0.971)
11 1.754 1.869 1.501 1.543 0.639 1.576 1.437 0.501 1.522
0.945)  (0.935)  (0.965) | (0.954) (0.955)  (0.945) | (0.938) (0.945)  (0.966)
111 1.868 2971 1.512 1.656 0.649 1.606 1.557 0.531 1.542
(0.935) (0.961) (0.934) (0.933) (0.941) (0.946) (0.908) (0.964) (0.933)
(5,50,30) 1 1.275 1.037 1.567 1.616 0.514 1.698 1.028 0.323 1.614
(0.922) (0.942) (0.921) (0.942) (0.955) (0.976) (0.943) (0.932) (0.953)
11 1.341 1.231 1.458 1.637 0.534 1.736 1.114 0.354 1.774
0.955)  (0.957)  (0.939) | (0.946) (0.953)  (0.963) | (0.961)  (0.925)  (0.944)
I 1.458 1.482 1.898 1.668 0.658 1.941 1.239 0.492 1.896
(0.929) (0.901) (0.932) (0.943) (0.966) (0.954) (0.928) (0.973) (0.953)
(5,50,40) 1 1.454 1.512 1.341 1.432 0.555 1.332 1.245 0.476 1.282
(0.965) (0.963) (0.967) (0.959) (0.962) (0.986) (0.973) (0.954) (0.962)
11 1.453 1.537 1.351 1.543 0.618 1.453 1.321 0.488 1.297
0.971)  (0.963)  (0.956) | (0.966) (0.954)  (0.964) | (0.939) (0.965)  (0.971)
I 1.567 1.559 1.355 1.574 0.636 1.534 1.379 0.585 1.343
(0.976) (0.965) (0.948) (0.965) (0.975) (0.949) (0.967) (0.970) (0.961)
(5,70,50) 1 1.509 1.346 1.223 1411 0.627 1.198 1.084 0.424 1.180
(0.965) (0.974) (0.977) (0.956) (0.971) (0.965) (0.973) (0.953) (0.966)
11 1.675 1.447 1.221 1.522 0.634 1.227 1.118 0.476 1.231
0.968)  (0.975)  (0.973) | (0.959) (0.978)  (0.953) | (0.976) (0.968)  (0.955)
I 1.739 1.748 1.238 1.542 0.645 1.258 1.126 0.501 1.314
0.967)  (0.954)  (0.971) | (0.954) (0.975)  (0.968) | (0.973)  (0.934)  (0.963)
(5,70,60) 1 1.349 1.017 0.972 1.362 0.684 1.155 1.034 0.409 1.126
(0.972) (0.964) (0.966) (0.982) (0.975) (0.967) (0.967) (0.956) (0.965)
11 1.364 1.231 0.984 1.408 0.698 1.219 1.117 0.432 1.131
(0.977) (0.968) (0.980) (0.975) (0.969) (0.967) (0.985) (0.982) (0.967)
I 1416 1.415 1.093 1.501 0.705 1.236 1.291 0.444 1.133
0.967)  (0.955)  (0.972) | (0.973)  (0.959)  (0.958) | (0.947)  (0.971)  (0.962)
Table 7: Comparisons of (AC) and (CP) of 95% confidence intervals (&, 8,4) at (1, 0.7, 2) with ky =k, = k.
Gy ,my,na,my) | CS MLE Bool-P Boot
o B A o B A o A
(1,60,40,50,30) 1 0.999 1.056 1.792 0.844 0.663 1.583 0.844 0.762 1.554
(0.934) (0.921) (0.954) (0.923) (0.933) (0.941) (0.962) (0.937) (0.937)
11 1.249 1.273 1.865 0.867 0.669 1.612 0.965 0.798 1.637
0.934)  (0.929)  (0.917) | (0.943)  (0.908)  (0.922) | (0.931) (0.932)  (0.908)
111 1.827 1.439 1.978 0.934 0.675 1.679 1.054 0.815 1.822
(0.925) (0.907) (0.944) (0.939) (0.941) (0.938) (0.960) (0.938) (0.932)
(1,60,50,50,40) 1 0915 0.914 1.668 0.827 0.619 1.571 0.799 0.676 1.504
(0.952) (0.949) (0.964) (0.972) (0.933) (0.948) (0.965) (0.955) (0.947)
11 1.129 1.218 1.733 0.843 0.637 1.645 0.863 0.743 1.660
0.939)  (0.954)  (0.950) | (0.944) (0.967) (0.964) | (0.946)  (0.955)  (0.948)
I 1.337 1.381 1.789 0.858 0.651 1.719 0.977 0.835 1.770
(0.943) (0.948) (0.955) (0.959) (0.964) (0.976) (0.954) (0.972) (0.965)
(5,60,40,50,30) 1 1.544 1.654 1.567 0.801 0.453 1.673 1.262 0.656 1.542
(0.964) (0.943) (0.957) (0.982) (0.966) (0.954) (0.954) (0.967) (0.957)
11 1.672 1.774 1.870 0.883 0.511 1.708 1.331 0.697 1.654
0.949)  (0.955)  (0.938) | (0.973) (0.954)  (0.960) | (0.939) (0.966)  (0.950)
I 1.896 1.970 1.925 0.931 0.522 1.806 1.519 0.719 1.721
(0.964) (0.966) (0.948) (0.953) (0.955) (0.967) (0.976) (0.947) (0.956)
(5,60,50,50,40) 1 1.507 1.597 1.659 0.714 0.508 1.560 0.884 0.648 1.519
(0.975) (0.977) (0.967) (0.980) (0.971) (0.965) (0.973) (0.968) (0.972)
11 1.602 1.609 1.763 0.811 0.533 1.640 0.973 0.674 1.640
0.974)  (0.980)  (0.966) | (0.949)  (0.958)  (0.977) | (0.981) (0.972)  (0.964)
I 1.736 1.719 1.866 0.934 0.653 1.691 1.223 0.761 1.747
0.972)  (0.965)  (0.945) | (0.939)  (0.957)  (0.963) | (0.974) (0.967)  (0.960)
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Fig. 2: Profile log-likelihood function of f3.
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point algorithm to compute the MLE with the initial guess of 0.73. The point estimates and relate relative absolute biases
(RABs) and mean squared errors (MSEs) of the parameters as well as (90% and 95%) approximate confidence intervals
are presented in Table 2. Also the point estimates and relate (RABs and MSEs) of the parameters as well as (90% and
95%) percentile bootstrap and bootstrap-t confidence intervals are presented in Table 3. We, observed that the percentile
bootstrap and bootstrap-t confidence intervals always include the population parameter values.

6 Simulation Studies

In order to obtain the MLEs of (e, 8,1 ) and study the properties of their estimates through the MSEs and RABs. A Monte
Carlo simulation study is carried out in order to calculate the MLEs, MSEs, RABs and 90% approximate confidence
intervals of the model parameters, based on N 1000 Monte Carlo simulations. Based on N* 1000 bootstrap replications,
then the average of MLE, MSE and RAB of v, £ = 1,2,3 (Where y; = a, y» = 3, w3 = A) over the N samples are
given, respectively, by

_ 1 i
li/[: N7 lilf'a
NS

=

. 1 .
MSE({) = N - (Vi — we)?,
RAB();) = M

Ve

The different confidence intervals, namely the confidence intervals obtained by using asymptotic distributions of the
MLEs and the two different bootstrap confidence intervals in terms of the average confidence lengths (ACL) and coverage
percentages (CP) are calculated and compared. For each simulated sample under a particular setting, we computed 95%
confidence intervals and checked whether the true value lay within the interval and recorded the length of the confidence
interval. In our study we have used three different censoring schemes (C.S), namely:

Scheme I: Ry =n—m,R; =0 fori # 1.

Scheme II: Ry = n—m,R; =0 for i # 5 if meven

and Ry =n—m,R; =0 fori 2L if m odd.

Scheme III: R, = n—m,R; = 0 for i # m.
We consider two cases separately to draw inference on parameters, namely: (i) The parameter values (o = 0.7, =
0.3,A = 1.5), for different choices of sample sizes (n; = ny = n), and observed failure times (m; = my = m), with k; =
ky = k and (ii) The parameter values (o = 1.0, = 0.7,A = 2), based on different values of ny, ny,m; and m;, with
ki =k, =k.
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7 Perspective

In this article, we have considered the constant-partially accelerated life tests with progressive first-failure censoring when
the observed data comes from compound Rayleigh distribution. We have obtained the MLEs and parametric bootstrap
methods are used for estimating the unknown parameters of compound Rayleigh distribution. The progressive first-failure
censored sampling plan has an advantage in terms of shorter test-time, a saving of resources, and in which a specific
fraction of individuals at risk may be removed from the experiment at each of several ordered failure times. The familiar
complete, Type II right censored, first-failure censored and progressively Type II right censored samples are special cases
of the progressive first-failure censored sampling plan. From empirical evidence in Tables 4 and 5, we have:

(i)The censoring scheme I namely, (R = (n —m, ..., 0), in the sense for fixed n and m, n — m items are removed at the time
of the first failure) is most efficient for all choices, it seems to usually provide the smallest MSEs and RABs for all
estimators.

(ii)For fixed values of the sample size, by increasing the failure times the MSEs and RABs of the considered parameters
decrease.

(iii)We observe that from Tables 5 and 6, in most cases the estimated coverage probability is close to the nominal level of
0.95 based on different effective sample sizes m, different k.

(iv)The bootstrap confidence intervales give more accurate results than the approximate confidence intervales since the
lengths of the former are less than the lengths of latter, for different sample sizes, observed failures and schemes.
(v)For fixed k, when the effective sample proportion m/n increases, the MSEs and the average confidence interval lengths

of the ML and parametric bootstrap estimators are reduced.

(vi)The MSEs and average confidence interval lengths for the estimates of the parameters and for the proposed progressive
first-failure censoring (k = 5) are similar to those for progressive Type-II censoring (k = 1).
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