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Abstract: Herein, confidence intervals using the generalized confidence interval (GCI), large sample (LS), and the adjusted method

of variance estimates recovery (Adjusted MOVER) approaches for the common process capability index Cp of normal distributions

are proposed. Monte Carlo simulation was used to assess the performances of the proposed methods in terms of coverage probability

and expected length. The results of the simulation indicate that Adjusted MOVER performed well in terms of the coverage probability

and expected length under all conditions. The coverage probabilities of LS and GCI were differed greatly from the nominal level 0.95,

except for some cases. The performances of the confidence intervals are also illustrated using real data from the area of industrial

engineering.
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1 Introduction

Statistical process control (SPC) is needed in product quality development planning that is used extensively in many
industries. For example, James et al. [1] studied SPC to determine machine damage mitigation approach in the automotive
industry. Mario de Araujo et al. [2] studied the waste problem in the weaving process to reduce the variation in the
process by applying the SPC technique to reduce the amount of waste. Thomas et al. [3] used SPC as a development
tool to create quality control chart in the wood industry to check average portion sizes and internal variation of part
sizes for lumber in automatic sawmill. Adisak et al. [4] applied SPC in elevator assembly process when out of control
action plan. The procedures for establishing an out of contral action plan was introduced. The process capability indices
(PCIs) is a useful quality measurement tool that provides a numerical measure of whether a production process meets the
quality requirements suggested by the manufacturer. Although there are many PCIs, we are only interested in the process
capability index Cp that is a most commonly index (Kane [5], Zhang [6]).

The process capability index is a process performance measure commonly used to assess the ability of the production
process, and there have been many studies published on its application. For example, Vannman [7] proposed a new class
of the process capability index Cp(u,v), containing four indices. However, when the tolerance interval is asymmetric,
these four indices may not be able to determine the process capability. Rado [8] showed that the process capability index
can be used for program planning and growth to improve product development. Rezaie et al. [9] proposed a process
capability index and a process parameter estimator and presented a method for determining the process capability. Zhang
[6] proposed basic theories and computational methods for finding the conditional confidence intervals of two process
capability indices (Cp,Cpk) and using programming code to calculate them.

In a situation such as selecting a supplier and assessing process improvement, testing the quality of two or more process
capability index Cp based on independent samples collected from the different normal distributions can be accomplished
with a common process capability index Cp using statistical inference, which is the premise of this study. We consider

∗ Corresponding author e-mail: rpoocmu@gmail.com

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/jsap/110114


176 R. Somkhuean, A. Wongkhao: Confidence intervals for the common process capability index ...

interval estimation, which is more accurate than hypothesis testing and point estimation, to approach the problem of
making a statistical inference. In the literature, the problem when estimating the process capability index Cp has acquired
attention in the literature. Putthipilun [10] studied the confidence intervals for the process capability index Cp after testing
for normality using the Shapiro-Wilk test. The author found that the confidence intervals for the process capability index
after normality testing gave a higher probability. Niwitpong and Kirdwichao [11] studied the confidence interval of the
process capability index Cp via Monte Carlo simulation with the sample sizes of 10, 25, 50, and 100. Their findings show
that for all of the non-normal distributions studied, the process capability index Cp provided higher coverage probabilities
that the method of Kotz and Lovelace [12]. Panichkitkosolkul [13] proposed a new confidence interval for the process
capability index Cp based on the bootstrap-t confidence interval for a standard deviation. Panichkitkosolkul [14] also
constructed three confidence intervals (adjusted degrees of freedom, large sample, and augmented large sample) for the
variance of the process capability index Cp under non-normality.

The construction of confidence intervals for the Cp in terms of a common PCI has not yet gained attention from other
researchers. Therefore, to construct confidence intervals for the common Cp under the assumption of normality bring into a
focus. An idea of constructing the confidence interval for a common Cp for normal distributions is extended. The concepts
of the generalized confidence interval (GCI), large sample (LS), and the adjusted method of variance estimates recovery
(Adjusted MOVER) approaches are used to construct confidence intervals for the common Cp of normal distributions.

According to the three approaches used to construct confidence intervals in this paper, there have been many
published articles. For example, Smitpreecha and Niwitpong [15] constructed confidence intervals for the common mean
of lognormal distributions. The results show that the Adjusted MOVER based on Angus’s conservative method performs
well in terms of coverage probability, close to the nominal level than other methods, but the average is wide. Also,
Smitpreecha et al. [16] recommended the Adjusted MOVER approach to construct the confidence intervals for the
common variance of normal distribution since the coverage probability of Adjusted MOVER approach provides the best
confidence interval estimates than GCI and LS approach. Moreover, confidence intervals for common signal-to-noise
ratio of several log-normal distributions based on GCI, Adjusted MOVER and computational approaches were
constructed by Thangjai and Niwitpong [17]. Their simulation study results show that the GCI approach is better than the
other approaches when sample case is 3 and is preferable when the sample sizes are large. Additionally, Thangjai et al.
[18] established confidence intervals for the common coefficient of variation of several normal populations using the
GCI and Adjusted MOVER approaches. The GCI approach performs better than the Adjusted MOVER approach in
terms of coverage probabilities for all sample sizes.

The organization of this paper is as follows. In Section 2, the proposed confidence intervals for the common process
capability index Cp of normal distributions are presented. In Section 3, the results of a simulation to evaluate the
performance of the confidence intervals in terms of coverage probability and expected length are analyzed. In Section 4,
real data is used to show the efficacy of the proposed approaches. In Section 5, conclusions on the study are presented.

2 Confidence Intervals for the common process capability index Cp

Suppose X = (X1,X2, ...,Xn) are independently and identically distributed random variables with mean µ and variance σ2.
The process capability index Cp can be defined as (Kane, [5])

θ =Cp =
USL−LSL

6σ
, (1)

where USL is the upper specification limit, LSL is the lower specification limit, and σ is the process standard deviation.
The estimator of µ is the sample mean X̄ , and the estimator of σ is the sample standard deviation S. The estimator of the
process capability index Cp can be obtained by

θ̂ = Ĉp =
USL−LSL

6σ̂
=

d

3S
, (2)

where σ̂ = S =

√
1

n−1

n

∑
i=1

(Xi − X̄)2, µ̂ = X̄ = 1
n

n

∑
i=1

Xi and d = USL−LSL
2

. According to Kotz and Lovelace [12], the

respective mean and variance of θ̂ are

E(θ̂) =

(
n− 1

2

) 1
2

·
Γ
(

n−2
2

)

Γ
(

n−1
2

) ·Cp =
1

b f

·Cp (3)
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Var(θ̂ ) =

(
n− 1

n− 3
− b−2

f

)
Cp, (4)

where b f =
Γ ( n−1

2 )√
n−1

2 Γ ( n−2
2 )

. Consider k independent normal populations with a common process capability index Cp. Let

Xi1,Xi2, ...,Xini
for i = 1,2, ...,k, j = 1,2, ...,ni be a random sample from the i-th normal distribution. The maximum

likelihood estimator of θi is given by

θ̂i = Ĉpi
=

d

3Si

, (5)

and the variance of θ̂i can be written as

Var(θ̂i) =

(
ni − 1

ni − 3
− b−2

fi

)
C2

pi
. (6)

The estimator and variance of θ are used to construct confidence intervals for the common process capability index
Cp in the next sections.

2.1 The Generalized Confidence Interval Approach

Weerahandi [19] proposed the concept of the generalized confidence interval (GCI) using the generalized pivotal quantity
(GPQ) as a statistic that has a distribution free of unknown parameters and an observed value of generalized pivotal does
not depend on nuisance parameters. In this proposed approach, we construct the generalized confidence interval (GCI),
which performs well in terms of coverage probability and average length for various sample sizes [20,21]. Let x̄i and s2

i

be the observed values of the sample mean and sample variance (X̄i,S
2
i ), for the i-th sample.

Since

(ni − 1)S2
i

σ
2

i

∼ χ
2

ni−1, (7)

we can get

σi ∼

√
(ni − 1)Si√

χ2
ni−1

, (8)

where χ2
ni−1 is chi-squared distribution with ni − 1 degree of freedom.

The GPQ for population standard deviation σi is defined as

Rσi
=

√
(ni − 1)Si√

χ2
ni−1

. (9)

The GPQ for the process capability index Cp, θ based on the i-th sample is

Rθi
=

d

2Rσi

, (10)

where Rσi
is defined as in Equation (9).

Therefore, for the GPQ for the common process capability index Cp, θ , we propose the weighted average of the
generalized pivotal quantity Rθi

based on k individual sample as

Rθ =
k

∑
i=1

R
θi

R
var(θ̂i)

/
k

∑
i=1

1

Rvar(θ̂i)

, (11)

whrere

Rvar(θ̂i)
=

(
ni − 1

ni − 3
− b−2

fi

)(
d

3Rσi

)2

. (12)
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Thus is, Rvar(θ̂i)
is Var(θ̂i) with σi replaced by si.

The generalized pivotal Rθ for interval estimation has the following two properties, which are in the line with the
required properties of a generalized pivotal outlined above.

(i) The distribution of Rθ is independent of any unknown parameter,

(ii) The observed pivotal does not depend on the nuisance parameters.

Confidence intervals for θ based on the GPA can be constructed with the help of Rθ . If Rθ (1−α) is the 100(1−α)th
percentile of the Rθ distribution, then Rθ (1−α) is the (1−α)100% upper confidence limit for θ . Thus,

CI1 = [Rθ (α/2),Rθ (1−α/2)] (13)

is a(1−α)100% two-sided GCI for the common process capability index Cp.

Algorithm 1. For given set Xi j, for i = 1,2, ...,k and j = 1,2, ...,ni, the GCI for θ can be computed by the following
steps.

1. Compute x̄i and s2
i , for i = 1,2, ...,k .

2. For g = 1 to m.

3. Generate χ2
ni−1 from a Chi-squared distribution with ni − 1 degrees of freedom.

4. Compute Rσi
from Equation (9).

5. Compute Rθi
from Equation (10).

6. Compute Rvar(θ̂i)
from Equation (12).

7. Compute Rθ from Equation (11).

8. End g loop.

9. Compute Rθ (α/2) and Rθ (1−α/2).

2.2 The Large Sample Approach

The large sample estimate of normal variance is a pooled estimate of the common process capability index Cp defined as

θ̂ =

k

∑
i=1

θ̂i

Var(θ̂i)
k

∑
i=1

1

Var(θ̂i)

, (14)

where θ̂i is defined in Equation (5) and Var(θ̂i) is defined in Equation (6) with σi replaced by si, respectively.

Hence, the 100(1−α)% GCI for the common process capability index Cp, θ , based on this approach is given by

CI2 =




θ̂ − z1−α/2

√√√√√√
1

k

∑
i=1

1

Var(θ̂i)

, θ̂ + z1−α/2

√√√√√√
1

k

∑
i=1

1

Var(θ̂i)



, (15)

where z1−α/2 is the (1−α/2)-th quantile of the standard normal distribution.

Algorithm 2. For given set Xi j, for i = 1,2, ...,k and j = 1,2, ...,ni, the GCI for θ can be computed by the following
steps.

1. Compute x̄i and s2
i , for i = 1,2, ...,k.

2. Calculate Var(θ̂i) from Equation (6), for i = 1,2, ...,k.

3. Compute θ̂ following Equation (14).

4. Calculate the confidence interval estimation from Equation (15), for i = 1,2, ...,k.
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2.3 The Adjusted MOVER Approach

Donner and Zou [22] proposed the Adjusted MOVER approach as the confidence interval for two parameters of interest,
θ1 and θ2. Using the central limit theorem, a general approach to set two-sided confidence interval for θ1 +θ2 is given by

(
θ̂1 + θ̂2

)
± zα/2

√
V̂ar(θ̂1)+ V̂ar(θ̂2). (16)

Now, consider confidence interval for θi as (li,ui), i = 1,2. Therefore, the variance estimates the lower V̂ar(θ̂i) and upper

V̂ar(θ̂i) limits of θi, respectively, as

V̂ar(θ̂i) =
(θ̂i − li)

2

z2
α/2

,V̂ar(θ̂i) =
(ui − θ̂i)

2

z2
α/2

. (17)

For i = 1,2, the two-sided 100(1−α)% confidence intervals for θ1 +θ2 (L,U) are given by

L = (θ̂1 + θ̂2)−

√
(θ̂1 − l1)2 +(θ̂2 − l2)2

and

U = (θ̂1 + θ̂2)+

√
(u1 − θ̂1)2 +(u2 − θ̂2)2. (18)

Let θ1,θ2, ...,θk, for k parameters of interest, where the estimates θ̂1, θ̂2, ..., θ̂k are independent. The MOVER concept
is used to construct the two-sided 100(1−α)% confidence intervals (L,U) for θ1 +θ2 + ...+θk as

L = (θ̂1 + θ̂2 + ...+ θ̂k)− zα/2

√
V̂ar(θ̂1)+ V̂ar(θ̂2)+ ...+ V̂ar(θ̂k)

and

U = (θ̂1 + θ̂2 + ...+ θ̂k)+ zα/2

√
V̂ar(θ̂1)+ V̂ar(θ̂2)+ ...+ V̂ar(θ̂k). (19)

The variance estimate for θ̂i at θi = li and θi = ui can be written as

V̂ar(θ̂i) =
(θ̂i − l2

i )

z2
α/2

,V̂ar(θ̂i) =
(ui − θ̂i)

2

z2
α/2

. (20)

Thus, the lower limit L and upper limit U for θ1 +θ2 + ...+θk are given by

L = (θ̂1 + θ̂2 + ...+ θ̂k)−

√
(θ̂1 − l1)2 +(θ̂2 − l2)2 + ...+(θ̂k − lk)2

and

U = (θ̂1 + θ̂2 + ...+ θ̂k)+

√
(u1 − θ̂1)2 +(u2 − θ̂2)2 + ...+(uk − θ̂k)2. (21)

According to Thangjai et al.[23], the Adjusted MOVER is based on the LS and MOVER approaches. The common

process capability index Cp, θ , is the weighted average of the process capability index θ̂i based on k individual samples
as follows:

θ̂ =

k

∑
i=1

θ̂i

Vâr(θ̂i)
k

∑
i=1

1

Vâr(θ̂i)

, (22)

where

Vâr(θ̂i) =
1

2

(
(θ̂i − li)

2

z2
α/2

+
(ui − θ̂i)

2

z2
α/2

)
; i = 1,2, ...k, (23)

where zα/2 denotes the (α/2)-th quantile of the standard normal distribution.
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Therefore, the lower limit L and upper limit U for the common process capability index Cp, θ , are respectively given
by

L = θ̂ − z1−α/2

√√√√√√
1

k

∑
i=1

z2
α/2

(θ̂i − li)2

,U = θ̂ + z1−α/2

√√√√√√
1

k

∑
i=1

z2
α/2

(ui − θ̂i)2

. (24)

Chou et al. [24], and Pearn and Chang [25], proposed the confidence interval for the process capability index Cp. The
lower limit li and upper limit ui of the confidence interval are respectively given by

li = θ̂i

√
χ2

α/2(ni−1)

ni − 1
and ui = θ̂i

√
χ2

1−α/2(ni−1)

ni − 1
. (25)

Therefore, the 100(1−α)% GCI for the common process capability index Cp, θ , based on the Adjusted MOVER
approach can be written as

CI3 =




θ̂ − z1−α/2

√√√√√√
1

k

∑
i=1

z2
α/2

(θ̂i − li)2

, θ̂ + z1−α/2

√√√√√√
1

k

∑
i=1

z2
α/2

(ui − θ̂i)2



. (26)

Algorithm 3. For given set Xi j, for i = 1,2, ...,k and j = 1,2, ...,ni, the GCI for θ can be computed by the following steps.

1. Compute x̄i and s2
i , for i = 1,2, ...,k.

2. Compute li,ui from Equation (25), for i = 1,2, ...,k.

3. Compute Vâr(θ̂i) from Equation (23), for i = 1,2, ...,k.

4. Compute θ̂ following Equation (22).
5. Calculate the confidence interval estimation from Equation (26), for i = 1,2, ...,k.

3 Simulation Study

A simulation study was conducted to estimate the coverage probabilities (CP) and expected lengths (EL) of the three
confidence intervals for the common process capability index Cp of normal distributions. The coverage probability and
the expected length are given by [26]

CP =
∑

10,000
i=1 Ii (L ≤Cp ≤U)

10,000

and

EL =
∑

10,000
i=1 (Ui −Li)

10,000

where ∑
10,000
i=1 Ii (L ≤ α ≤U) denotes the number of simulation runs. Various combinations of the number of sample cases

k = 2,4,6,10, sample sizes n1 = ... = nk = n, (10, 25, 50, and 100), the population mean of the normal data for each
sample, µ1 = ...= µk = µ = 50, and the population standard deviations σ1 = ...= σk = σ = 1. In addition, the true values
of the process capability index, (Cp1

= ... =Cpk
= Cp), lower specification limit (LSL1 = ... = LSLk = LSL), and upper

specification limit (USL1 = ...=USLk =USL)were set as in Table 1 (Panichkitkosolkul [14]).
For each set of parameters, 10000 random samples were generated and 1000 R0’s were obtained for each of the random

samples. The nominal level was fixed at 0.95. All simulation runs were performed using the R statistical package (Venbles
et al. [27]). Figs. 1 to 4 provide simulation results for the estimated coverage probability of the confidence intervals for the
2, 4, 6, and 10 sample cases, respectively, and the expected lengths are presented in Figs. 5 to 8. The Adjusted MOVER
approach had coverage probabilities close to the nominal level for all scenarios. However, both GCI and the LS provided
coverage probabilities that were quite different from the nominal level: GCI underestimated the coverage probability for k

= 4, 6, 10 but was close for the others, while LS overestimated the coverage probability, although this tended to decrease
and come close to the nominal level when the sample size increased. Meanwhile, the Adjusted MOVER approach provided
the shortest expected lengths compared with the other approaches for all situations.
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Table 1: True values of Cp,LSL, and USL .

Cp LSL USL

1.00 47.00 53.00

1.33 46.01 53.00

1.50 45.50 54.50

1.67 44.90 55.01

2.00 44.00 56.00

Fig. 1: Estimated coverage probabilities of 95% confidence intervals for common process capability index Cp in case of k = 2.

Fig. 2: Estimated coverage probabilities of 95% confidence intervals for common process capability index Cp in case of k = 4.
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Fig. 3: Estimated coverage probabilities of 95% confidence intervals for common process capability index Cp in case of k = 6.

Fig. 4: Estimated coverage probabilities of 95% confidence intervals for common process capability index Cp in case of k = 10.
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Fig. 5: Expected Lengths of 95% confidence intervals for common process capability index Cp in case of k = 2.

Fig. 6: Expected Lengths of 95% confidence intervals for common process capability index Cp in case of k = 4.
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Fig. 7: Expected Lengths of 95% confidence intervals for common process capability index Cp in case of k = 6.

Fig. 8: Expected Lengths of 95% confidence intervals for common process capability index Cp in case of k = 10.

4 An Empirical Application

In this section, an example with real data is used to illustrate the given approaches. The data are from the PCIs of two
hardness specimen cutting processes provided by Bangphan [28].

For process 1, the summary statistics are

n1 = 25, x̄1 = 20.013, and s1 = 0.0014.
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For process 2, the summary statistics are

n2 = 25, x̄2 = 20.018, and s2 = 0.006.

The two processes have USL and LSL of 20.05 and 19.95 mm, respectively. For checking distributions of these two
processes, the Akaike Information Criterion (AIC) values, the Bayesian Information Criterion (BIC) values and Normal
Probability Plots are proposed. The AIC values and BIC values are demonstrated in Table 2 and Table 3, and Normal
Probability Plots for two processes are given in Figure 9 and Figure 10.

Table 2: The values of AIC and BIC of process 1 .

AIC BIC

Normal -137.9829 -135.5452

Exponential 200.8166 203.0355

Log-normal -137.9901** -135.5523**

Table 3: The values of AIC and BIC of process 2 .

AIC BIC

Normal -184.6286 -182.1909

Exponential 200.8318 203.0507

Log-normal -184.6348** -182.1971**

Fig. 9: Normal Probability Plot of process 1.
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Fig. 10: Normal Probability Plot of process 2.

As Tables 2 and 3, both AIC and BIC values of the two processes from the lognormal population are minimum.
However, the AIC values and BIC values of normal distribution are close to these of the lognormal distribution. Figures
9 and 10, Normal Probability Plot with the normal distribution curve that provides each process data based on normal
population. In conclusion, from all statistic measure, the two processes come from normal populations.

The 95% confidence intervals for the common process capability index Cp, was CI1=[0.9601, 1.7408] with an interval
length of 0.7806 mm using the GCI approach, CI2=[1.0477, 1.6990] with an interval length of 0.6513 mm using the LS
approach, and CI3=[1.0749, 1.6712] with an interval length of 0.5963 mm using the Adjusted MOVER approach. These
results show that the Adjusted MOVER approach provided the shortest length, which clearly confirms the simulation
study results in the previous section.

5 Conclusions

The aim of this paper is to propose three confidence intervals for the common process capability index Cp based on
the k normal distributions. We compared the performances the GCI, LS, and Adjust MOVER approaches in terms of the
coverage probability and the expected length via simulation studies. The results show that the coverage probability and the
expected length of the Adjusted MOVER approach were far superior to GCI and LS in all cases. The Adjusted MOVER
approach produced coverage probabilities close to the nominal level and the shortest expected lengths for all situations.
The LS approach provided better coverage probabilities and expected lengths than the GCI approach when the sample
size increased. Therefore, we recommend the Adjusted MOVER approach for constructing the confidence interval for the
common process capability index Cp of normal distributions.
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